

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0255 of 19 January 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti HVU with HAS and HIS elements

Bonded anchor for use in non-cracked concrete

Hilti Aktiengesellschaft Business Unit Anchors 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

20 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-05/0255

Page 2 of 20 | 19 January 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z1686.16 8.06.01-513/15

European Technical Assessment ETA-05/0255

Page 3 of 20 | 19 January 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti HVU is a bonded anchor consisting of a mortar capsule Hilti HVU and a steel element. The steel element consist of

- an anchor rod Hilti HAS-(E) with washer and hexagon nut of sizes M8 to M30 or
- an internally threaded sleeve HIS-(R)N of sizes M8 to M20

The mortar capsule is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic values under static and quasi-static action, Displacements	See Annex C 1 to C 6	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z1686.16 8.06.01-513/15

European Technical Assessment ETA-05/0255

Page 4 of 20 | 19 January 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

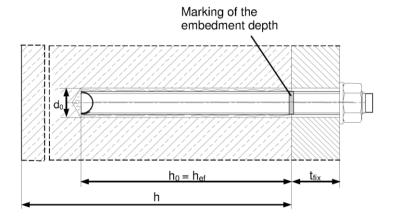
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 19 January 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt:


G. Lange

Z1686.16 8.06.01-513/15

Installed condition

Figure A1:

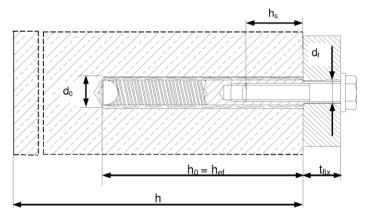
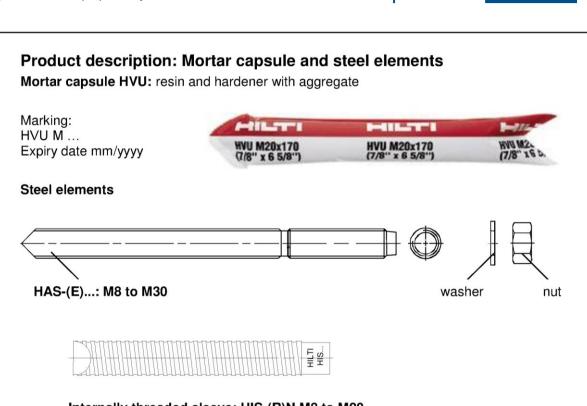

HVU with HAS-(E)...

Figure A2:


electronic copy of the eta by dibt: eta-05/0255

HVU with internally threaded sleeve HIS-(R)N...

Hilti bonded anchor HVA, HVA R and HVA HCR	
Product description Installed condition	Annex A1

Internally threaded sleeve: HIS-(R)N M8 to M20

Hilti bonded anchor HVA, HVA R and HVA HCR	
Product description	Annex A2
Mortar capsule / Steel elements	

Table A1: Materials

Designation	Material							
Metal parts made of zinc coated steel								
HAS-(E) (F) M8 to M24	Strength class 5.8, $f_{uk}=500$ N/mm², $f_{yk}=400$ N/mm² Elongation at fracture ($I_0=5d$) > 8% ductile Electroplated zinc coated \geq 5 μ m, (F) hot dip galvanized \geq 45 μ m							
HAS-(E) (F) M8 to M30	Strength class 8.8, $f_{uk}=800 \text{ N/mm}^2$, $f_{yk}=640 \text{ N/mm}^2$ Elongation at fracture ($I_0=5d$) > 8% ductile Electroplated zinc coated $\geq 5 \mu m$, (F) hot dip galvanized $\geq 45 \mu m$							
Internally threaded sleeve HIS-N	Electroplated zinc coated ≥ 5 μm							
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m							
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m							
Metal parts made of	stainless steel							
HAS-(E)R	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$ For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$ Elongation at fracture ($I_0=5d$) $>$ 8% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014							
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014							
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014							
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014							
Metal parts made of high corrosion resistant steel								
HAS-(E)HCR	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$ For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture ($I_0=5d$) $>$ 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014							
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014							
Nut	Strength class of nut adapted to strength class of threaded rod High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014							

Hilti bonded anchor HVA, HVA R and HVA HCR	
Product description Materials	Annex A3

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

Static and quasi static loading

Base material:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete.

