

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0044 vom 1. März 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Würth-Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR und W-ED/HCR BND

Wegkontrolliert spreizender Dübel zur Verankerung im ungerissenen Beton

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Herstellwerk W1, DEUTSCHLAND

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 4: "Wegkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

ETA-02/0044 vom 26. März 2015

Europäische Technische Bewertung ETA-02/0044

Seite 2 von 16 | 1. März 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z11653.16 8.06.01-12/16

Europäische Technische Bewertung ETA-02/0044

Seite 3 von 16 | 1. März 2016

Besonderer Teil

3

1 Technische Beschreibung des Produkts

Der Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR und W-ED/HCR BND ist ein Dübel aus galvanisch verzinktem Stahl, aus nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die

angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte des Widerstandes gegen Zug- und Querbeanspruchung sowie Biegung in Beton	Siehe Anhang C 1 bis C 4
Rand- und Achsabstände	Siehe Anhang C 1 bis C 2
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 5

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

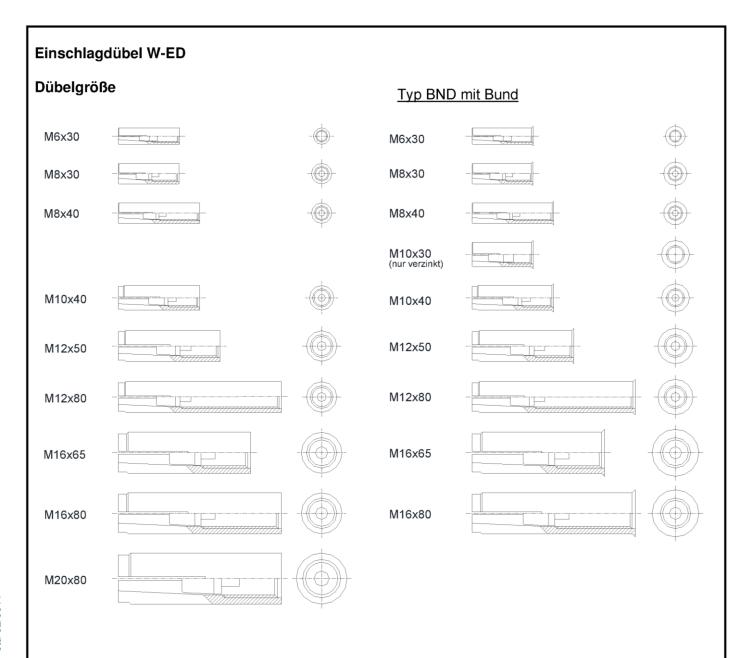
Z11653.16 8.06.01-12/16

Europäische Technische Bewertung ETA-02/0044

Seite 4 von 16 | 1. März 2016

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 1. März 2016 vom Deutschen Institut für Bautechnik

Andreas Kummerow i.V. Abteilungsleiter

Beglaubigt:

Z11653.16 8.06.01-12/16

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND

Produktbeschreibung Dübelgröße Anhang A1

Einbausituation

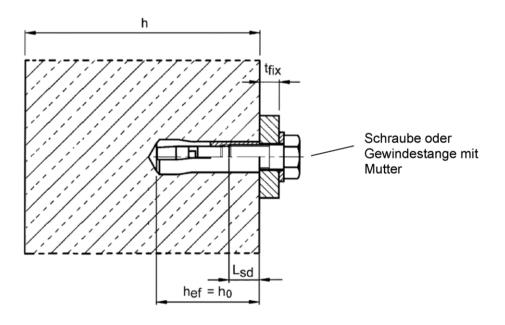
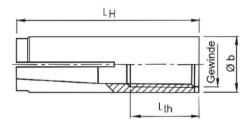


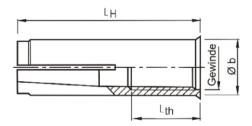
Tabelle A1: Benennung und Werkstoffe

Teil	Benennung	Stahl, galvanisch verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl HCR		
1	Dübelhülse	Kaltstauch- bzw. Automatenstahl, galvanisch verzinkt, EN ISO 4042:1999	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010	Nichtrostender Stahl, 1.4529, 1.4565, EN 10088:2005, Festigkeitsklasse 70, EN ISO 3506:2010		
2	Konus	Kaltstauchstahl nach EN 10263-2:2001	Nichtrostender Stahl, 1.4401, 1.4 10088:2005	404, 1.4571, 1.4362, EN		

