

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0135 of 5 February 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer drop-in anchor EA II

Deformation-controlled expansion anchor for use in non-cracked concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

15 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 4: "Deformation controlled expansion anchors", used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-07/0135 issued on 28 January 2015

European Technical Assessment ETA-07/0135

Page 2 of 15 | 5 February 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z103140.15 8.06.01-552/15

European Technical Assessment ETA-07/0135

Page 3 of 15 | 5 February 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer drop-in anchor EA II is an anchor made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading, displacements	See Annex C 1 to C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

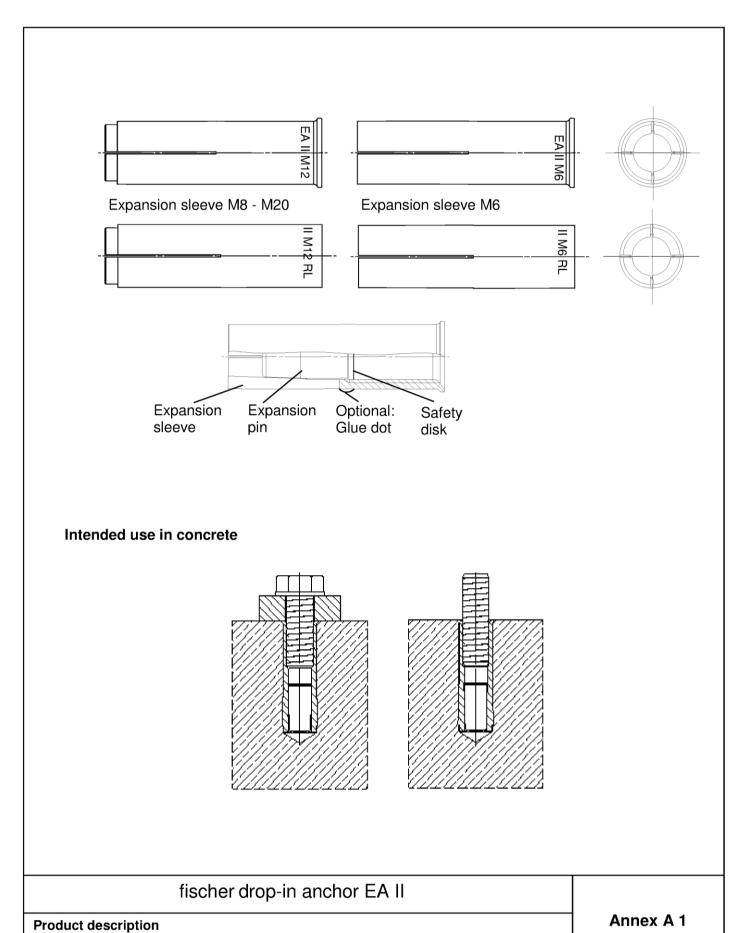
The system to be applied is: 1

Z103140.15 8.06.01-552/15

European Technical Assessment ETA-07/0135

Page 4 of 15 | 5 February 2016

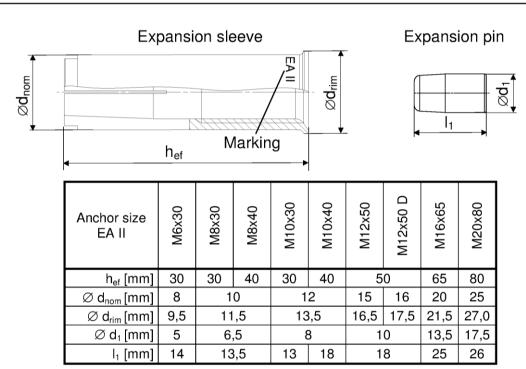
English translation prepared by DIBt

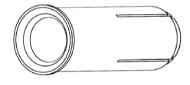

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

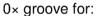
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 5 February 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentLange


Z103140.15 8.06.01-552/15


Anchor types Installed condition


electronic copy of the eta by dibt: eta-07/0135

Distinctive feature

- EA II M6x30..
- EA II M8x30...
- EA II M10x40...
- EA II M12x50..
- EA II M16x65...
- EA II M20x80..