Temperature in the base material:

at installation

-5 °C to +40 °C

in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: "EOTA Technical Report TR 029, 09/2010" or "CEN/TS 1992-4:2009"

Installation:

electronic copy of the eta by dibt: eta-05/0255

- Use category: dry or wet concrete (not in flooded holes)
- · Drilling technique: hammer drilling and hammer drilling with hollow drill bit TE-CD, TE-YD.
- Overhead installation is admissible.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

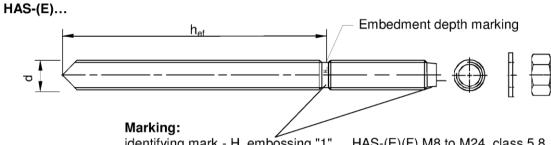

Hilti bonded anchor HVA, HVA R and HVA HCR	
Intended Use Specifications	Annex B1

Table B1: Installation parameters of HAS-(E)...

HAS-(E)			М8	M10	M12	M16	M20	M24	M27	M30
Foil capsule HVU M			8x80	10x90	12x110	16x125	20x170	24x210	27x240	30x270
Diameter of element	d	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	24	28	30	35
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	80	90	110	125	170	210	240	270
Maximum diameter of clearance hole in the fixture 1)	d _f	[mm]	9	12	14	18	22	26	30	33
Minimum thickness of concrete member	h _{min}	[mm]	110	120	140	170	220	270	300	340
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	S _{min}	[mm]	40	45	55	65	90	120	130	135
Minimum edge distance	C _{min}	[mm]	40	45	55	65	90	120	130	135

For larger clearance hole see "TR 029 section 1.1"

identifying mark - H, embossing "1" HAS-(E)(F) M8 to M24, class 5.8 identifying mark - H, embossing "8" HAS-(E)(F) M8 to M30, class 8.8

identifying mark - H, embossing "=" HAS-(E)R identifying mark - H, embossing "CR" HAS-(E)HCR

Hilti bonded anchor HVA, HVA R and HVA HCR	
Intended Use	Annex B2
Installation parameters	

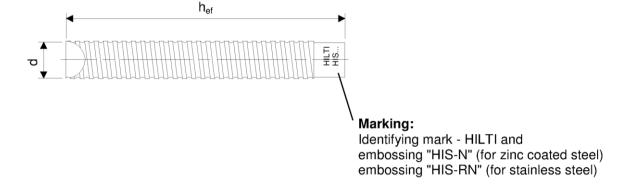


Table B2: Installation parameters of internally threaded sleeve HIS-(R)N

HIS-(R)N			М8	M10	M12	M16	M20
Foil capsule HVU M			10x90	12x110	16x125	20x170	24x205
Outer diameter of sleeve	d	[mm]	12,5	16,5	20,5	25,4	27,6
Nominal diameter of drill bit	d ₀	[mm]	14	18	22	28	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	90	110	125	170	205
Maximum diameter of clearance hole in the fixture 1)	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230	270
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150
Thread engagement length min-max	h _s	[mm]	8-20	10-25	12-30	16-40	20-50
Minimum spacing	S _{min}	[mm]	40	45	60	80	125
Minimum edge distance	C _{min}	[mm]	40	45	60	80	125

¹⁾ for larger clearance hole see "TR 029 section 1.1"

Internally threaded sleeve HIS-(R)N...

Hilti bonded anchor HVA, HVA R and HVA HCR	
Intended Use Installation parameters	Annex B3

Setting tools threaded rods

HAS with outer hexagon head

HAS M8 to M16		HAS M10 to M16	HAS M8 to M30		
	Socket head screw delivered with the threaded rod.				
Use with ch	nuck of drilling machine	TE-C HEX (Socket head)	TE-C 1/2" for M8 to M16 TE-C 3/4" for M16 to M30		
HAS M8 to	M24	HAS M8 to M24	HAS M10 to M16		
(3 Hz)					
TE-C SM8 to M16 TE-Y SM20 and M24					

HAS-E with conical head

HAS-E M8 to M24	HAS-E M8 to M24	HAS-E M8 to M30
	THE STATE OF THE S	
TE-C-E M8 to M16 TE-Y-E M20 and M24	TE-C SM8 to M16 TE-Y SM20 and M24	TE-C 1/2" for M8 to M16 TE-C 3/4" for M16 to M30
HAS M8 to M24		
Connection shaft TE-C; TE-FY Rod adapter SA 8 to SA 24		

