



#### Zulassungsstelle für Bauprodukte und Bauarten

#### **Bautechnisches Prüfamt**

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts



# **Europäische Technische Bewertung**

# ETA-05/0199 vom 15. Februar 2016

#### Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

mungo Stahlbolzen m2r

Kraftkontrolliert spreizender Dübel aus nichtrostendem Stahl zur Verankerung im ungerissenen Beton

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Mungo Werk Olten

12 Seiten, davon 3 Anhänge

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.



# Europäische Technische Bewertung ETA-05/0199

Seite 2 von 12 | 15. Februar 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z11990.16 8.06.01-481/15



Europäische Technische Bewertung ETA-05/0199

Seite 3 von 12 | 15. Februar 2016

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Der mungo Stahlbolzen m2r in den Größen M6, M8, M10, M12 und M16 ist ein Dübel aus nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

# 2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                   | Leistung                 |
|------------------------------------------------------------------------|--------------------------|
| Charakteristische Werte bei Zug- und Querbeanspruchung, Verschiebungen | Siehe Anhang C 1 bis C 2 |

#### 3.2 Brandschutz (BWR 2)

| Wesentliches Merkmal | Leistung                                             |
|----------------------|------------------------------------------------------|
| Brandverhalten       | Der Dübel erfüllt die Anforderungen der<br>Klasse A1 |
| Feuerwiderstand      | Keine Leistung bestimmt                              |

#### 3.3 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

# 4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z11990.16 8.06.01-481/15





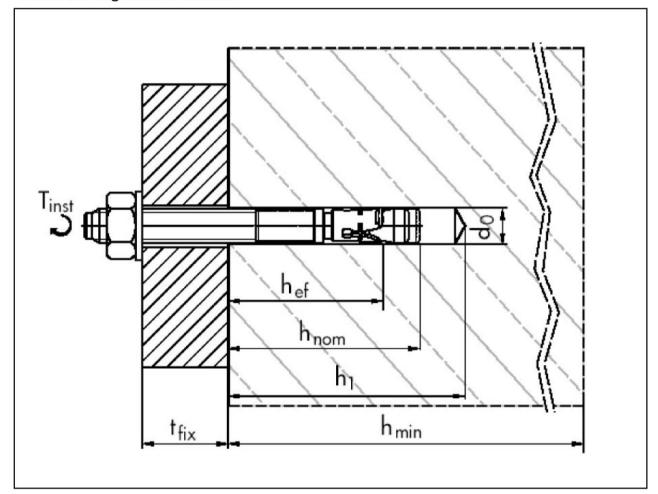
Europäische Technische Bewertung ETA-05/0199

Seite 4 von 12 | 15. Februar 2016

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 15. Februar 2016 vom Deutschen Institut für Bautechnik


Andreas Kummerow i. V. Abteilungsleiter

Beglaubigt

Z11990.16 8.06.01-481/15



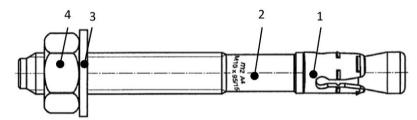
#### Dübel im eingebauten Zustand



Legende: h<sub>ef</sub> = effektive Verankerungstiefe

h<sub>nom</sub> = Gesamtlänge des Dübels im Beton

 $\begin{array}{lll} h_1 &= Bohrlochtiefe \\ h_{min} &= Mindestbauteildicke \\ d_0 &= Bohrernenndurchmesser \\ t_{fix} &= Dicke \ des \ Anbauteils \\ T_{inst} &= Installationsdrehmoment \end{array}$ 


m2r

Produktbeschreibung
Einbauzustand

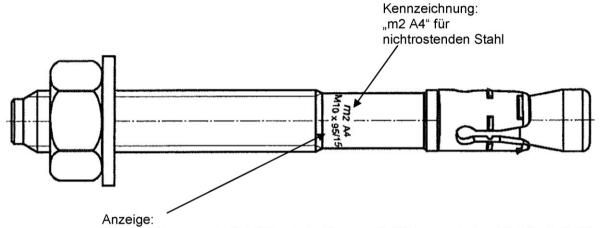
Anhang A 1



#### **Ankertyp**



- 1 Spreizblech
- 2 Bolzen
- 3 Unterlegscheibe
- 4 Sechskantmutter


#### Gestaltung der Spreizbleche:



m2r M6 m2r M16



m2r M8 m2r M10 m2r M12



Nenndurchmesser (z.B. M10) x Ankerlänge (z.B. 95) / max. Anbauteildicke (z.B.15)

