

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-06/0047 of 8 February 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti push-in anchor HKD

Deformation-controlled expansion anchor of sizes M6, M8, M10, M12 and M16 for multiple use for non-structural applications in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

19 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 6: "Anchors for multiple use for non-structural applications", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-06/0047

Page 2 of 19 | 8 February 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z10447.16 8.06.01-253/14

European Technical Assessment ETA-06/0047

Page 3 of 19 | 8 February 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti push-in anchor HKD is an anchor made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex B 2.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading, displacements	See Annex C 1 to C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 4

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

Z10447.16 8.06.01-253/14

European Technical Assessment ETA-06/0047

Page 4 of 19 | 8 February 2016

English translation prepared by DIBt

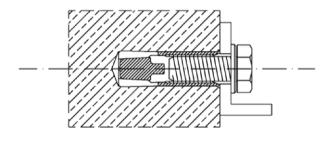
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 February 2016 Deutsches Institut für Bautechnik

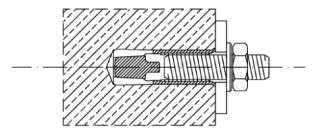
Uwe Benderbeglaubigt:Head of DepartmentLange

Z10447.16 8.06.01-253/14



Installed condition

multiple use for non-structural applications only


Figure A1:

Hilti push-in anchor HKD with screw

Figure A2:

Hilti push-in anchor HKD with threaded rod, washer and nut

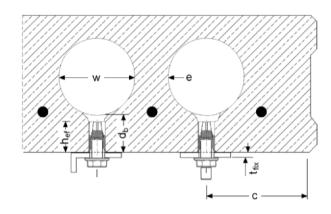
Figure A3:

Hilti push-in anchor HKD in precast prestressed hollow core slabs (w/e ≤ 4,2)

w core width

e web thickness

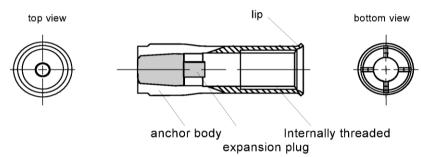
d_b bottom flange thickness


≥ **35 mm** for M6x25 and M8x25

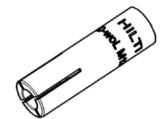
≥ 40 mm for M10x25

h_{ef} embedment depth

t_{fix} thickness of fixture


c edge distance

Hilti push-in anchor HKD	
Product description Installed condition	Annex A1



Product description: Hilti push-in anchor HKD multiple use for non-structural applications only

Marking:

HKD

HKD-woL

HKD-S / HKD-SR

HKD-E / HKD-ER

<u>HKD-E</u>

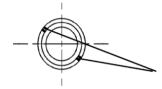
<u>HKD</u>	HKD-woL
HKD M6 x 25	HKD-woL M6 x 25
HKD M8 x 25	HKD-woL M8 x 25
HKD M8 x 30	HKD-woL M8 x 30
HKD M8 x 40	HKD-woL M8 x 40
HKD M10 x 25	HKD-woL M10 x 25
HKD M10 x 30	HKD-woL M10 x 30
HKD M10 x 40	HKD-woL M10 x 40
HKD M12 x 25	HKD-woL M12 x 25
HKD M12 x 50	HKD-woL M12 x 50
HKD M16 x 65	HKD-woL M16 x 65

HKD-S HKD-S M6 x 30 ø8 HKD-S M8 x 30 ø10 HKD-S M8 x 40 ø10 HKD-S M10 x 30 ø12 HKD-S M10 x 40 ø12
HKD-S M12 x 50 ø15
HKD-SR

HKD-E M6 x 30 ø8
HKD-E M8 x 30 ø 10
HKD-E M8 x 40 ø 10
HKD-E M10 x 30 ø12
HKD-E M10 x 40 ø12
HKD-E M12 x 50 ø15