2× groove for:

- EA II M8x40..
- EA II M10x30...

Marking on anchor body

galvanize	ed steel (gvz)	stainless steel (A4)				
with rim	rimless	with rim	rimless			
	EA II M6x30 RL	EA II M6x30 A4	EA II M6x30 RL A4			
EA II M8x30		CX EA II M8x30 A4	EA II M8x30 RL A4			
		EA II M8x40 A4	EA II M8x40 RL A4			
EA II M10x30	EA II M10x30 RL		EA II M10x30 RL A4			
		EA II M10x40 A4	EA II M10x40 RL A4			
< ➤ EA II M12x50	EA II M12x50 RL		EA II M12x50 RL A4			
EA II M12x50 D		EA II M12x50 D A4	EA II M12x50 RL DA4			
	EA II M16x65 RL		EA II M16x65 RL A4			
			CX EA II M20x80 RL A4			

fischer drop-in anchor EA II

Product description

Anchor types

Annex A 2

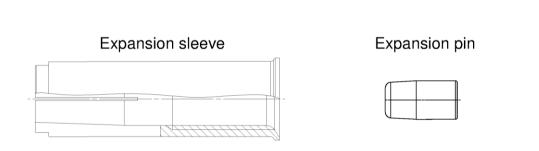


Table A1: Materials

	Materi	al
Designation	galvanised steel (≥ 5 μm)	stainless steel
Expansion sleeve	EN 10277:2008 or EN 10084:2008 or	
Expansion pin	EN 10111:2008 or EN 10263:2001 or EN 10087:1998 or ASTM A29/A29M	EN 10088:2005
Fastening screw or threaded rod	steel, property class 4.6, 5.6, 5.8 or 8.8 according to EN ISO 898-1:2012	property class 50, 70 or 80 according to EN ISO 3506:2009

fischer drop-in anchor EA II	
Product description Material	Annex A 3

English translation prepared by DIBt

Intended use

Anchorages subject to:

- · Static and quasi-static loads.
- Fasteners can be used as a single fixing for use in non-structural application.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: all sizes.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

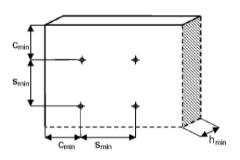
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking into account the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are to be designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Fasteners can be used as a single fixing for use in structural application, according to: ETAG 001 Part 4, Edition August 2010.

Installation:

electronic copy of the eta by dibt: eta-07/0135

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · The anchor may only be used once.
- Anchor expansion by impact using the setting tools given in Annex B 3. The anchor is property set if the stop of the setting tool reaches the expansion sleeve. The manual setting tool with installation control leaves a visible mark on the sleeve, as illustrated in Annex B 3 and B 4.

fischer drop-in anchor EA II


Intended Use
Specifications

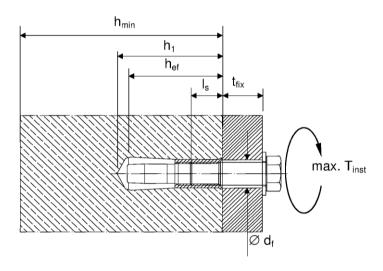

Annex B 1

Table B2: Installation parameters for concrete C20/25 to C50/60

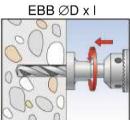
Anchor size											
Anchor Size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Nominal drill hole diameter	d_0	[mm]	8	1	0	1	2	15	16	20	25
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	5	0	65	80
Maximum installation torque	max. T _{inst}	[Nm]	4	8	3	1	5	3	5	60	120
Minimum drill hole depth	h₁	[mm]	32	33	43	33	43	5	4	70	85
Minimum screw-in depth	l _{s,min}	[mm]	6	8	3	1	0	1	2	16	20
Maximum screw-in depth	I _{s,max}	[mm]	14	1	4	14	17	2	2	28	34
Clearance of hole diameter	Ø d _f ≤	[mm]	7	9	9	1	2	1	4	18	22
$h_{min} = 80 \text{ mm}$											
Minimum spacing	S _{min}	[mm]	70	110	200	20	00	-	-	-	-
Minimum edge distance	C _{min}	[mm]	150	15	50	15	50	-	-	-	-
h _{min} = 100 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	90	150	20	00	-	-
Minimum edge distance	C _{min}	[mm]	115	11	15	160	180	20	50	-	-
h _{min} = 120 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	-	-
Minimum edge distance	C _{min}	[mm]	115	11	15	140	150	20	00	-	-
h _{min} = 160 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	180	-
Minimum edge distance	C _{min}	[mm]	115	1.	15	140	150	20	00	240	-
$h_{min} = 200 \text{ mm}$											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	180	190
Minimum edge distance	C _{min}	[mm]	115	1	15	140	150	20	00	240	280