#### Ankertypen:

m2r Bolzen m2r mit Unterlegscheibe EN ISO 7089:2000 und Sechskantmutter DIN 934:1987-10

| m2r                                               |            |
|---------------------------------------------------|------------|
| Produktbeschreibung Bezeichnung und Kennzeichnung | Anhang A 2 |



# Tabelle A1: Abmessungen

| Teil | Bezeichnung                              |         |     |                  |      | М6   | M8   | M10  | M12  | M16  |
|------|------------------------------------------|---------|-----|------------------|------|------|------|------|------|------|
|      |                                          |         | d   | k                | [mm] | 6    | 8    | 10   | 12   | 16   |
|      |                                          |         | d   | h                | [mm] | 4    | 5,6  | 7,2  | 8,5  | 11,5 |
|      | d <sub>s</sub>                           |         | s1  | [mm]             | 5,25 | 7,05 | 8,9  | 10,7 | 14,5 |      |
| 1    | max                                      |         | mir | ı l <sub>G</sub> | [mm] | 32   | 43   | 52   | 62   | 73   |
|      |                                          |         | max |                  | [mm] | 62   | 120  | 120  | 120  | 120  |
|      |                                          |         | mir | ı L              | [mm] | 65   | 80   | 95   | 110  | 130  |
|      |                                          |         | x L | [mm]             | 95   | 165  | 180  | 185  | 180  |      |
| 2    | Spreizblech                              | - Länge |     | Is               | [mm] | 9,5  | 13,2 | 15,2 | 17,5 | 19,3 |
| 3    | Unterleg-<br>scheibe EN ISO<br>7089:2000 |         | du  | [mm]             | 12   | 16   | 20   | 24   | 30   |      |
| ٥    |                                          |         | s   | [mm]             | 1,6  | 1,6  | 2    | 2,5  | 3    |      |
| 4    | Sechskantm                               | nutter  |     | sw               | [mm] | 10   | 13   | 17   | 19   | 24   |

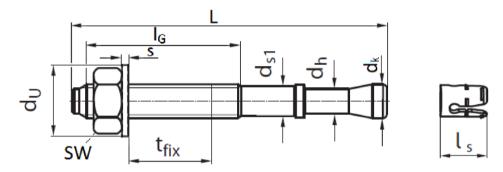



Tabelle A2: Werkstoffe

| Teil | Bezeichnung     | Werkstoff                                 |
|------|-----------------|-------------------------------------------|
| 1    | Bolzen          | Nichtrostender Stahl nach EN 10088        |
| 2    | Spreizblech     | Nichtrostender Stahl nach EN 10088        |
| 3    | Unterlegscheibe | Nichtrostender Stahl nach EN 10088        |
| 4    | Sechskantmutter | Nichtrostender Stahl A4 ISO3506, EN 10088 |

| m2r                                            |            |
|------------------------------------------------|------------|
| Produktbeschreibung Abmessungen und Werkstoffe | Anhang A 3 |



#### Spezifikation des vorgesehenen Anwendungsbereichs

#### Beanspruchung der Verankerung:

· Statische oder quasi-statische Lasten

#### Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206:2013
- Festigkeitsklasse ab C20/25 bis maximal C50/60 gemäß EN 206:2013
- Ungerissener Beton

#### Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen.

#### Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Lage des Dübels ist auf den Bemessungsplänen angegeben (z.B. Position des Dübels relativ zur Bewehrung oder zur Verstärkung, etc.).
- Die Bemessung der Verankerungen unter statischen oder quasi-statischen Lasten erfolgt in Übereinstimmung mit ETAG 001, Anhang C, Bemessungsverfahren A, Ausgabe August 2010.
- · Es ist sicherzustellen, dass lokale Abplatzungen der Betonüberdeckung nicht auftreten.

#### Einbau:

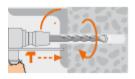
- Loch bohren nur mit Schlagbohren.
- Einbau der Verankerung in Übereinstimmung mit der Spezifikation des Herstellers unter Einsatz geeigneter Werkzeuge, ausgeführt durch entsprechend qualifiziertes Personal und unter der Aufsicht derjenigen Person, die verantwortlich zeichnet für technische Angelegenheit auf der Baustelle.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Prüfen der Betonfestigkeit vor Anbringen des Ankers, um sicherzustellen, dass die Betonfestigkeitsklasse von dieser Zulassung abgedeckt ist.
- Positionieren der Bohrlöcher ohne Schädigung der Bewehrung.
- Reinigung des Bohrlochs von Verunreinigungen und Bohrmehl.
- Rand- und Achsabstände nicht kleiner als die spezifizierten Werte ohne Minustoleranzen.
- Ankereinbau so, dass die effektive Verankerungstiefe erfüllt ist. Diese Bedingung ist erfüllt, wenn die Setzmarkierung des Dübels nicht über die Betonoberfläche hinausragt.
- Der Anker darf nur einmal gesetzt werden.
- Bei Fehlbohrungen Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Aufbringen des angegebenen Drehmoments unter Verwendung eines kalibrierten Drehmomentschlüssels.