HKD-S M12 x 50 ø15
HKD-SR
HKD-SR M6 x 30 ø8
HKD-SR M8 x 30 ø10
HKD-SR M10 x 40 ø12
HKD-SR M12 x 50 ø15

Hilti push-in anchor HKD	
Product description Anchor types / Marking	Annex A2


Identification after installation

each anchor can be identified with setting tool after installation

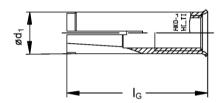
Table A1: Identification HKD and HKD-woL

Size	Setting tool	Top view
HKD M6x25	HSD-G M6 x 25	
HKD M8x25	HSD-G M8 x 25/30	
HKD M8x30	HSD-G M8 x 25/30	
HKD M8x40	HSD-G M8 x 40	
HKD M10x25	HSD-G M10 x 25/30	
HKD M10x30	HSD-G M10 x 25/30	
HKD M10x40	HSD-G M10 x 40	
HKD M12x25	HSD-G M12 x 25	
HKD M12x50	HSD-G M12 x 50	
HKD M16x65	HSD-G M16 x 65	

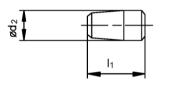
Identification HKD-E(R) and HKD-S(R)

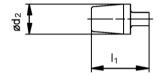
additional marking on end-face for M8x40 and M10x40

Hilti push-in anchor HKD	
Product description Identification after installation	Annex A3



Anchor materials and anchor dimensions


Table A2: Materials


Designation	Material	
HKD; HKD-woL		
Anchor body	cold formed steel – galvanized to $\geq 5~\mu\text{m}$	
expansion plug	cold formed steel	
HKD-S; HKD-E		
Anchor body	Steel Fe/Zn5 (galvanized ≥ 5 μm)	
expansion plug	cold formed steel	
HKD-SR; HKD-ER		
Anchor body	stainless steel,,	
expansion plug	1.4401, 1.4404 or 1.4571 EN 10088-3:2014	

Anchor body

Expansion plug

Table A3: Dimensions

Anchor size			M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50	M16x65
Anchor length	I_{G}	[mm]	25	30	25	30	40	25	30	40	25	50	65
Anchor diameter	Ød₁	[mm]	7,9	8	9,95	9,95	9,95	11,9	11,8	11,95	14,9	14,9	19,75
Plug diameter	$Ød_2$	[mm]	5,1	5	6,35	6,5	6,35	8,1	8,2	8,2	9,7	10,3	13,8
Plug length	l ₁	[mm]	10	15	7	12	16	7	12	16	7,2	20	29

Hilti push-in anchor HKD	
Product description Anchor materials and anchor dimensions	Annex A4

Specifications of intended use

multiple use for non-structural applications only

Base material:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and non-cracked concrete.
- Fire resistance: M6 to M16

Table B1: Specifications of intended use

Anchorages subject to:	HKD / HKD-woL / HKD-E(R) and HKD-S(R) witt
	Threaded rods or screws
Hammer drilling	✓
Static and quasi static loading in cracked and non-cracked concrete	M6 to M16 Table: C1, C2, C3 und C4
Fire resistance	M6 to M16 Table: C5 und C6

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with:
 "ETAG 001, Annex C, design methode B, Edition August 2010"
- Anchorages for multiple use for non-structural applications only according to ETAG 001 Part 6, Edition August 2010

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- Overhead installation is admissible