Hilti bonded anchor HVA, HVA R	and HVA HCR	
Intended Use		Annex B4
Installation parameters		
Setting tools		

Setting tools internal threaded sleeve

HIS-N

HIS-N M8 to M20	HIS-N M8 to M20				
HIS-S M8 to M20 with TE-C 1/2" for M8 to M16 TE-C 3/4" for M16 to M30	Screw M8 to M20 with TE-C 1/2" for M8 to M16 TE-C 3/4" for M16 to M30				

Table B3: Curing time t_{rel} and t_{cure} 1)

Temperature in the base material T	Curing time: release screwed on setting tool t_{rel}	Curing time: full load t _{cure}
-5 °C to -1 °C	60 min	5 hour
0 °C to 9 °C	30 min	1 hour
10 °C to 19 °C	20 min	30 min
20 °C to 40 °C	8 min	20 min

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Cleaning alternatives

Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes.

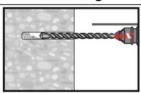
Compressed Air Cleaning (CAC):

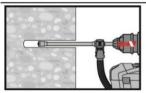
Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):

electronic copy of the eta by dibt: eta-05/0255

Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

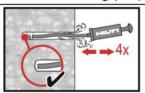

Hilti bonded anchor HVA, HVA R and HVA HCR Intended Use Installation parameters Cleaning and setting tools Annex B5


Installation instruction

Hole drilling

Hammer drilling

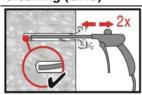
Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.


Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment.

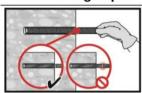
This drilling removes dust while drilling. After drilling is complete, proceed to the "check setting depth" step in the instructions for use.

Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.


Manual Cleaning (MC)

The Hilti hand pump may be used for blowing out drill hole.


Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

Compressed Air Cleaning (CAC)

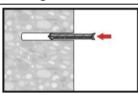
Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

Check setting depth

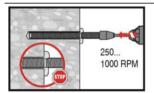
Check the setting depth with the marked element.

The hole depth should not exceed the anchor element embedment depth.

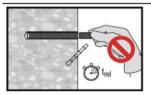
If it is not possible to insert the element to the required embedment depth, drill deeper.

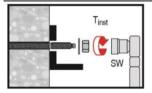

Hilti bonded anchor HVA, HVA R and HVA HCR

Intended Use


Installation instructions

Annex B6


Setting the element


Insert the foil pack into the hole in the orientation shown.

Chuck the setting tool into the hammer drill. Insert the anchor rod in the setting tool (Annex B4/B5). Using hammer-drill mode, drive the anchor rod through the foil pack (250 - 1000 RPM) Do not continue to operate the hammer drill after the reaching the bottom of the hole.

After required curing time t_{rel} (see Table B3) the screwed on setting tool can be removed.

After required curing time t_{cure} (see Table B3) apply installation torque T_{inst} given in Table B1 and B2.

The anchor can be loaded.

electronic copy of the eta by dibt: eta-05/0255

Hilti bonded anchor HVA, HVA R and HVA HCR

Intended Use
Installation instructions

Annex B7

Table C1: Characteristic resistance for threaded rod HAS-(E)... under tension load in case of static and quasi static loading

