

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0267 of 19 January 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

allfa Iso-Universalanchor IUD

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

allfa Dübel GmbH Braukämperstraße 101 45899 Gelsenkirchen

allfa Dübel GmbH

13 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, Edition February 2011,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-05/0267 issued on 20 June 2011

European Technical Assessment ETA-05/0267

Page 2 of 13 | 19 January 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z3995.16 8.06.04-5/16

European Technical Assessment ETA-05/0267

Page 3 of 13 | 19 January 2016

English translation prepared by DIBt

Specific part

1 Technical description of the product

The allfa Iso-Universalanchor IUD with a plate consists of a plastic part made of polyethylene and an accompanying specific nail of galvanised steel with an integrally moulded plastic head made of polyamide.

The anchor may in addition be combined with the anchor plates IUS 140, IUS 110 or IUS 90 made of polyethylene.

The description of the product is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.3 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Point thermal transmittance	See Annex C 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 2

3.4 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

Z3995.16 8.06.04-5/16

European Technical Assessment ETA-05/0267

Page 4 of 13 | 19 January 2016

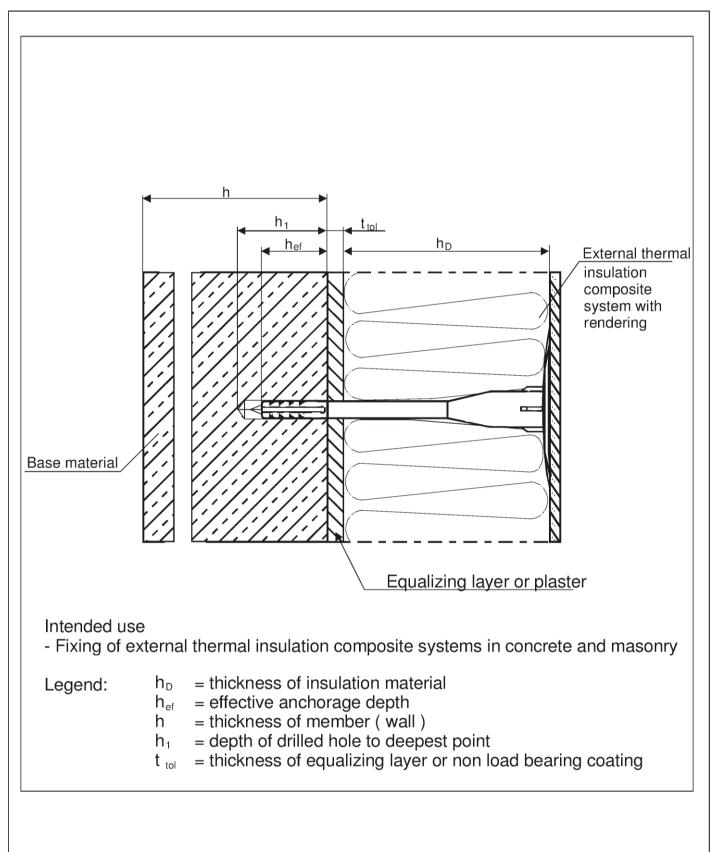
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 014, February 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC.

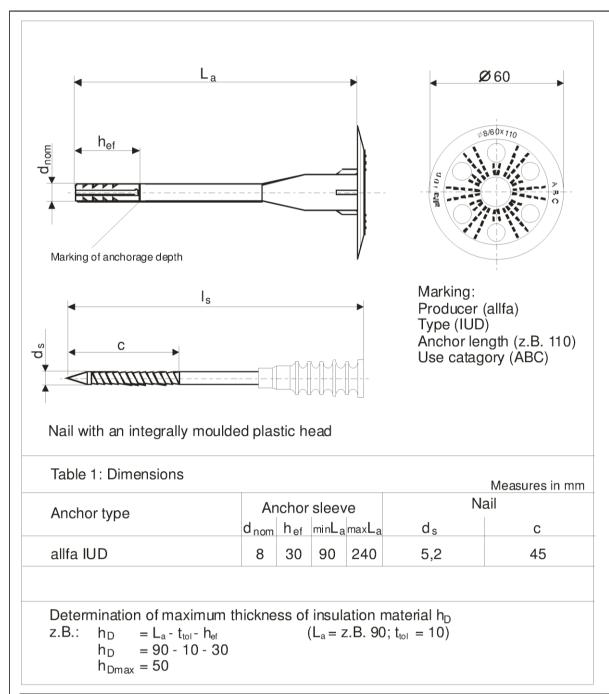
The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 19. January 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentZiegler


Z3995.16 8.06.04-5/16

allfa Iso-Universalanchor IUD	
Product description Installed condition	Annex A 1

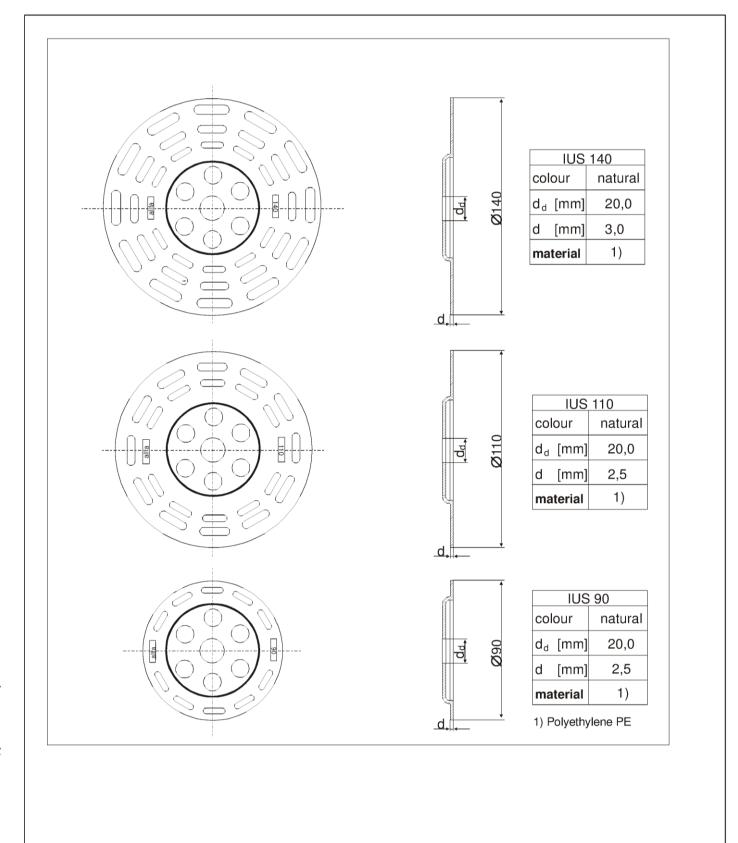


Table 2: Materials				
Element	Material			
Anchor sleeve	Polyethylene PE, colours: natural, white, grey, blue, orange, red, green			
Specific nail	Steel galvanized ≥ 5 µm according EN ISO 4042			
Plastic head of the nail	Polyamide PA 6.0			

allfa Iso-Universalanchor IUD	
Product description Dimensions, materials and marking of the anchor sleeve and specific nail	Annex A 2

8.06.04-5/16

Annex A 3 Product description Anchor plates in combination with allfa Iso-Universalanchor IUD

Specifications of intended use

Anchorages subject to:

 The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1
- Solid masonry (use category B), according to Annex C 1
- Hollow or perforated masonry (use category C), according to Annex C 1
- For other base materials of the use categories A, B or C the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

allfa Iso-Universalanchor IUD

Intended use
Specifications

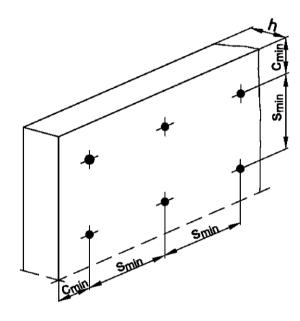

Annex B 1

Table 3: Installation parameters				
Anchor type		alifa IUD		
Drill hole diameter	d ₀ [mm] =	8		
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45		
Depth of drilled hole to deepest point	h₁ [mm] ≥	40		
Effective anchorage depth	h _{ef} [mm] ≥	30		

Table 4: Anchor distances and dimensions of members				
Anchor type allfa IUD				
Minimum allowable spacing	s _{min} ≥ [mm]	100		
Minimum allowable edge distance	$c_{min} \geq [mm]$	100		
Minimum thickness of member	h ≥ [mm]	100		

Scheme of distances and spacings

allfa Iso-Universalanchor IUD	
Intended use Installation parameters, edge distances and spacings	Annex B 2

English translation prepared by DIBt

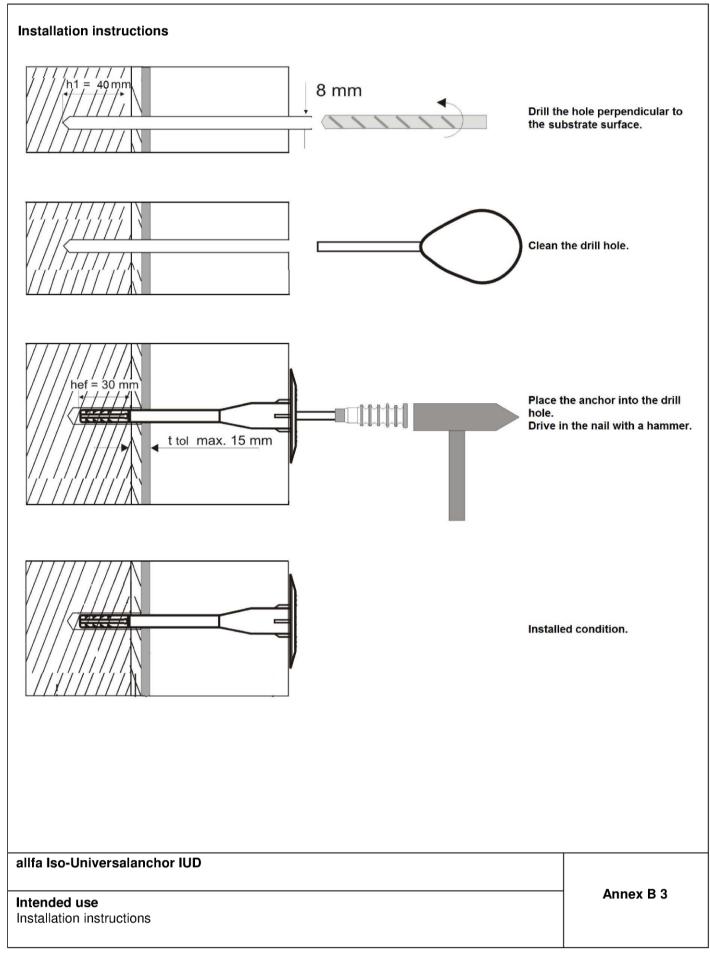


Table 5: Characteristic resistance to tension loads N_{Rk} in concrete and masonry for a single anchor in kN