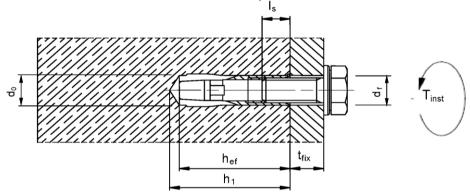

Hilti push-in anchor HKD	
Intended use	Annex B1
Specifications	

Table B2: Installation parameters

нко			M6x25	M6x30	M8x25 ¹⁾	M8x30	M8x40	M10x25 ¹⁾	M10x30 ¹⁾	M10x40	M12x25 ¹⁾	M12x50	M16x65
Diameter of drill bit	d ₀	[mm]	8	8	10	10	10	12	12	12	15	15	20
Thread diameter	d	[mm]	6	6	8	8	8	10	10	10	12	12	16
drill hole depth	h ₁	[mm]	27	32	27	33	43	27	33	43	27	54	70
Effective embedment depth	h _{ef}	[mm]	25	30	25	30	40	25	30	40	25	50	65
Maximum screwing depth	I _{s,max}	[mm]	12	12,5	11,5	14,5	17,5	12	12,7	18	12	23,5	30,5
Minimum screwing depth	$I_{s,min}$	[mm]	6	6	8	8	8	10	10	10	12	12	16
Maximum torque moment	T_{inst}	[Nm]	≤ 4	≤ 4	≤ 8	≤ 8	≤ 8	≤ 15	≤ 15	≤ 15	≤ 35	≤ 35	≤ 60
Maximum diameter of clearance hole in the fixture	d _f	[mm]	7	7	9	9	9	12	12	12	14	14	18

¹⁾ with anchor size M8x25, M10x25, M10x30 and M12x25 only threaded rod are to be used

Requirements for fastening screw or threaded rod:

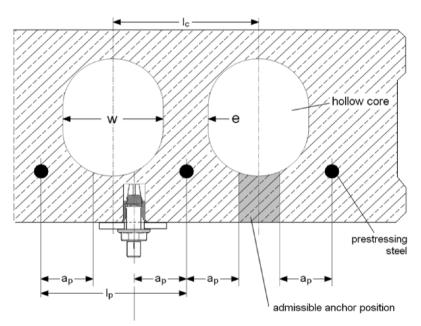
For anchors made of galvanized steel (HKD, HKD-woL, HKD-E and HKD-S) fastening screws or threaded rods of steel grade 4.6 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 shall be specified. For anchors made of stainless steel (HKD-ER and HKD-SR) fastening screw or threaded rod of steel grade 70 according EN ISO 3506:2009 shall be specified.

Minimum screw depth $I_{s,min}$:

The length of the screw shall be determined depending on thickness of fixture t_{fix}, admissible tolerances and available thread length I_{s,max} as well as minimum screw depth I_{s,min} according table B2

Hilti push-in anchor HKD	
Intended use Installation parameters	Annex B2

Admissible anchor positions in precast pre-stressed hollow core slabs (w/e \leq 4,2)


core distance:

I_c≥ 100 mm

pre-stressing steel distance:

 $I_p \ge 100 \text{ mm}$

distance between anchor position and pre-stressing steel: $a_p \ge 50 \text{ mm}$

Minimum spacing and edge distance of anchors and distance between anchor groups in precast pre-stressed hollow core slabs

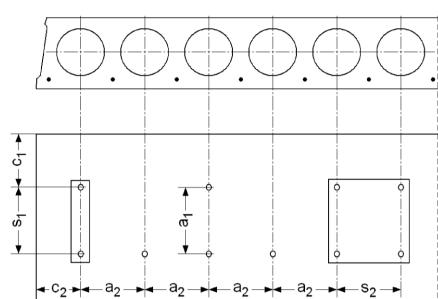
c₁, c₂ edge distance

s₁, s₂ anchor spacing

a₁, a₂ distances between

anchor groups

Minimum edge distance


c_{min} ≥ 200 mm

Minimum anchor spacing

s_{min} ≥ 400 mm

Minimum distance between anchor groups

a_{min} ≥ 400 mm

The maximum shear load of an anchor group is restricted to max. V = 25 kN.