		М8	M10	M12	M16	M20	M24	M27	M30
h _{ef}	[mm]	80	90	110	125	170	210	240	270
$\gamma_2^{(1)} = \gamma_{ins}$	²⁾ [-]				1	,0			
N _{Rk,s}	[kN]	16,6	26,4	38,1	72,1	112	160	-	-
$N_{Rk,s}$	[kN]	26,5	42,2	61,0	115	179	256	347	421
$N_{Rk,s}$	[kN]	23,2	37,0	53,3	101	157	224	217	263
N _{Rk,s}	[kN]	26,5	42,0	61,0	115	179	224	-	-
failure									
concrete	C20/25								
$N_{Rk,p,ucr}$	[kN]	25	35	50	60	115	140	200	250
$N_{Rk,p,ucr}$	[kN]	20	25	40	50	75	115	140	170
$N_{Rk,p,ucr}$	[kN]	9	12	16	25	40	60	75	75
$k_8 = k_{ucr}$	²⁾ [-]				10),1			
	C30/37				1,	06			
Ψc	C40/50	1,10							
	C50/60				1,	13			
h / h _{ef}	≥ 2,0	1	,0 · h _{ef}						
		4,6 h _{ef} - 1,8 h							
h / h _{ef}	h / h _{ef} ≤ 1,3		2,26 h _{ef}			1,0	·h _{ef}	2,26·h _{ef}	C _{cr,si}
$s_{cr,sp}$	[mm]				2.0	cr,sp			
	$\begin{split} \gamma_2^{\ 1)} &= \gamma_{\text{ins}} \\ N_{\text{Rk,s}} \\ N_{\text{Rk,s}} \\ N_{\text{Rk,s}} \\ N_{\text{Rk,s}} \\ \text{failure} \\ \text{I concrete} \\ N_{\text{Rk,p,ucr}} \\ N_{\text{Rk,p,ucr}} \\ N_{\text{Rk,p,ucr}} \\ N_{\text{Rk,p,ucr}} \\ N_{\text{Rk,p,ucr}} \\ N_{\text{Rk,p,ucr}} \\ -\frac{1}{2} \\ \psi_c \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}$	$\begin{array}{c c} \gamma_2^{\ 1)} = \gamma_{\rm inst}^{\ 2)} & [\ -\] \\ \hline N_{Rk,s} & [kN] \\ N_{Rk,s} & [kN] \\ N_{Rk,s} & [kN] \\ \hline N_{Rk,s} & [kN] \\ \hline \textbf{failure} \\ \hline I \ concrete \ C20/25 \\ \hline N_{Rk,p,ucr} & [kN] \\ N_{Rk,p,ucr} & [kN] \\ \hline N_{Rk$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Parameter for design according to EOTA Technical Report TR 029.

Parameter for design according to CEN/TS 1992-4:2009.

Hilti bonded anchor HVA, HVA R and HVA HCR	
Performances Characteristic values of resistance under tension loading. Design according to "EOTA Technical Report TR 029, 09/2010"or "CEN/TS 1992-4:2009"	Annex C1

Characteristic resistance for threaded rod HAS-(E)... under shear load Table C2: in case of static and quasi static loading

HAS-(E)			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Factor according to section 6.3.2.1 of CEN/TS 1992-4: 2009 part 5	k ₂ ²⁾	[-]					1,0			
Characteristic resistance HAS-5.8	$V_{Rk,s}$	[kN]	8,3	13,2	19,1	36,1	56,1	80,1	-	-
Characteristic resistance HAS-8.8	$V_{Rk,s}$	[kN]	13,3	21,1	30,5	57,7	89,7	128	174	211
Characteristic resistance HAS-R	$V_{Rk,s}$	[kN]	11,6	18,5	26,7	50,5	78,5	112	108	132
Characteristic resistance HAS-HCR	$V_{Rk,s}$	[kN]	13,3	21,1	30,5	57,7	89,7	112	-	-
Steel failure with lever arm										
Characteristic resistance HAS-5.8	$M^0_{Rk,s}$	[Nm]	16	33	56	147	284	486	-	-
Characteristic resistance HAS-8.8	$M^0_{Rk,s}$	[Nm]	26	53	90	234	455	777	1223	1637
Characteristic resistance HAS-R	$M^0_{Rk,s}$	[Nm]	23	45	79	205	398	680	764	1023
Characteristic resistance HAS-HCR	$M^0_{Rk,s}$	[Nm]	26	52	90	234	455	680	-	1
Concrete pry-out failure										
Factor acc. to equation (5.7) of TR 029 or acc. to equation (27) of CEN/TS 1992-4: 2009 part 5	$k^{1)} = k_3^{2)}$	[-]	2,0							
Concrete edge failure										
Effective length of anchor in shear loading	l _f	[mm]	80	90	110	125	170	210	240	270
Diameter of anchor	$d^{1)} = d_{nom}^{2)}$	[mm]	8	10	12	16	20	24	27	30

¹⁾ Parameter for design according to EOTA Technical Report TR 029. ²⁾ Parameter for design according to CEN/TS 1992-4:2009.