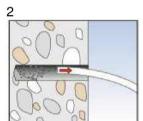
Fastening screw or threaded rod:

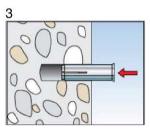
- Minimum property class and materials according to table A1.
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix}, admissible tolerances and maximum screw length l_{s,max} as well as minimum screw-in depth l_{s,min}.

fischer drop-in anchor EA II	
Intended Use Installation parameters	Annex B 2

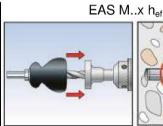
Setting tools	Marking	Description	Marking on EA II with rim and rimless
	EHS Plus Mx h _{ef}	Manual setting tool with hand guard	
	EHS Mx h _{ef}	Manual setting tool basic format	
	EMS Mx h _{ef}	Machine setting tool with SDS Plus	No marking
	EAS Mx h _{ef}	Slip-on setting tool for stop drill	
Drilling tools	EBB ØD x I	Stop drill	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

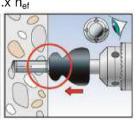

Table B3: Parameters of setting tools

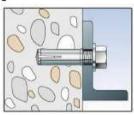

Manual setting tool	Machine setting tool	Slip-on setting tool	Stop drill	For anchor size EA II	Ø D1	Ø D2	L
EHS M6x25/30	EMS M6x25/30	EAS M6x25/30	EBB 8x30	EA II M6x30	4,8	9,0	17,0
EHS M8x25/30	EMS M8x25/30	EAS M8x25/30	EBB 10x30	EA II M8x30	6.4	11.0	18,0
EHS M8x40	EMS M8x40	EAS M8x40	EBB 10x40	EA II M8x40	6,4	11,0	28,0
EHS M10x25/30	EMS M10x25/30	EAS M10x25/30	EBB 12x30	EA II M10x30	7,9	13,0	18,0
EHS M10x40	EMS M10x40	EAS M10x40	EBB 12x40	EA II M10x40	7,9	13,0	24,0
EHS M12x50	EMS M12x50	EAS M12x50	EBB 15x50	EA II M12x50	10.0	16,5	20.0
EHS M12x50	EMS M12x50	EAS M12x50	EBB 16x50	EA II M12x50 D	10,2	16,5	30,0
EHS M16x65	EMS M16x65	EAS M16x65	EBB 20x65	EA II M16x65	13,5	22	36,0
EHS M20x80	EMS M20x80	EAS M20x80	EBB 25x80	EA II M20x80	16,4	27	50,0


fischer drop-in anchor EA II	
Intended Use Setting & Drilling tools	Annex B 3

Installation instructions






4 EMS M..x h_{ef}

5

No.	Description
1	Create drill hole.
2	Clean from drill-dust.
3	Set anchor till anchor is flush with surface of concrete.
4	Expand the sleeve by driving the pin into the sleeve and control the correct setting.
5	Fixation of fixture with max. Tinst

fischer drop-in anchor EA II	
Intended Use Installation instructions	Annex B 4

Characteristic values for tension loads due to design method A Table C1: according to ETAG 001, Annex C or CEN TS 1992-4