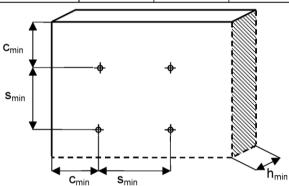

Hilti push-in anchor HKD Intended use Installation data for precast pre-stressed hollow core slabs Annex B3

Table B3: Minimum spacing and minimum edge distance

HKD-S(R), HKD-E(R)			M6x30 M8x30 M10x30	M8x40 M10x40	M12x50
Minimum spacing and r	ninimur	n edge distaı	nce		
Minimum thickness of concrete member	\mathbf{h}_{min}	[mm]	100	100	100
Minimum spacing	S _{min}	[mm]	60	80	125
Minimum edge distance	C _{min}	[mm]	105	140	175
Minimum thickness of o	concrete	member			
Minimum thickness of concrete member	h _{min}	[mm]	80	80	
Minimum spacing	S _{min}	[mm]	200	200	
Minimum edge distance	C _{min}	[mm]	150	150	

HKD, HKD-woL			M6x25 M8x25 M10x25 M12x25	M8x30 M10x30	M8x40 M10x40	M12x50	M16x65
Minimum spacing and	minimum edge dis	star	nce				
Minimum thickness of concrete member	h _{min} [m	m]	100	100	100	100	120
Ndining	s _{min} [m	m]	80	60	80	125	130
Minimum spacing	for c ≥ [m	m]	140	105	140	175	230
Minimum adaa diatanaa	c _{min} [m	m]	100	80	140	175	230
Minimum edge distance	for s≥ [m	m]	150	120	80	125	130
Minimum thickness of	concrete member						
Minimum thickness of concrete member	h _{min} [m	m]	80	80	80	-	-
Minimum spacing	s _{min} [m	m]	200	200	200	-	-
Minimum edge distance	c _{min} [m	m]	150	150	150	-	-

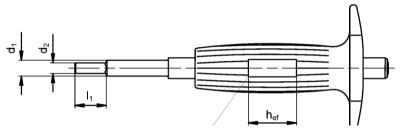
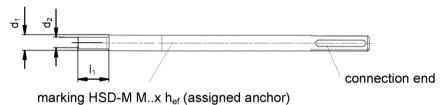

Hilti push-in anchor HKD	
Intended use Minimum spacing and minimum edge distance	Annex B4

Table B4: Dimensions of the setting tools

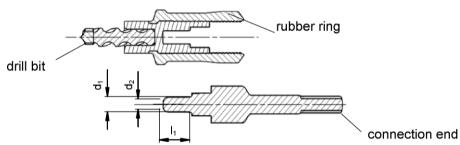
Setting tool HSD / HSG			M6x25 M6x30	M8x25 M8x30	M8x40	M10x25 M10x30	M10x40	M12x25	M12x50	M16x65
Diameter	d₁	[mm]	7,5	9,5	9,5	11,5	11,5	14,5	14,5	18
Diameter	d ₂	[mm]	5	6,5	6,5	8	8	10,2	10,2	13,5
Length	l ₁	[mm]	15	18	28	18	24	18	30	36

Manual setting tool HSD-G M.. x hef (e.g. HSD-G M8 x 30)