Hilti bonded anchor HVA, HVA R and HVA HCR	
Performances Characteristic values of resistance under shear loading. Design according to "EOTA Technical Report TR 029, 09/2010"or "CEN/TS 1992-4:2009"	Annex C2

Table C3: Displacements under tension load for threaded rod HAS-(E)... in case of static and quasi static loading

HAS-(E)			М8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concr	ete			•						
Temperature range	I: 40 °C / 24 °C	;								
Tension load	N	[kN]	8,1	12,4	18,1	28,6	53,3	66,7	95,2	119
Displacement	δ_{N0}	[mm]	0,15	0,2	0,2	0,2	0,3	0,3	0,4	0,45
Displacement	$\delta_{N\infty}$	[mm]	0,4	0,45	0,5	0,55	0,8	0,8	1,0	1,1
Temperature range	II: 80 °C / 50 °C	C								
Tension load	N	[kN]	8,1	11,9	18,1	23,8	35,7	54,8	66,7	81
Displacement	δ_{N0}	[mm]	0,15	0,15	0,2	0,2	0,2	0,25	0,25	0,3
Displacement	$\delta_{N\infty}$	[mm]	0,4	0,4	0,5	0,5	0,55	0,65	0,65	0,7
Temperature range	III: 120 °C / 72	°C		•						
Tension load	N	[kN]	4,3	5,7	7,6	11,9	19,0	28,6	35,7	35,7
Displacement	δ_{N0}	[mm]	0,1	0,1	0,1	0,1	0,1	0,15	0,15	0,15
Displacement	$\delta_{N\infty}$	[mm]	0,2	0,2	0,2	0,25	0,3	0,35	0,35	0,35

Table C4: Displacements under shear load for threaded rod HAS-(E)... in case of static and quasi static loading

HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30
Shear load	V	[kN]	4,9	7,4	10,9	20,6	32,0	45,7	99,4	120,6
Displacement	δ_{V0}	[mm]	0,4	0,6	0,7	0,9	1,1	1,3	2,8	3,4
Displacement	$\delta_{V^{\infty}}$	[mm]	0,6	0,9	1,1	1,4	1,7	2,0	4,2	5,1

Hilti bonded anchor HVA, HVA R and HVA HCR	
Performances Displacements	Annex C3
Displacements	

Table C5: Characteristic resistance for internal threaded sleeve HIS-N... under tension load in case of static and quasi static loading

HIS-(R)N			М8	M10	M12	M16	M20	
Effective anchorage depth	h _{ef}	[mm]	90	110	125	170	205	
Installation safety factor	$\gamma_2^{(2)} = \gamma_{inst}$	³⁾ [-]		1,0				
Steel failure								
Characteristic steel resistance HIS-N with screw grade 8.8	$N_{Rk,s}$	[kN]	25	46	67	125	116	
Partial safety factor	$\gamma_{\text{Ms,N}}^{-1)}$	[-]			1,5	•		
Characteristic steel resistance HIS-RN with with screw grade 70	$N_{Rk,s}$	[kN]	26	41	59	110	166	
Partial safety factor	γ _{Ms,N} 1)	[-]		1,	87		2,4	
Combined pullout and concrete failur								
Characteristic resistance in non-cracked	d concrete (220/25						
Temperature range I: 40 °C/24 °C	$N_{Rk,p,ucr}$	[kN]	25	40	60	95	140	
Temperature range II: 80 °C/50 °C	$N_{Rk,p,ucr}$	[kN]	20	35	50	75	95	
Temperature range III: 120 °C/72 °C	$N_{Rk,p,ucr}$	[kN]	9	16	20	40	50	
Factor acc. to section 6.2.2.3 of CEN/TS 1992-4:2009 part 5	$k_8 = k_{ucr}^{3)}$	[-]			10,1			
		C30/37			1,12			
Increasing factors for τ_{Rk} in concrete	Ψ _c	C40/50			1,21			
	_	C50/60			1,28			
Splitting failure								
	h / h _{ef}	≥ 2,0	1,0 · ł	h/h, ባ _{ef} 2,0				
Edge distance c _{cr,sp} [mm] for	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1,8 h					
	h / h _{ef} ≤ 1,3		2,26 h _{ef} 1,0·h _{ef}			,0·h _{ef} 2,26	c _{cr,sp} ò·h _{ef}	
Spacing	S _{cr,sp}	[mm]			2·c _{cr,sp}			

Hilti bonded anchor HVA, HVA R and HVA HCR	
Performances Characteristic values of resistance under tension loading. Design according to "EOTA Technical Report TR 029, 09/2010"or "CEN/TS 1992-4:2009"	Annex C4

¹⁾ In absence of national regulations.
2) Parameter for design according to EOTA Technical Report TR 029.
3) Parameter for design according to CEN/TS 1992-4:2009.

