



#### Zulassungsstelle für Bauprodukte und Bauarten

#### **Bautechnisches Prüfamt**

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts



# **Europäische Technische Bewertung**

## ETA-07/0249 vom 18. August 2016

#### Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

HALFEN Bolzenanker HB-BZ und HB-BZ-IG

Kraftkontrolliert spreizender Dübel zur Verankerung im Beton

Halfen GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Halfen Herstellwerk HB1

35 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

ETA-07/0249 vom 7. Mai 2015



# Europäische Technische Bewertung ETA-07/0249

Seite 2 von 35 | 18. August 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.



Europäische Technische Bewertung ETA-07/0249

Seite 3 von 35 | 18. August 2016

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Der HALFEN Bolzenanker HB-BZ und HB-BZ-IG ist ein Dübel aus galvanisch verzinktem Stahl oder aus nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird. Er umfasst die folgenden Dübeltypen:

- Dübeltyp HB-BZ mit Außengewinde, Unterlegscheibe und Sechskantmutter, Größen M8 bis M27.
- Dübeltyp HB-BZ-IG S mit Innengewinde, Sechskantschraube und Unterlegscheibe S-IG, Größen M6 bis M12,
- Dübeltyp HB-BZ-IG SK mit Innengewinde, Senkschraube und Senkscheibe SK-IG, Größen M6 bis M12,
- Dübeltyp HB-BZ-IG B mit Innengewinde, Sechskantmutter und Unterlegscheibe MU-IG, Größen M6 bis M12.

Die Produktbeschreibung ist in Anhang A angegeben.

# 2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                                          | Leistung                   |
|-----------------------------------------------------------------------------------------------|----------------------------|
| Charakteristischer Widerstand für statische und quasi-statische Einwirkungen für den HB-BZ    | Siehe Anhang C 1 bis C 5   |
| Charakteristischer Widerstand für die seismischen Leistungskategorien C1 und C2 für den HB-BZ | Siehe Anhang C 6           |
| Charakteristischer Widerstand für statische und quasi-statische Einwirkungen für den HB-BZ-IG | Siehe Anhang C 11 bis C 13 |
| Verschiebungen unter Zug- und Querbeanspruchung für den HB-BZ                                 | Siehe Anhang C 9 bis C 10  |
| Verschiebungen unter Zug- und Querbeanspruchung für den HB-BZ-IG                              | Siehe Anhang C 15          |



Europäische Technische Bewertung ETA-07/0249

Seite 4 von 35 | 18. August 2016

#### 3.2 Brandschutz (BWR 2)

| Wesentliches Merkmal             | Leistung                                          |
|----------------------------------|---------------------------------------------------|
| Brandverhalten                   | Der Dübel erfüllt die Anforderungen der Klasse A1 |
| Feuerwiderstand für den HB-BZ    | Siehe Anhang C 7 bis C 8                          |
| Feuerwiderstand für den HB-BZ-IG | Siehe Anhang C 14                                 |

#### 3.3 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

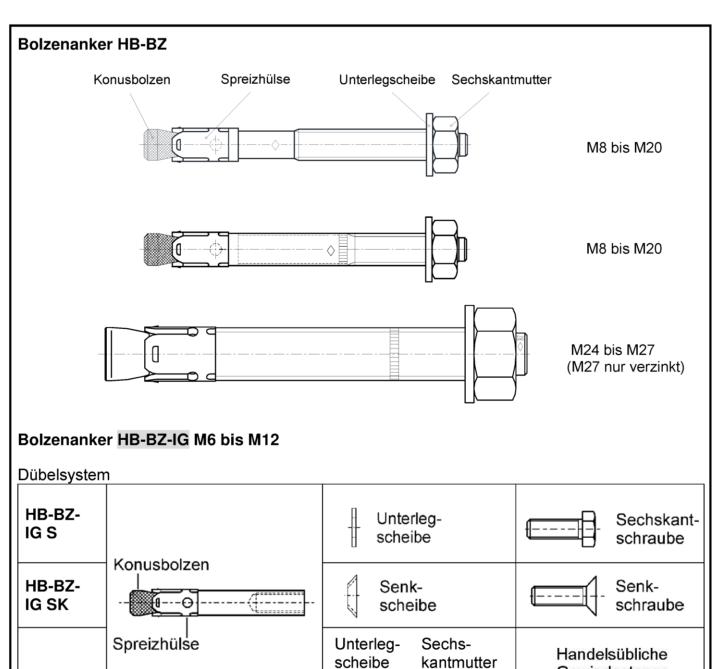
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, und Europäisches Bewertungsdokument EAD 330011-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