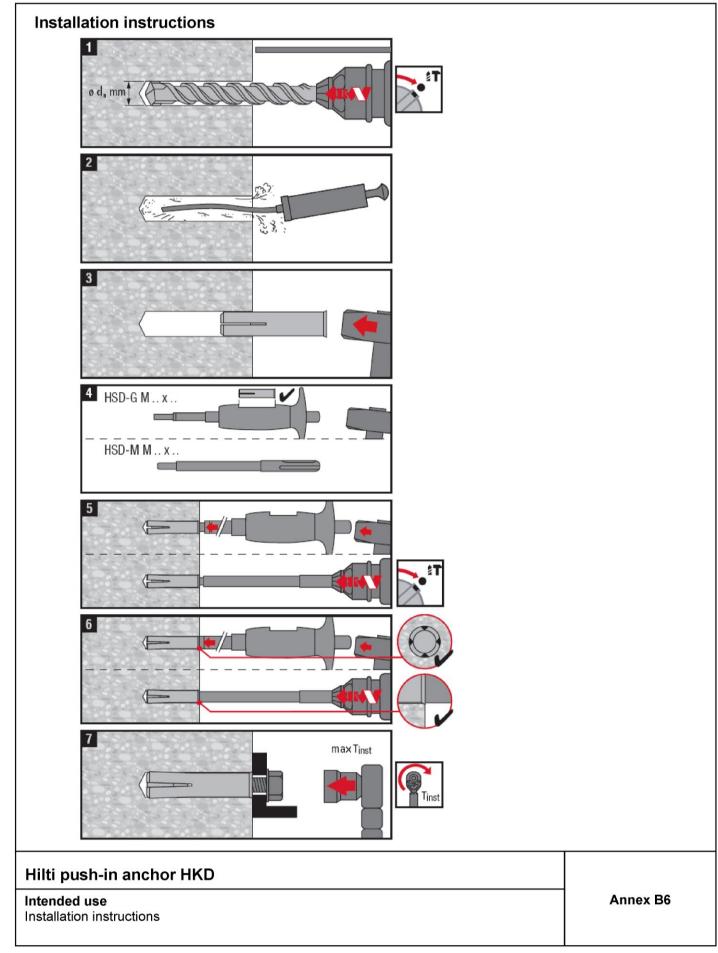

manual setting tool

Marking from setting tool

Installation control with


anchor gauge with marking M..x h_{ef} (assigned anchor) the recess length corresponds to the anchor length h_{ef}

Machine setting tool HSD-M M.. x h_{ef} (e.g. HSD-M M8 x 30)


Machine setting tool HSD-TE CX M.. x hef (z.B. HSD-TE-CX M8 x 30)

Hilti push-in anchor HKD	
Intended use Setting tools	Annex B5

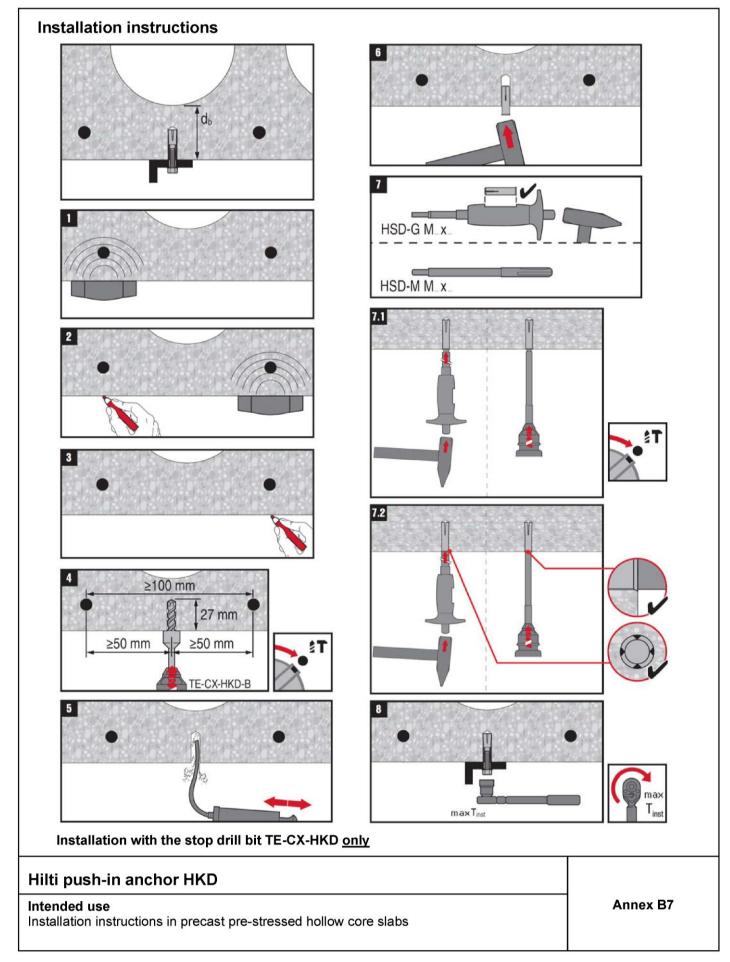


Table C1: Characteristic values of resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R)