| m2r                                       |            |
|-------------------------------------------|------------|
| Vorgesehene Verwendung<br>Spezifikationen | Anhang B 1 |

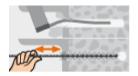


# Tabelle B1: Montagekennwerte

| Ankergrösse                                  |                      |      | М6  | М8   | M10   | M12  | M16  |
|----------------------------------------------|----------------------|------|-----|------|-------|------|------|
| Bohrlochnenndurchmesser                      | do                   | [mm] | 6   | 8    | 10    | 12   | 16   |
| Effektive Verankerungstiefe                  | h <sub>ef</sub>      | [mm] | 40  | 50   | 58    | 68   | 80   |
| Installationsdrehmoment                      | T <sub>inst</sub>    | [Nm] | 6,5 | 15   | 30    | 50   | 140  |
| Obergrenze für<br>Bohrerschneidendurchmesser | d <sub>cut</sub> ≤   | [mm] | 6,4 | 8,45 | 10,45 | 12,5 | 16,5 |
| Bohrlochtiefe                                | h₁ ≥                 | [mm] | 60  | 65   | 80    | 90   | 110  |
| Durchgangsloch im Anbauteil                  | d <sub>f</sub> ≤     | [mm] | 7   | 9    | 12    | 14   | 18   |
| Minimale Befestigungsdicke                   | t <sub>fix,min</sub> | [mm] | 1   | 1    | 1     | 1    | 1    |
| Maximale Befestigungsdicke                   | t <sub>fix,max</sub> | [mm] | 10  | 45   | 100   | 90   | 65   |


# Tabelle B2: Mindestbauteildicke, minimaler Achs- und Randabstand

| Ankergrösse           |                  |      | М6  | М8  | M10 | M12 | M16 |
|-----------------------|------------------|------|-----|-----|-----|-----|-----|
| Mindestbauteildicke   | $h_{\text{min}}$ | [mm] | 100 | 100 | 120 | 140 | 160 |
| Minimaler Achsabstand | S <sub>min</sub> | [mm] | 40  | 45  | 55  | 75  | 100 |
| für Randabstand       | С                | [mm] | 70  | 45  | 55  | 75  | 190 |
| Minimaler Randabstand | C <sub>min</sub> | [mm] | 40  | -   | -   | -   | 130 |
| für Achsabstand       | s                | [mm] | 80  | -   | -   | -   | 190 |


| m2r                                                  |            |
|------------------------------------------------------|------------|
| Vorgesehene Verwendung                               | Anhang B 2 |
| Montagekennwerte                                     |            |
| Mindestbauteildicke, minimale Achs- und Randabstände |            |



### Setzanweisung



Bohren des Loches



Reinigen des Loches



Dübel und Bauteil positionieren



Anziehen mit Drehmomentschlüssel und vorgegebenem Installationsdrehmoment (siehe Tabelle B2)



Angezogene Befestigung

| m2r                                     |            |
|-----------------------------------------|------------|
| Vorgesehene Verwendung<br>Setzanweisung | Anhang B 3 |