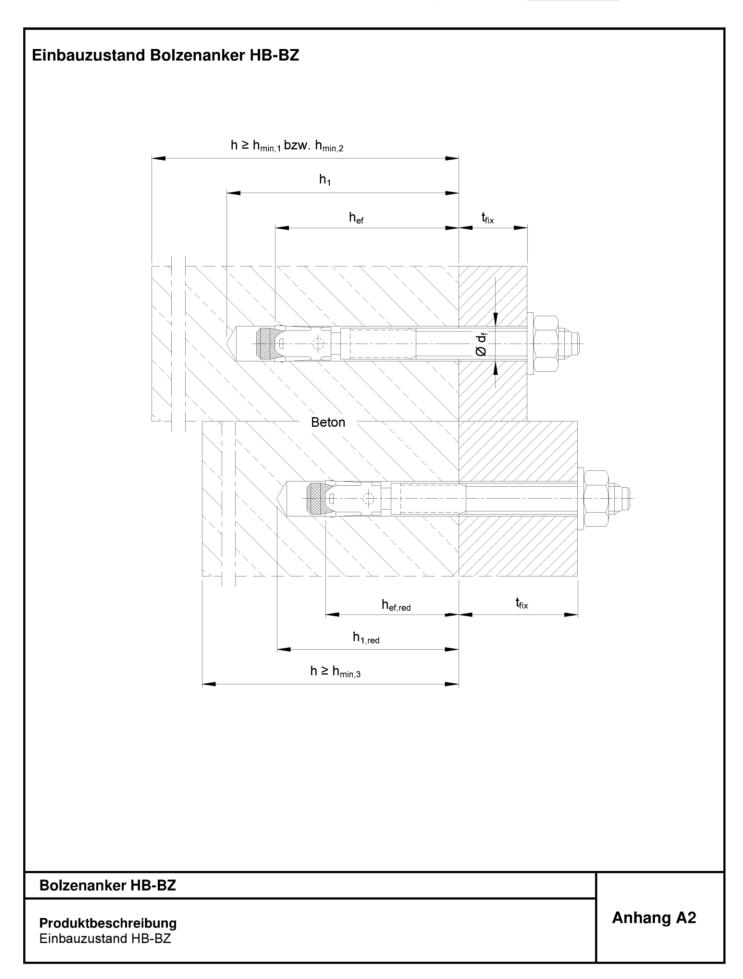
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

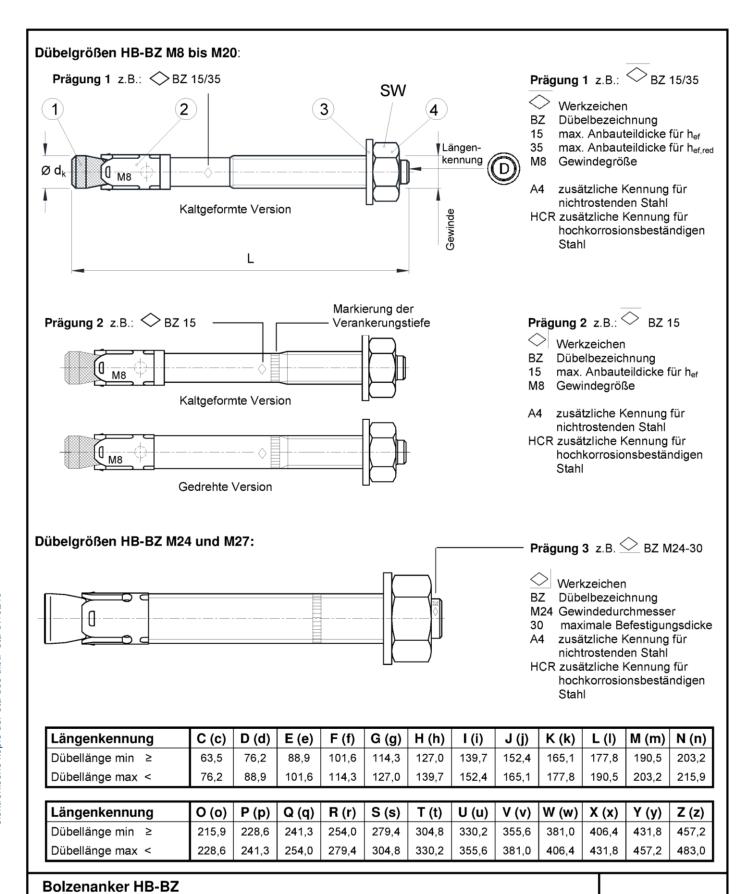

Ausgestellt in Berlin am 18. August 2016 vom Deutschen Institut für Bautechnik

| Uwe Bender       | Beglaubigt: |
|------------------|-------------|
| Abteilungsleiter |             |