HKD-S, HKD-E HKD-SR, HKD-ER			M6x30 ²⁾	M8x30 ²⁾	M8x40	M10x30 ²⁾	M10×40	M12x50
Installation safety factor	γ2				1,	0		
All load directions								
Characteristic resistance C20/25 to C50/60	ein F ⁰ Rk	[kN]	3	3	5	4	6	6
Characteristic spacing	\mathbf{s}_{cr}	[mm]	90	90	120	90	120	150
Characteristic edge distance	C _{cr}	[mm]	45	45	60	45	60	75
Shear load with lever a								
Steel grade 4.6	$M^0_{Rk,s}^{2)}$	[Nm]	6	15	15	30	30	52
Partial safety factor	γ _{Ms} 1)				1,	67		
Steel grade 5.6	M ⁰ _{Rk,s} ²⁾	[Nm]	8	19	19	37	37	65
Partial safety factor	γ _{Ms} 1)				1,	67		
Steel grade 5.8	$M^0_{Rk,s}^{2)}$	[Nm]	8	19	19	37	37	65
Partial safety factor	γ _{Ms} 1)				1,:	25		
Steel grade 8.8	M ⁰ _{Rk,s} ²⁾	[Nm]	12	30	30	60	60	105
Partial safety factor	γ _{Ms} 1)				1,	25		
Steel grade 70	M ⁰ _{Rk,s} ²⁾	[Nm]	11	26	-	-	52	92
Partial safety factor	γ _{Ms} 1)		1,	56		-	1,	56

¹⁾ In absence of other national regulations.

The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the member states is given in the informative Annex 1 of ETAG 001, part 6.

Hilti push-in anchor HKD	
Performances Characteristic values of resistance for Hilti push-in anchor HKD-S (R) and HKD-E (R)	Annex C1

²⁾ Characteristic bending moment M⁰_{Rk,s} for equation (5.5) in ETAG 001, Annex C.

Table C2: Characteristic values of resistance for Hilti push-in anchor HKD and HKD-woL

				1								
HKD HKD-woL			M6x25	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50	M16x65
Installation safety factor	γ2		1	,0	1,2	1,0	1,2			1,0	•	
All load directions												
Characteristic resistance in C20/25 to C50/60	F ⁰ _{Rk}	[kN]	2	3	5	5	4	5	7,5	4	9	16
Characteristic spacing	S _{cr}	[mm]	80	80	90	120	80	90	120	80	150	200
Characteristic edge distance	C _{cr}	[mm]	40	40	45	60	40	45	60	40	75	100
Shear load with lever arm					•						•	
Steel grade 4.6	M ⁰ _{Rk,s} ²⁾	[Nm]	6		15	15 30		5	2	133		
Partial safety factor	γ _{Ms} 1)		1,67									
Steel grade 5.6	M ⁰ _{Rk,s} ²⁾	[Nm]	8	8 19 37		6	5	166				
Partial safety factor	γ _{Ms} 1)		1,67									
Steel grade 5.8	$M^0_{Rk,s}$ 2)	[Nm]	8 19		37		65		166			
Partial safety factor	γ _{Ms} 1)		1,25									
Steel grade 8.8	$M_{Rk,s}^{0}$	[Nm]	12 30		60		10	05	266			
Partial safety factor	γ _{Ms} 1)		1,25									
1)												

¹⁾ In absence of other national regulations.

The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the member states is given in the informative Annex 1 of ETAG 001, part 6.

Hilti push-in anchor HKD	
Performances Characteristic values of resistance for Hilti push-in anchor HKD and HKD-woL	Annex C2

²⁾ Characteristic bending moment M⁰_{Rk,s} for equation (5.5) in ETAG 001, Annex C.