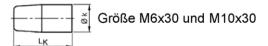
Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND,
W-ED/HCR, W-ED/HCR BND


Produktbeschreibung
Einbausituation und Werkstoffe

Anhang A2



Dübelhülse


Dübelversion ohne Kragen

Dübelversion mit Kragen Typ BND

Konus

Prägung: siehe Tabelle A2

A4 zusätzliche Kennung für nichtrostenden Stahl A4

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Tabelle A2: Dübelabmessungen und Prägung

	Dü	ibelhi	ilse		Koı	านร	Prägung						
Dübel- größe	Gewinde	Øb	L _H	L_{th}	Øk	L _K	Version E	Version ES	alternativ				
M6x30	М6	8	30	13	5,0	13		S ES M6x30					
M8x30	М8	10	30	13	6.5	12		⇔ ES M8x30					
M8x40	М8	10	40	20	6,5	0,5	12		⇔ ES M8x40				
M10x30	M10	12	30	12	8,2	12	-	⇔ ES M10x30					
M10x40	M10	12	40	15	8,2	16		⇔ ES M10x40					
M12x50	M12	15	50	18	10,3	20		⇔ ES M12x50					
M12x80	M12	15	80	45	10,3	20		⇔ ES M12x80					
M16x65	M16	19,7	65	23	13,8	29		⇔ ES M16x65					
M16x80	M16	19,7	80	38	13,6	29		⇔ ES M16x80					
M20x80	M20	24,7	80	34	16,5	30		-					

Maße in mm

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND

Produktbeschreibung

Dübelabmessungen und Prägung

Anhang A3

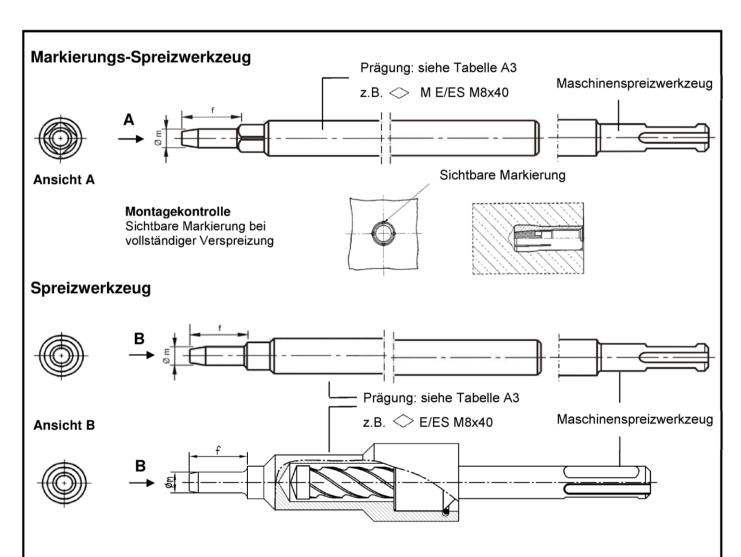


Tabelle A3: Abmessungen und Prägung der Spreizwerkzeuge

Dübel-	_		Markierungs-Sp	reizwerkzeug	Spreizwerkzeug				
größe	Øm	f	Prägung	Prägung Alternative Prägung		Alternative Prägung			
M6x30	4,9	17		→ M E M6		⇒ E M6			
M8x30	6,4	18				⇒ E M8			
M8x40	6,4	28				⇒ E M8x40			
M10x30	8,0	18				⇒ E M10x30			
M10x40	8,0	24				⇒ E M10			
M12x50	10,0	30				⇒ E M12			
M12x80	10,0	60				⇒ E M12x80			
M16x65	13,5	36				⇒ E M16			
M16x80	13,5	51				⇒ E M16x80			
M20x80	16,5	50			⇒ E M20x80	⇒ E M20			

Maße in mm

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BI	ND,
W-ED/HCR, W-ED/HCR BND	

Produktbeschreibung

Setzwerkzeug, Abmessungen und Prägung

Anhang A4

Spezifizierung des Verwendungszwecks

Verankerungen unter:

Statische oder quasi-statische Einwirkung

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000
- Ungerissener Beton
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000

Anwendungsbedingungen:

- Bauteile unter Bedingungen trockener Innenräume (galvanisch verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

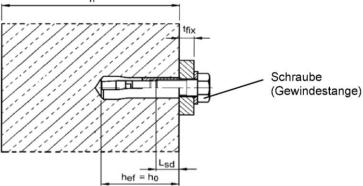
Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Festigkeitsklasse und die L\u00e4nge der Befestigungsschraube oder der Gewindestange m\u00fcssen vom Planer festgelegt werden.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation angegebenen Spreizwerkzeugen,
- Bohrlocherstellung nur durch Hammerbohren,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND


Verwendungszweck Spezifikationen Anhang B1

715188 16 8 06 01-12/16

Tabelle B1: Montage- und Dübelkennwerte

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80
Bohrlochtiefe	$h_0 =$	[mm]	30	30	40	30	40	50	80	65	80	80
Bohrernenndurchmesser	$d_0 =$	[mm]	8	10	10	12	12	15	15	20	20	25
Bohrerschneiden- durchmesser	$d_{cut} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55
max. Drehmoment beim Verankern ¹⁾	T _{inst} ≤	[Nm]	4	8	8	15	15	35	35	60	60	120
Durchgangsloch im anzuschließenden Bauteil	$d_f \leq$	[mm]	7	9	9	12	12	14	14	18	18	22
Gewindelänge	L_th	[mm]	13	13	20	12	15	18	45	23	38	34
Mindesteinschraubtiefe	L _{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22
Stahl, galvanisch verzink	t											
Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimaler Achsabstand	S _{min}	[mm]	55	60	80	100	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	95	95	95	115	135	165	165	200	200	260
Nichtrostender Stahl A4,	HCR											
Mindestbauteildicke	h _{min}	[mm]	100	100	100	-	130	140	140	160	160	250
Minimaler Achsabstand	S _{min}	[mm]	50	60	80		100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	80	95	95	- 0	135	165	165	200	200	260

Wenn die Schraube oder Gewindestange anderweitig gegen Herausdrehen gesichert ist, kann auf das Drehmoment verzichtet werden.

Anforderungen an die Schraube bzw. an die Gewindestange und Mutter entsprechend Planungsunterlagen:

- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle B1
- Die Länge der Schraube bzw. der Gewindestange muss in Abhängigkeit von der Anbauteildicke t_{fix}, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe) und der minimalen Einschraubtiefe L_{sdmin} festgelegt werden.
- A₅ > 8 % Duktilität

Stahl, galvanisch verzinkt

Festigkeitsklasse 4.6 / 5.6 / 5.8 oder 8.8 nach EN ISO 898-1:2013 bzw. EN ISO 898-2:2012

Nichtrostender Stahl A4

- Werkstoff 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Hochkorrosionsbeständiger Stahl (HCR)

- Werkstoff 1.4529; 1.4565, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND

Verwendungszweck

Montage- und Dübelkennwerte

Anhang B2

Montageanweisung Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen. Bohrloch vom Grund her ausblasen. 2 3 Anker einschlagen. Konus mit Spreizwerkzeug eintreiben. Der Anschlag des Spreizwerkzeugs muss auf dem 5 Ankerrand aufsetzen. TINST $\label{eq:montaged} \mbox{Montagedrehmoment T_{inst} mit kalibriertem } \mbox{Drehmomentschlüssel aufbringen}.$ 6

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND,	
W-ED/HCR, W-ED/HCR BND	
Verwendungszweck	Anhang B3
Montageanweisung	