HB-BZ-IG B




Gewindestange




| Produkttyp | Produktbeschreibung                | Verwendungszweck                               | Leistung                |
|------------|------------------------------------|------------------------------------------------|-------------------------|
| HB-BZ      | Anhang A1 - Anhang A4              | Anhang B1 – Anhang B6                          | Anhang C1 – Anhang C10  |
| HB-BZ-IG   | Anhang A1<br>Anhang A5 – Anhang A7 | Anhang B1 – Anhang B2<br>Anhang B7 – Anhang B9 | Anhang C11 – Anhang C15 |

| Bolzenanker HB-BZ und HB-BZ-IG |           |
|--------------------------------|-----------|
| Produktbeschreibung Dübeltypen | Anhang A1 |



Produktbeschreibung
Dübelgrößen und Prägung



Z51955.16 8.06.01-219/16

Anhang A3



### Tabelle A1: Dübelabmessungen HB-BZ

|   | Dübelg            | röße                            |                    | М8                    | M10                   | M12                   | M16                  | M20                  | M24                  | M27                  |
|---|-------------------|---------------------------------|--------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| 1 | Konusb            | olzen                           | Gewinde            | M8                    | M10                   | M12                   | M16                  | M20                  | M24                  | M27                  |
| 1 |                   |                                 | Ø d <sub>k</sub> = | 7,9                   | 9,8                   | 12,0                  | 15,7                 | 19,7                 | 24                   | 28                   |
| 1 |                   | Stahl, verzinkt                 | L                  | 65 + t <sub>fix</sub> | 80 + t <sub>fix</sub> | 96,5+t <sub>fix</sub> | 118+t <sub>fix</sub> | 137+t <sub>fix</sub> | 161+t <sub>fix</sub> | 178+t <sub>fix</sub> |
|   | Dübel-<br>länge   | Nichtrostender<br>Stahl A4, HCR | L                  | 65 + t <sub>fix</sub> | 80 + t <sub>fix</sub> | 96,5+t <sub>fix</sub> | 118+t <sub>fix</sub> | 137+t <sub>fix</sub> | 168+t <sub>fix</sub> | -                    |
|   | larige            | reduzierte<br>Verankerungstiefe | $L_{hef,red}$      | 54 + t <sub>fix</sub> | 60 + t <sub>fix</sub> | 76,5+t <sub>fix</sub> | 98+t <sub>fix</sub>  | -                    | -                    | -                    |
| 2 | 2 Spreizhülse     |                                 |                    |                       | sieł                  | ne Tabelle            | A2                   |                      |                      |                      |
| 3 | 3 Unterlegscheibe |                                 |                    | siehe Tabelle A2      |                       |                       |                      |                      |                      |                      |
| 4 |                   |                                 |                    | 13                    | 17                    | 19                    | 24                   | 30                   | 36                   | 41                   |