Anchor type					allfa IUD
Base material	Bulk density class p [kg/dm ³]	Minimum compressive strength f _b [N/mm ²]	General remarks	Drill method	N _{Rk} [kN]
Concrete C12/15 (EN 206-1:2000)				Hammer	0,75
Concrete C20/25 (EN 206-1:2000)				Hammer	1,2
Concrete C50/60 (EN 206-1:2000)				Hammer	1,5
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,8	12	Vertically perforation up to 15 %	Hammer	1,2
Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 2,0	12	Vertically perforation up to 15 %	Hammer	0,9
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,4	12	Vertically perforation up to 15 % outer web thickness ≥ 24 mm	Hammer	0,6
Vertically perforated clay bricks, HIz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 1,0	12	Vertically perforation up to 15 % and less than 50 % outer web thickness ≥ 14 mm	Rotary	0,5
Vertically perforated clay bricks HIz 25 x 38 x 23,5	≥ 1,0	12	Outer web thickness ≥ 10,3 mm, see Annex C 3	Rotary	0,5
Lightweight aggregate concrete V e.g. according to DIN V 18152-100:2005-10 / EN 771-3:2011	≥ 0,9	4	Area of grip hole ≤ 10%, max. size: length 110 mm, width 45 mm	Rotary	0,4
Lightweight concrete hollow blocks Hbl e.g. according to DIN V 18151- 100:2005-10 / EN 771-3:2011	≥ 0,7	2	see Annex C 3	Rotary	0,5

allfa Iso-Universalanchor IUD	
Performances Characteristic resistance	Annex C 1

Table 6: Displacements allfa IUD

Base materials	Bulk density class ρ [kg/dm³]	Minimum Compressive strength f _b [N/mm²]	Tension load N [kN]	Displacements $\delta_{m}(N) \\ [mm]$
C 12/15 Concrete C 20/25 (EN206-1) C 50/60			0,25 0,40 0,50	1,2 1,2 1,2
Sand-lime solid bricks, KS (DIN V 106:2005-10/ EN 771-2:2011)	≥ 1,8	12	0,40	1,3
Clay bricks, Mz (DIN 105-100:2012-01/EN 771-1:2011)	≥ 2,0	12	0,30	1,0
Sand-lime perforated bricks, KSL (DIN V 106:2005-10/EN 771-2:2011)	≥ 1,4	12	0,20	0,8
Vertically perforated clay bricks, HLz (DIN 105-100:2012-01/EN 771-1:2011)	≥ 1,0	12	0,15	0,8
Vertically perforated clay bricks, HLz 25 x 38 x 23,5 (DIN 105-100:2012-01/EN 771-1:2011)	≥ 1,0	12	0,15	0,5
Lightweight aggregate concrete V (DIN V 18152-100:2005-10 / EN 771-3:2011)	≥ 0,9	4	0,13	0,5
Lightweight concrete hollow blocks Hbl (DIN V 18151-100:2005-10 / EN 771-3:2011)	≥ 0,7	2	0,15	0,5

Table 7: Point thermal transmittance according EOTA Technical Report TR025:2007-06

	insulation thickness	Point thermal transmittance
anchor type	h _D	χ
	[mm]	[W/K]
allfa Iso-	60 - 210	0.002
Universalanchor IUD	00 - 210	0,002

Table 8: Plate stiffness according EOTA Technical Report TR026:2007-06

anchor type	diameter of the anchor plate	load resistance of the anchor plate	plate stiffness
	[mm]	[kN]	[kN/mm]
allfa Iso-	60	1,3	0.4
Universalanchor IUD		1,3	0,4

allfa Iso-Universalanchor IUD	
Performances Displacements, point thermal transmittance, plate stiffness	Annex C 2

Table 9: Geometry of Hbl acc.

DIN V 18151-100 and HLz 250 x 380 x 235

	 		
Geometry	Thickness of brick	Outer web in longitudinal direction	
	d	a	
	[mm]	[mm]	
	175	50	
	240 300	50	
1	175	35	
	240 300 365	35	
	240 300 365	30	
HIz 250 x 380 x 235	250	10,3	

The anchor shall be placed in the brick in such way, that the spreading part of the expansion sleeve is located in the outer web.

allfa Iso-Universalanchor IUD	
Performances Geometry of Hbl according DIN V 18151-100 and Hlz 250 x 380 x 235	Annex C 3