Tabelle C1: Charakteristis	che W	erte bei	Zugb	eanspi	uchun	g, verz	inkt				
Dübelgröße		M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80	
Montagesicherheitsbeiwert $\gamma_2 = \gamma_{ins}$	t [-]					1,2					
Stahlversagen											
Charakteristische Zugtragfähigkeit Stahl 4.6	s [kN]	8,0	14,	,6	23,	2	33	3,7	62,8	98,0	
Teilsicherheitsbeiwert γ _M	s [-]					2,0					
Charakteristische Zugtragfähigkeit N _{Rk} Stahl 5.6	s [kN]	10,0	18,	,3	18,0	20,2	42	42,1		122,4	
Teilsicherheitsbeiwert γ_M	s [-]		2,0		1,	5		2,	0		
Charakteristische Zugtragfähigkeit N _{Rk} Stahl 5.8	s [kN]	10,0	17,6	18,3	18,0	20,2	40,2	42,1	67,1	106,4	
Teilsicherheitsbeiwert γ _M	s [-]			1	,5				1,6		
Charakteristische Zugtragfähigkeit N _{Rk} Stahl 8.8	s [kN]	15,0	17,6	19,9	18,0	20,2	40,2	43,0	67,1	106,4	
Teilsicherheitsbeiwert γ _M	s [-]			1	,5	5				6	
Herausziehen											
Charakteristische Tragfähigkeit N _{Rk} , im Beton C20/25	p [kN]	2)	2)	9	2)	2)	2	2)	2)	2)	
Erhöhungsfaktor für N _{Rk,p} ψ	c [-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0,3}$							
Betonausbruch und Spalten											
Verankerungstiefe h	ef [mm]	30	30	40	30	40	5	0	65	80	
Achsabstand $s_{cr,N}$ (= 2 $c_{cr,N}$) [mm]					3 h _{ef}					
(Randabstand) $s_{cr,sp}$ (= 2 $c_{cr,sp}$) [mm]	190	190	190	230	270	33	30	400	520	
Faktor gemäß CEN/TS 1992-4 k _u	r [-]					10,1					

 $^{^{1)}\,\}mathrm{Nur}\,\mathrm{zur}\,\mathrm{Verwendung}$ in statisch unbestimmten Systemen $^{2)}\,\mathrm{Herausziehen}$ ist nicht maßgebend

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND

Leistung

Charakteristische Werte bei Zugbeanspruchung, verzinkt

Anhang C1

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR

			•	•	•				
Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{\text{inst}}$	[-]				1,0			
Stahlversagen									
Charakteristische Zugtragfähigke (Festigkeitsklasse 70)	eit N _{Rk,s}	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0
Charakteristische Zugtragfähigke (Festigkeitsklasse 80)	eit N _{Rk,s}	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0
Teilsicherheitsbeiwert	γ _{Ms} ³⁾	[-]				1,87			
Herausziehen									
Charakteristische Tragfähigkeit i Beton C20/25	m N _{Rk,p}	[kN]	2)	2)	9	2)	2)	2)	2)
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Betonausbruch und Spalten									
Verankerungstiefe	h _{ef}	[mm]	30 ³⁾	30	40	40	50	65	80
Achsabstand (Randabstand)	s _{cr,N} (= 2 c _{cr,N})	[mm]				3 h _{ef}			
	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	160	190	190	270	330	400	520
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]				10,1			

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen.

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND

Leistung

Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR

Anhang C2

²⁾ Herausziehen ist nicht maßgebend.

³⁾ Beim Nachweis gegen Betonversagen nach ETAG 001, Anhang C oder CEN/TS 1992-4-4 ist N⁰_{Rk,c} mit dem Faktor (25/f_{ck,cube})^{0,2} zu multiplizieren.