Maße in mm

#### Tabelle A2: Material HB-BZ

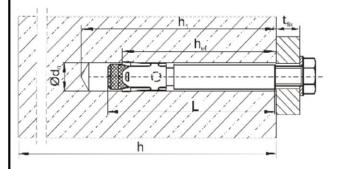
|     |                                  | HB-BZ                                                                                                                             |                                                                                                      | HB-BZ A4                                                                                                                            | HB-BZ HCR                                                                                                                      |
|-----|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Nr. | Teil                             | Stahl, v                                                                                                                          | verzinkt                                                                                             | Nichtrostender<br>Stahl A4                                                                                                          | Hochkorrosions-<br>beständiger Stahl<br>(HCR)                                                                                  |
| 1   | Konusbolzen                      | M8 bis M20: Kaltstauch- oder Automatenstahl, galvanisch verzinkt ≥ 5µm, Konus mit Kunststoffüberzug                               | M10 bis M20: Kaltstauch- oder Automatenstahl, diffusionsverzinkt ≥ 40µm, Konus mit Kunststoffüberzug | M8 bis M20:<br>Nichtrostender Stahl<br>(z.B. 1.4401, 1.4404,<br>1.4578, 1.4571)<br>EN 10088:2014,<br>Konus mit<br>Kunststoffüberzug | M8 bis M20:<br>Hochkorrosions-<br>beständiger Stahl<br>1.4529 oder 1.4565,<br>EN 10088:2014,<br>Konus mit<br>Kunststoffüberzug |
|     | Gewindebolzen<br>und Spreizkonus | M24 und M27:<br>Stahl, galvanisch<br>verzinkt                                                                                     | -                                                                                                    | M24:<br>Nichtrostender Stahl<br>(z.B. 1.4401, 1.4404)<br>EN 10088:2014                                                              | M24:<br>Hochkorrosions-<br>beständiger Stahl<br>1.4529 oder 1.4565,<br>EN 10088:2014                                           |
| 2   | Spreizhülse                      | M8 bis M20:<br>Stahl nach<br>EN 10088:2014,<br>Werkstoff Nr. 1.4301<br>oder 1.4401<br>M24 und M27:<br>Stahl nach<br>EN 10139:1997 | M10 bis M20:<br>Stahl nach<br>EN 10088:2014,<br>Werkstoff Nr. 1.4301<br>or 1.4401                    | Nichtrostender Stahl<br>(z.B. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014                                                           | Nichtrostender Stahl<br>(z.B. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014                                                      |
| 3   | Unterlegscheibe                  | Stahl, galvanisch<br>verzinkt                                                                                                     | Stahl, mechanisch<br>verzinkt                                                                        | Nichtrostender Stahl<br>(z.B. 1.4401, 1.4571)<br>EN 10088:2014                                                                      | Hochkorrosions-<br>beständiger Stahl<br>1.4529 oder 1.4565,<br>EN 10088:2014                                                   |
| 4   | Sechskantmutter                  | Stahl, galvanisch<br>verzinkt,<br>beschichtet                                                                                     | Stahl, feuerverzinkt                                                                                 | Nichtrostender Stahl<br>(z.B. 1.4401, 1.4571)<br>EN 10088:2014,<br>beschichtet                                                      | Hochkorrosions-<br>beständiger Stahl<br>1.4529 oder 1.4565,<br>EN 10088:2014,<br>beschichtet                                   |

#### **Bolzenanker HB-BZ**

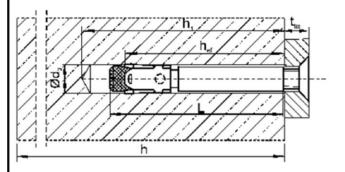
#### Produktbeschreibung

Dübelabmessungen und Material

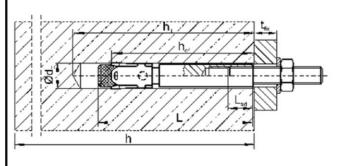
Anhang A4




#### Einbauzustand Bolzenanker HB-BZ-IG

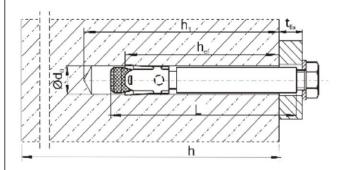

#### Montageart V Vorsteckmontage

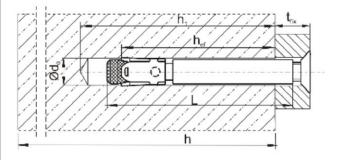
Konusbolzen BZ-IG wird zuerst in das Bohrloch gesetzt. Das Anbauteil liegt an der Schraube oder der Gewindestange an.

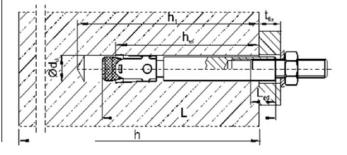

#### HB-BZ-IG S bestehend aus BZ-IG und S-IG



#### HB-BZ-IG SK bestehend aus BZ-IG und SK-IG





#### HB-BZ-IG B bestehend aus BZ-IG und MU-IG




#### Montageart D Durchsteckmontage

Konusbolzen BZ-IG wird durch das Durchgangsloch im Anbauteil gesetzt. Das Anbauteil liegt am Konusbolzen BZ-IG an.