EA II		property class	M6x30 ²⁾	M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80
									2		
Inastallation safety factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Steel failure											
Characteristic resistance	$N_{Rk,s}$ [kN]	A4-50	10,1	18	3,3	29	9,0	42	2,1	78,3	122,4
Partial safety factor	$\gamma_{\sf Ms}^{(1)}$						2,86				
Characteristic resistance	$N_{Rk,s}$ [kN]	A4-70	14,1	19	9,6	24	I ,9	45,1	59,0	73,8	117,2
Partial safety factor	$\gamma_{Ms}^{^{1)}}$		1,87			1,5			1,87	1	,5
Characteristic resistance	$N_{Rk,s}$ [kN]	A4-80	16,1	19	9,6	24	I ,9	45,1	59,0	73,8	117,2
Partial safety factor	$\gamma_{Ms}^{1)}$		1,6					,5			
Characteristic resistance	N _{Rk,s} [kN]	steel 4.6	8,0	14,6 23,2			33,7		62,7	97,9	
Partial safety factor	γ _{Ms} ¹⁾		2,0								
Characteristic resistance	N _{Rk,s} [kN]	steel 5.6	10,1	18	3,3	29	9,0	42	2,1	78,3	122,4
Partial safety factor	γ _{Ms} ¹⁾		2,0								
Characteristic resistance	N _{Rk,s} [kN]	steel 5.8	10,1	17	7,2	21	,8	39,6	42,1	64,7	102,8
Partial safety factor	γ _{Ms} ¹⁾						1,5				
Characteristic resistance	N _{Rk,s} [kN]	steel 8.8	13,5	17	7,2	21	,8	39,6	53,3	64,7	102,8
Partial safety factor	γ _{Ms} ¹⁾						1,5		•	•	
Pull-out failure not decisive											
Concrete cone failure											
Effective anchorage depth	h _{ef}	[mm]	3	0	40	30	40	5	0	65	80
Characteristic spacing	S _{cr,N}	[mm]	9	90 120		90	120	15	50	195	240
Characteristic edge distance	C _{cr,N}	[mm]	4	45 60		45	60	7	5	97	120
Factor according CEN/TS	k _{ucr}	[-]	10,1								
Splitting failure											
Characteristic spacing	S _{cr,sp}	[mm]	2	10	280	210	320	3	50	455	560
Characteristic edge distance	C _{cr,sp}	[mm]	10)5	140	105	160	17	75	227	280

fischer drop-in anchor EA II	
Performances Design method A Characteristic resistance to tension loads	Annex C 1

¹⁾ In absence of other national regulations.
2) Only for application with statically indeterminate structural components.

Table C2: Characteristic values for shear loads due to design method A according to ETAG 001, Annex C or CEN TS 1992-4

EA II		property class	$M6x30^{2}$	M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80
Factor for ductility	k ₂ [-]						1,0)			
Steel failure without lever ar	m										
Characteristic resistance	$V_{Rk,s}$ [kN]	A4-50	5,0	9,	,2	14	1,5	2	1,1	39,2	61,2
Partial safety factor	$\gamma_{Ms}^{1)}$						2,38				
Characteristic resistance	$V_{Rk,s}$ [kN]	A4-70	7,0	9,	,8	12	2,4	22,6	29,5	37	59
Partial safety factor	γ _{Ms} ¹⁾		1,56			1,25			1,56	1,	25
Characteristic resistance	$V_{Rk,s}$ [kN]	A4-80	8,0	9,	,8	12	2,4	22,6	30,4	36,9	58,6
Partial safety factor	$\gamma_{\sf Ms}^{(1)}$		1,33				1,	25			
Characteristic resistance	V _{Rk,s} [kN]	steel 4.6	4,0	7,	,3	11	1,6	16	5,9	31	49
Partial safety factor	$\gamma_{Ms}^{1)}$				1,67						
Characteristic resistance	V _{Rk,s} [kN]	steel 5.6	5,0	9,	9,2 14,5		2	1,1	39	61	
Partial safety factor	$\gamma_{Ms}^{1)}$			1,67			•				
Characteristic resistance	V _{Rk,s} [kN]	steel 5.8	5,0	8,6 10,9		19,8	21,1	32	51		
Partial safety factor	$\gamma_{Ms}^{1)}$		1,25								
Characteristic resistance	V _{Rk,s} [kN]	steel 8.8	6,8	8,	,6	10),9	19,8	27	32	51
Partial safety factor	$\gamma_{Ms}^{1)}$						1,25				
Steel failure with lever arm											
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-50	8	1	19 37			6	66	166	324
Partial safety factor	$\gamma_{Ms}^{(1)}$						2,38				
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-70	11	2	6	5	2	9	92	232	454
Partial safety factor	γ _{Ms} ¹⁾						1,56				
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-80	12	3	0	6	0	10	05	266	519
Partial safety factor	γ _{Ms} ¹⁾		1,33								
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	Stahl 4.6	6,1	15 30		5	52	133	259		
Partial safety factor	$\gamma_{\sf Ms}^{(1)}$		1,67								
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	Stahl 5.6	7,6	19 37		7	6	66	166	324	
Partial safety factor	γ _{Ms} ¹⁾		1,67								
Characteristic resistance	${\sf M^0}_{\sf Rk,s}$ [Nm]	Stahl 5.8	7,6	19 37		6	66	166	324		
Partial safety factor	$\gamma_{Ms}^{(1)}$						1,25				
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	Stahl 8.8	12	3	0	6	0	10	05	266	517
Partial safety factor	γ _{Ms} ¹⁾						1,25				
			<u> </u>								