8.06.01-481/15



# Tabelle C1: Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung

| Ankergrösse                           |                     |        | М6                                    | М8   | M10  | M12  | M16             |  |
|---------------------------------------|---------------------|--------|---------------------------------------|------|------|------|-----------------|--|
| Teilsicherheitsbeiwert                | γ2                  | [-]    |                                       |      | 1,0  |      |                 |  |
| Stahlversagen                         |                     |        |                                       |      |      |      |                 |  |
| Charakteristische<br>Tragfähigkeit    | $N_{Rk,s}$          | [kN]   | 10                                    | 19   | 33   | 46   | 82              |  |
| Teilsicherheitsbeiwert                | $\gamma_{Ms}^{}1)}$ | [-]    |                                       |      | 1,6  |      |                 |  |
| Herausziehen                          |                     |        |                                       |      |      |      |                 |  |
| Charakteristische<br>Tragfähigkeit    | $N_{Rk,p}$          | [kN]   | 7,5                                   | 12,0 | 16,0 | 25,0 | 30,0            |  |
|                                       |                     | C30/37 | 1,17                                  |      |      |      |                 |  |
| Erhöhungsfaktor für N <sub>Rk,p</sub> | $\psi_{\text{C}}$   | C40/50 | 1,32                                  |      |      |      |                 |  |
|                                       |                     | C50/60 | 1,42                                  |      |      |      |                 |  |
| Betonausbruch                         |                     |        |                                       |      |      |      |                 |  |
| Effektive Verankerungstiefe           | $h_{\text{ef}}$     | [mm]   | 40                                    | 50   | 58   | 68   | 80              |  |
| Achsabstand                           | S <sub>cr,N</sub>   | [mm]   | 3 h <sub>ef</sub>                     |      |      |      |                 |  |
| Randabstand                           | C <sub>cr,N</sub>   | [mm]   | 1,5 h <sub>ef</sub>                   |      |      |      |                 |  |
| Betonspalten                          |                     |        |                                       |      |      |      |                 |  |
| Achsabstand                           | S <sub>cr,sp</sub>  | [mm]   | 6 h <sub>ef</sub> 5 h <sub>ef</sub>   |      |      |      | h <sub>ef</sub> |  |
| Randabstand                           | C <sub>cr,sp</sub>  | [mm]   | 3 h <sub>ef</sub> 2,5 h <sub>ef</sub> |      |      |      | h <sub>ef</sub> |  |

<sup>1)</sup> Sofern andere nationale Regelungen fehlen.

# Tabelle C2: Verschiebungen unter Zuglast

| Ankergrösse  |                      |      | М6  | М8  | M10 | M12 | M16  |
|--------------|----------------------|------|-----|-----|-----|-----|------|
| Zuglast      | N                    | [kN] | 3,6 | 5,7 | 7,6 | 9,9 | 11,9 |
| Verschiebung | $\delta_{\text{N0}}$ | [mm] | 0,3 |     |     |     |      |
|              | δ <sub>N∞</sub>      | [mm] | 1,3 |     |     |     |      |

| m2r                                                                                                       |            |
|-----------------------------------------------------------------------------------------------------------|------------|
| Leistung Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung Verschiebungen unter Zuglast | Anhang C 1 |



# Tabelle C3: Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung

| Ankergrösse                                         |                         |      | М6      | M8 | M10 | M12 | M16 |
|-----------------------------------------------------|-------------------------|------|---------|----|-----|-----|-----|
| Stahlversagen ohne Hebelarm                         |                         |      |         |    |     |     |     |
| Charakteristische<br>Tragfähigkeit                  | $V_{Rk,s}$              | [kN] | 7       | 13 | 21  | 30  | 56  |
| Teilsicherheitsbeiwert                              | $\gamma_{\sf Ms}^{-1)}$ | [-]  | 1,33    |    |     |     |     |
| Stahlversagen mit Hebelarm                          |                         |      |         |    |     |     |     |
| Charakteristische<br>Tragfähigkeit                  | $M^0_{Rk,s}$            | [Nm] | 12      | 30 | 60  | 105 | 266 |
| Teilsicherheitsbeiwert                              | $\gamma_{\sf Ms}^{-1)}$ | [-]  | 1,33    |    |     |     |     |
| Betonausbruch auf der lastabgewandten Seite         |                         |      |         |    |     |     |     |
| Faktor in Gleichung (5.6),<br>ETAG Anhang C 5.2.3.3 | k                       | [-]  | 1,0 2,0 |    |     |     |     |
| Betonkantenbruch                                    |                         |      |         |    |     |     |     |
| Wirksame Dübellänge bei<br>Querkraft                | I <sub>f</sub>          | [mm] | 40      | 50 | 58  | 68  | 80  |
| Aussendurchmesser                                   | $d_{nom}$               | [mm] | 6       | 8  | 10  | 12  | 16  |

<sup>&</sup>lt;sup>1)</sup> Sofern andere nationale Regelungen fehlen.

#### Tabelle C4: Verschiebungen unter Querlast

| Ankergrösse  |                      |      | М6  | М8  | M10  | M12  | M16  |
|--------------|----------------------|------|-----|-----|------|------|------|
| Querlast     |                      | [kN] | 3,9 | 7,1 | 11,2 | 16,3 | 30,3 |
| Verschiebung | $\delta_{\text{VO}}$ | [mm] | 1,5 | 1,9 | 2,3  | 3,1  | 3,9  |
|              | δ <sub>∨∞</sub>      | [mm] | 2,3 | 2,9 | 3,5  | 4,7  | 5,9  |

| m2r                                                                                                         |            |
|-------------------------------------------------------------------------------------------------------------|------------|
| Leistung Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung Verschiebungen unter Querlast | Anhang C 2 |