#### **Bolzenanker HB-BZ-IG**

Produktbeschreibung Einbauzustand HB-BZ-IG Anhang A5



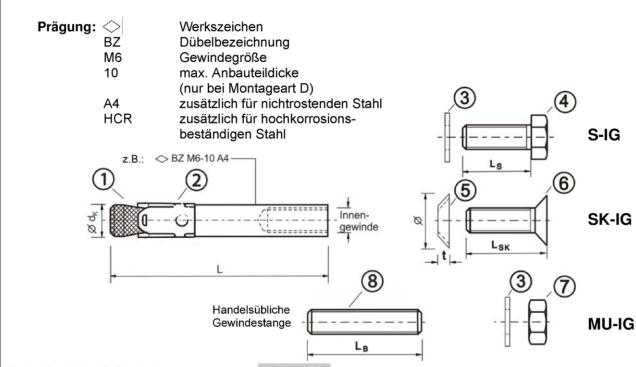



Tabelle A3: Dübelabmessungen HB-BZ-IG

| Nr. | Dübelgröße                       |                          | М6                             | M8                                                            | M10                            | M12                            |
|-----|----------------------------------|--------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------|--------------------------------|
|     | Konusbolzen mit Ø d <sub>k</sub> |                          | 7,9                            | 9,8                                                           | 11,8                           | 15,7                           |
| 1   | Montageart V                     | L                        | 50                             | 62                                                            | 70                             | 86                             |
|     | Montageart D                     | L                        | 50 + t <sub>fix</sub>          | 62 + t <sub>fix</sub>                                         | 70 + t <sub>fix</sub>          | 86 + t <sub>fix</sub>          |
| 2   | Spreizhülse                      |                          |                                | siehe Ta                                                      | abelle A4                      |                                |
| 3   | Unterlegscheibe                  |                          |                                | siehe Ta                                                      | abelle A4                      |                                |
|     | Sechskantschraube                | Schlüsselweite           | 10                             | 13                                                            | 17                             | 19                             |
| 4   | Montageart V                     | Ls                       | t <sub>fix</sub> + (13 bis 21) | t <sub>fix</sub> + (17 bis 23)                                | t <sub>fix</sub> + (21 bis 25) | t <sub>fix</sub> + (24 bis 29) |
|     | Montageart D                     | Ls                       | 14 bis 20                      | 18 bis 22                                                     | 20 bis 22                      | 25 bis 28                      |
| 5   | Senkscheibe -                    | Ø Senkung                | 17,3                           | 21,5                                                          | 25,9                           | 30,9                           |
| 5   | Selikscheibe                     | t                        | 3,9                            | 5,0                                                           | 5,7                            | 6,7                            |
| 6   | Senkschraube                     | nraube Antrieb           |                                | Torx T45 (Stahl, verzinkt) T40 (nichtrostender Stahl A4, HCR) | Innensechskant<br>6 mm         | Innensechskant<br>8 mm         |
|     | Montageart V L <sub>SK</sub>     |                          | t <sub>fix</sub> + (11 bis 19) | t <sub>fix</sub> + (15 bis 21)                                | t <sub>fix</sub> + (19 bis 23) | t <sub>fix</sub> + (21 bis 27) |
|     | Montageart D                     | L <sub>sk</sub>          | 16 bis 20                      | 20 bis 25                                                     | 25                             | 30                             |
| 7   | Sechskantmutter                  | Schlüsselweite           | 10                             | 13                                                            | 17                             | 19                             |
| 8   | Handelsübliche                   | Γyp V _ L <sub>B</sub> ≥ | t <sub>fix</sub> + 21          | t <sub>fix</sub> + 28                                         | t <sub>fix</sub> + 34          | t <sub>fix</sub> + 41          |
| 0   | Gewindestange <sup>1)</sup>      | Γyp D L <sub>B</sub> ≥   | 21                             | 28                                                            | 34                             | 41                             |

1) Ausführung gemäß Spezifikation (Tabelle A4)