Tabelle C3: Charakteristische Werte bei Querbeanspruchung, verzinkt

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80
Stahlversagen ohne Hel	oelarm		l							mioxoo	
Charakteristische Tragfähigkeit Stahl 4.6	$V_{Rk,s}$	[kN]	4,0	7,3		11,6	9,6	16,8		31,3	49,0
Teilsicherheitsbeiwert	γMs	[-]					1,67				
Charakteristische Tragfähigkeit Stahl 5.6	$V_{Rk,s}$	[kN]	5,0	9,	1	10,1	9,6	2	1,1	39,2	61,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,67		1,25			1,67		
Charakteristische Tragfähigkeit Stahl 5.8	$V_{Rk,s}$	[kN]	5,0	6,	9	10,1	7,2	19,4	21,1	33,5	53,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]				1,25				1,	33
Charakteristische Tragfähigkeit Stahl 8.8	$V_{Rk,s}$	[kN]	5,0	6,	9	10,1	7,2	19,4	21,5	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]				1,25				1,	33
Duktilitätsfaktor	k ₂	[-]					1,0				
Stahlversagen mit Hebe	larm										
Charakteristisches Biegemoment Stahl 4.6	$M^0_{Rk,s}$	[Nm]	6,1	15		30	30	52		133	259
Teilsicherheitsbeiwert	γMs	[-]		1,67							
Charakteristisches Biegemoment Stahl 5.6	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37	65		166	324
Teilsicherheitsbeiwert	γMs	[-]					1,67				
Charakteristisches Biegemoment Stahl 5.8	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37		65	166	324
Teilsicherheitsbeiwert	γ_{Ms}	[-]					1,25				
Charakteristisches Biegemoment Stahl 8.8	M ⁰ _{Rk,s}	[Nm]	12	3	0	59	60	1	05	266	519
Teilsicherheitsbeiwert	γMs	[-]					1,25				
Duktilitätsfaktor	k ₂	[-]					1,0				
Betonausbruch auf der	lastabge	wandte	n Seite								
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS	k ₍₃₎	[-]		1,0			1,5			2,0	
Betonkantenbruch											
Wirksame Dübellänge bei Querlast Wirksamer	I _f	[mm]		30	40	30	40		50	65	80
Außendurchmesser	d_{nom}	[mm]	8	10	10	12	12	1	15	20	25

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND,
W-ED/HCR, W-ED/HCR BND

Leistung
Charakteristische Werte bei Querbeanspruchung, verzinkt

Tabelle C4: Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Stahlversagen ohne Hebelarm									
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 70)	$V_{Rk,s}$	[kN]	7,0	10,	6	13,4	25,1	41,9	66,5
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 80)	$V_{Rk,s}$	[kN]	8,7	10,	6	13,4	25,1	41,9	66,5
Teilsicherheitsbeiwert	γ Ms	[-]				1,56			
Duktilitätsfaktor	k_2	[-]				1,0			
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment (Festigkeitsklasse 70)	$M^0_{Rk,s}$	[Nm]	11	2	6	52	92	233	454
Teilsicherheitsbeiwert	γMs	[-]				1,56			
Charakteristisches Biegemoment (Festigkeitsklasse 80)	$M^0_{Rk,s}$	[Nm]	12	3	0	60	105	266	519
Teilsicherheitsbeiwert	γ Ms	[-]				1,33			
Duktilitätsfaktor	k ₂	[-]	1,0						
Betonausbruch auf der lastabgewandten	Seite								
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS	k ₍₃₎	[-]	1,0	1,	7	1,	1,7 2,0		
Betonkantenbruch									
Wirksame Dübellänge bei Querlast	lf	[mm]	30	30	40	40	50	65	80
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	10	12	15	20	25

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND

Leistung

Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

Anhang C4

Tabelle C5: Verschiebungen unter Zuglast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Zuglast im ungerissenen Beton	N	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8
Verschiebung	δ_{N0}	[mm]	0,24							
	$\delta_{N\infty}$	[mm]	nm] 0,36							
Nichtrostender Stahl A4 / HCR										
Zuglast im ungerissenen Beton	N	[kN]	4	4	4,3	-	6,1	8,5	12,6	17,2
Verschiebung	δ_{N0}	[mm]	0,12							
	$\delta_{N\infty}$	[mm]				0,	24			

Tabelle C6: Verschiebungen unter Querlast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	
Stahl galvanisch verzinkt										
Querlast im ungerissenen Beton	V	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Verschiebung	δ_{V0}	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
	$\delta_{V_{\infty}}$	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Nichtrostender Stahl A4 / HCR										
Querlast im ungerissenen Beton	V	[kN]	3,5	5,2	5,2	-	6,5	11,5	19,2	30,4
Verschiebung	δ_{V0}	[mm]	1,9	1,1	0,7	-	1,0	1,7	2,4	2,6
	$\delta_{V\infty}$	[mm]	2,8	1,6	1,0	-	1,5	2,6	3,6	3,8

Würth Einschlagdübel W-ED/S, W-ED/S BND, W-ED/A4, W-ED/A4 BND, W-ED/HCR, W-ED/HCR BND

Leistung Verschiebung **Anhang C5**