Table C3: Characteristic values of resistance for Hilti push-in anchor in precast pre-stressed hollow core slabs C30/37 to C50/60

HKD HKD-woL			M6x25	M8x25	M10x25				
Installation safety factor	γ2		1,0		1,2				
All load directions									
bottom flange thickness	d _b	[mm]	≥ 35	≥ 35	≥ 40				
Characteristic resistance in C20/25 to C50/60	F ⁰ _{Rk}	[kN]	2	3	4				
Characteristic spacing	S _{cr}	[mm]	400						
Characteristic edge distance	C _{cr}	[mm]		200					
Shear load with lever arm									
Steel grade 4.6	$M^0_{Rk,s}$ 2)	[Nm]	6	15	30				
Partial safety factor	γ _{Ms} 1)			1,67					
Steel grade 5.6	M ⁰ _{Rk,s} ²⁾	[Nm]	8	19	37				
Partial safety factor	γ _{Ms} 1)		1,67						
Steel grade 5.8	M ⁰ _{Rk,s} ²⁾	[Nm]	8 19 37						
Partial safety factor	γ _{Ms} 1)			1,25					
Steel grade 8.8	$M^0_{Rk,s}^{2)}$	[Nm]	12	30	60				
Partial safety factor	γ _{Ms} 1)			1,25					

¹⁾ In absence of other national regulations.

The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the member states is given in the informative Annex 1 of ETAG 001, part 6.

Hilti push-in anchor HKD	
Performances Characteristic values of resistance for Hilti push-in anchor in precast pre-stressed hollow core slabs	Annex C3

 $^{^{2)}}$ Characteristic bending moment $M^0_{Rk,s}$ for equation (5.5) in ETAG 001, Annex C.

Table C4: Characteristic values of resistance for Hilti push-in anchor HKD-SR and HKD-ER under fire exposure in concrete C20/25 to C50/60 for all load directions

Fire resistance class	HKD-SR, HKD-ER		M6x30	M8x30	M10x40	M12x50
R 30	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,5	0,9	1,8	2,3
R 60	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,5	0,9	1,8	2,3
R 90	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,5	0,9	1,8	2,3
R 120	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,3	0,7	1,5	1,8
R 30 to	Spacing	s _{cr,fi} [mm]	120	120	160	200
R 120	Edge distance	c _{cr,fi} [mm]	105	105	140	175

In case of fire attack from more than one side, the minimum edge distance shall be \geq 300 mm. The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value

Table C5: Characteristic values of resistance for Hilti push-in anchor HKD and HKD-woL under fire exposure in concrete C20/25 to C50/60 for all load directions

Fire resistance class	HKD HKD-woL		M6x25	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50	M16x65
R 30	Characteristic resistance	$F_{Rk,fi}^{0}$ [kN]	0,5	0,6	0,9	1,3	0,6	0,9	1,8	0,6	2,3	4,0
R 60	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,4	0,6	0,9	1,3	0,6	0,9	1,8	0,6	2,3	4,0
R 90	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,3	0,6	0,9	1,3	0,6	0,9	1,8	0,6	2,3	4,0
R 120	Characteristic resistance	$F_{Rk,fi}^{0}$ [kN]	0,2	0,5	0,7	0,7	0,5	0,7	1,5	0,5	1,8	3,2
R 30 to	Spacing	s _{cr,fi} [mm]	160	160	120	160	120	120	160	160	200	260
R 120	Edge distance	c _{cr,fi} [mm]	140	140	105	140	105	105	140	140	175	230

In case of fire attack from more than one side, the minimum edge distance shall be \geq 300 mm. The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value

²⁾ The fire resistance data is only valid for concrete C20/25 to C50/60 with a minimum slab thickness of 80 mm. The data is **not** valid for precast pre-stressed hollow core slabs.

Hilti push-in anchor HKD	
Performances Characteristic values of resistance for Hilti push-in anchor under fire exposure	Annex C4

¹⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi}$ = 1,0 is recommended.

¹⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi}$ = 1,0 is recommended.