Maße in mm

#### **Bolzenanker HB-BZ-IG**

#### Produktbeschreibung

Dübelkomponenten, Prägung und Abmessungen

Anhang A6



### Tabelle A4: Material HB-BZ-IG

|     |                                       | HB-BZ-IG                                                                       | HB-BZ-IG A4                                                                                                           | HB-BZ-IG HCR                                                                                                            |
|-----|---------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Nr. | Teil                                  | Stahl, verzinkt<br>≥ 5 µm nach<br>EN ISO 4042:1999                             | μm nach Nichtrostender Stani                                                                                          |                                                                                                                         |
| 1   | Konusbolzen BZ-IG<br>mit Innengewinde | Automatenstahl, Konus<br>kunststoffbeschichtet                                 | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4404,<br>1.4571, 1.4362)<br>EN 10088:2014,<br>Konus<br>kunststoffbeschichtet | Hochkorrosions-<br>beständiger Stahl,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>Konus<br>kunststoffbeschichtet            |
| 2   | Spreizhülse BZ-IG                     | Nichtrostender Stahl<br>(z.B. 1.4301, 1.4401)<br>EN 10088:2014                 | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4571)<br>EN 10088:2014                                                       | Nichtrostender Stahl<br>(z. B.: 1.4401, 1.4571)<br>EN 10088:2014                                                        |
| 3   | Unterlegscheibe<br>S-IG / MU-IG       | Stahl, galvanisch<br>verzinkt                                                  | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4571)<br>EN 10088:2014                                                       | Hochkorrosions-<br>beständiger Stahl,<br>1.4529, 1.4565,<br>EN 10088:2014                                               |
| 4   | Sechskantschraube S-IG                | Stahl, galvanisch<br>verzinkt,<br>beschichtet                                  | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4571)<br>EN 10088:2014,<br>beschichtet                                       | Hochkorrosions-<br>beständiger Stahl,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>beschichtet                               |
| 5   | Senkscheibe SK-IG                     | Stahl, galvanisch<br>verzinkt                                                  | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014,<br>verzinkt, beschichtet                  | Hochkorrosions-<br>beständiger Stahl,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>verzinkt, beschichtet                     |
| 6   | Senkschraube SK-IG                    | Stahl, galvanisch<br>verzinkt<br>beschichtet                                   | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4571)<br>EN 10088:2014,<br>beschichtet                                       | Hochkorrosions-<br>beständiger Stahl,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>beschichtet                               |
| 7   | Sechskantmutter MU-IG                 | Stahl, galvanisch<br>verzinkt, beschichtet                                     | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4571)<br>EN 10088:2014,<br>beschichtet                                       | Hochkorrosions-<br>beständiger Stahl,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>beschichtet                               |
| 8   | Handelsübliche<br>Gewindestange       | Festigkeitsklasse 8.8,<br>EN ISO 898-1:2013<br>A <sub>5</sub> > 8 % Duktilität | Nichtrostender Stahl<br>(z. B. 1.4401, 1.4571)<br>EN 10088:2014,<br>Festigkeitsklasse 70,<br>EN ISO 3506:2009         | Hochkorrosions-<br>beständiger Stahl,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>Festigkeitsklasse 70,<br>EN ISO 3506:2009 |

| Bolzenanker HB-BZ-IG            |           |
|---------------------------------|-----------|
| Produktbeschreibung<br>Material | Anhang A7 |



#### Spezifizierung des Verwendungszwecks

| Bolzenanker HB-BZ                                               |          |     |     |     |     |     |     |
|-----------------------------------------------------------------|----------|-----|-----|-----|-----|-----|-----|
| Standardverankerungstiefe                                       | M8       | M10 | M12 | M16 | M20 | M24 | M27 |
| Stahl, galvanisch verzinkt                                      | ✓        |     |     |     |     |     |     |
| Stahl, diffusionsverzinkt                                       | - √ -    |     |     |     | -   |     |     |
| Nichtrostender Stahl A4 und hochkorrosionsbeständiger Stahl HCR | ✓ -      |     |     |     | -   |     |     |
| Statische oder quasi-statische Einwirkung                       | ✓        |     |     |     |     |     |     |
| Brandbeanspruchung                                              | <b>√</b> |     |     |     |     |     |     |
| Seismische Einwirkung (C1 und C2) 1)                            | ✓        |     |     |     |     | -   |     |
| <b>–</b>                                                        |          |     |     |     |     |     |     |