 $[\]stackrel{\text{1)}}{\sim}$ In absence of other national regulations.

²⁾ Only for application with statically indeterminate structural components.

fischer drop-in anchor EA II	
Performances Design method A Characteristic resistance to shear loads	Annex C 2

Table C3: Characteristic values for shear loads due to design method A according to ETAG 001, Annex C or CEN TS 1992-4

EA II		M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Concrete pry out failure										
Factor in equation (5.6) of ETAG 001 Annex C, 5.2.3.3	$k^{3)} = k_3^{2)}$	1,74		1,88	1,74	1,88		2,	0	
Installation safety factor 1)	$\gamma_2^{(3)} = \gamma_{inst}^{(2)}$	1,0								
Concrete edge failure										
Effective length of anchor in shear loading	$I_f = h_{ef}$ [mm]	3	0	40	30	40	5	60	65	80
Effective diameter of anchor	Ø d _{nom} [mm]	8		10	1	2	15	16	20	25
Partial safety factor	γ _{Mc} ¹⁾	1,5 ²⁾					•			

fischer drop-in anchor EA II	
Performances Design method A Characteristic resistance to shear loads	Annex C 3

¹⁾ In absence of other national regulations.
2) Parameter relevant only for design according to CEN TS 1992-4:2009
3) Parameter relevant only for design according to ETAG 001 Annex C

Table C4.1: Displacements under tension and shear loads for EA II in galvanised steel

EA II			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Tension load in C20/25 to C50/60	Ν	[kN]	4,0 6,1 4,0 6,1 8,5					,5	12,6	17,2	
Displacement	δ_{No}	[mm]	0,1								
Displacement	δ_{N^∞}	[mm]		0,2							
Shear load in C20/25 to C50/60	٧	[kN]	3,9	4,9		6,2		11,3	15,2	18,5	29,4
Displacement	δ_{Vo}	[mm]	0,95	1,	00 1,05		1,10		1,40	1,80	
Displacement	$\delta_{V^{\infty}}$	[mm]	1,40	1,	50 1,60		1,70		2,10	2,70	

Table C4.2: Displacements under tension and shear loads for EA II in stainless steel

EA II A4			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Tension load in C20/25 to C50/60	N	[kN]	4	4,0 6,1 4,0 6,1				8,5		12,6	17,2	
Displacement	δ_{No}	[mm]	0,1									
Displacement	δ_{N^∞}	[mm]		0,2								
Shear load in C20/25 to C50/60	٧	[kN]	3,2	5,6		7,1		12,9	13,5	21,1	33,5	
Displacement	δ_{Vo}	[mm]	0,95	1,0	,00 1,05		05	1,10		1,40	1,80	
	$\delta_{V^{\infty}}$	[mm]	1,40	1,	50 1,60		1,70		2,10	2,70		

fischer drop-in anchor EA II	
Performances Displacements	Annex C 4