Table C6: Characteristic resistance for internal threaded sleeve HIS-N... under shear load in case of static and quasi static loading

HIS-(R)N			M8	M10	M12	M16	M20
Steel failure without lever arm		'				•	
Factor according to section 6.3.2.1 of CEN/TS 1992-4: 2009 part 5	k ₂ ³⁾	[-]	1,0				
Characteristic resistance HIS-N with screw grade 8.8	$V_{Rk,s}$	[kN]	13 23 34 63		63	58	
Partial safety factor	γ _{Ms,V} 1)	[-]	1,25				
Characteristic resistance HIS-RN with screw grade 70	$V_{Rk,s}$	[kN]	13 20 30 55		83		
Partial safety factor	$\gamma_{Ms,V}^{1)}$	[-]	1,56				2,0
Steel failure with lever arm		'					
Characteristic resistance HIS-N / screw strength class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519
Partial safety factor	γ _{Ms,V} 1)	[-]	1,25				
Characteristic resistance HIS-RN / screw strength class 70	$M_{Rk,s}$	[Nm]] 26 52 92 233		454		
Partial safety factor	$\gamma_{\text{Ms,V}}^{1)}$	[-]	1,56				
Concrete pry-out failure		·					
Factor acc. to equation (5.7) of TR 029 or acc. to equation (27) of CEN/TS 1992-4: 2009 part 5	$k^{2)} = k_3^{3)}$	[-]	2,0				
Concrete edge failure							
Effective length of anchor in shear loading	I _f	[mm]	90	110	125	170	205
Diameter of anchor	$d^{2)} = d_{nom}^{3)}$	[mm]	12,5	16,5	20,5	25,4	27,6

Hilti bonded anchor HVA, HVA R and HVA HCR	
Performances Characteristic values of resistance under shear loading. Design according to "EOTA Technical Report TR 029, 09/2010"or "CEN/TS 1992-4:2009"	Annex C5

¹⁾ In absence of national regulations.
2) Parameter for design according to EOTA Technical Report TR 029.
3) Parameter for design according to CEN/TS 1992-4:2009.

Table C7: Displacements under tension load for internal threaded sleeve HIS-N... in case of static and quasi static loading

HIS-(R)N			М8	M10	M12	M16	M20
Non-cracked concrete							
Temperature range I: 40 °C / 24 °C							
Tension load	N	[kN]	11,9	19,0	28,6	45,2	53,0
Displacement	δ_{NO}	[mm]	0,2	0,2	0,25	0,3	0,35
Displacement	$\delta_{N^{\infty}}$	[mm]	0,5	0,55	0,65	0,8	0,85
Temperature range II: 80 °C / 50 °C							
Tension load	N	[kN]	9,5	15,7	22,5	35,7	45,2
Displacement	δ_{N0}	[mm]	0,15	0,2	0,2	0,25	0,3
Displacement	δ_{N^∞}	[mm]	0,4	0,45	0,5	0,65	0,7
Temperature range III: 120 °C / 72 °C							
Tension load	N	[kN]	4,3	7,6	9,5	19,0	23,8
Displacement	δ_{N0}	[mm]	0,1	0,1	0,1	0,15	0,15
Displacement	δ_{N^∞}	[mm]	0,2	0,2	0,2	0,35	0,4

Table C8: Displacements under shear load for internal threaded sleeve HIS-N... in case of static and quasi static loading

HIS-(R)N			М8	M10	M12	M16	M20
Shear load	V	[kN]	7,2	13,2	19,3	35,8	33,3
Displacement	δ_{N0}	[mm]	0,7	1,0	1,1	2,0	2,5
Displacement	$\delta_{N\infty}$	[mm]	1,1	1,5	1,7	3,0	3,8

Hilti bonded anchor HVA, HVA R and HVA HCR	
Performances	Annex C6
Displacements	