| Reduzierte Verankerungstiefe 1)           | M8       | M10 | M12 | M16 |
|-------------------------------------------|----------|-----|-----|-----|
| Stahl, galvanisch verzinkt                | <b>√</b> |     |     |     |
| Stahl, diffusionsverzinkt                 | -        |     | ✓   |     |
| Nichtrostender Stahl A4 und               |          |     |     |     |
| hochkorrosionsbeständiger Stahl HCR       | <b>*</b> |     |     |     |
| Statische oder quasi-statische Einwirkung | ✓        |     |     |     |
| Brandbeanspruchung                        | ✓        |     |     |     |
| Seismische Einwirkung (C1 und C2)         | -        |     |     |     |

nur für kaltgeformte Dübel nach Anhang A3

| Bolzenanker HB-BZ-IG                                            | M6 | М8 | M10 | M12 |
|-----------------------------------------------------------------|----|----|-----|-----|
| Stahl verzinkt                                                  |    | ٧  |     |     |
| Nichtrostender Stahl A4 und hochkorrosionsbeständiger Stahl HCR | ✓  |    |     |     |
| Statische oder quasi-statische Einwirkung                       | ✓  |    |     |     |
| Brandbeanspruchung                                              | ✓  |    |     | ·   |
| Seismische Einwirkung (C1 und C2)                               |    |    | -   |     |

#### Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2013
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2013
- Gerissener oder ungerissener Beton

#### Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (Stahl verzinkt, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

# Verwendungszweck Spezifikationen Bolzenanker HB-BZ und HB-BZ-IG Anhang B1



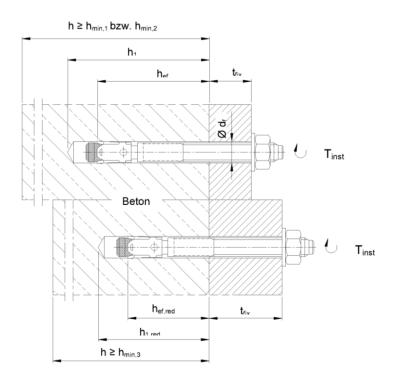
#### Spezifizierung des Verwendungszwecks

#### Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
  - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 oder
  - CEN/TS 1992-4:2009, Bemessungsmethode A
- Bemessung der Verankerungen unter seismischer Einwirkung (gerissener Beton) nach:
  - EOTA Technischer Report TR 045, Ausgabe Februar 2013
  - Die Verankerungen sind ausserhalb kritischer Bereiche (z.B.: plastischer Gelenke) der Betonkonstruktion anzuordnen.
  - Eine Abstandsmontage oder die Montage auf einer M\u00f6rtelschicht ist f\u00fcr seismische Einwirkungen nicht erlaubt.
- Bemessung der Verankerungen unter Brandbeanspruchung nach:
  - ETAG 001, Anhang C, Bemessungsmethode A, Ausgabe August 2010 und EOTA Technischer Report TR 020, Ausgabe Mai 2004 oder
  - CEN/TS 1992-4: 2009, Anhang D
  - Es muss sichergestellt werden, dass keine lokalen Abplatzungen der Betonoberfläche auftreten

#### Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Bei Fehlbohrung: Anordnung eines neuen Bohrlochs im Abstand > 2 x Tiefe der Fehlbohrung oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.


Verwendungszweck
Spezifikationen

Anhang B2



| Taballa D1:  | Montago una  | d Dübelkennwerte. | UD D7   |
|--------------|--------------|-------------------|---------|
| Tabelle b I: | wontage- und | ı Dubeikennwerle. | . DD-DZ |

| Dübelgröße                                    |                                 |                         |      | M8   | M10   | M12  | M16  | M20   | M24   | M27   |
|-----------------------------------------------|---------------------------------|-------------------------|------|------|-------|------|------|-------|-------|-------|
| Bohrernenndu                                  | rchmesser                       | d <sub>0</sub>          | [mm] | 8    | 10    | 12   | 16   | 20    | 24    | 28    |
| Bohrerschneid                                 | endurchmesser                   | $d_{cut} \le$           | [mm] | 8,45 | 10,45 | 12,5 | 16,5 | 20,55 | 24,55 | 28,55 |
| Drehmoment                                    | Stahl galvanisch<br>verzinkt    | $T_{inst}$              | [Nm] | 20   | 25    | 45   | 90   | 160   | 200   | 300   |
| beim<br>Verankern                             | Stahl<br>diffusionsverzinkt     | $T_{inst}$              | [Nm] | -    | 22    | 40   | 90   | 160   | ı     | -     |
| Verankeni                                     | nichtrostender<br>Stahl A4, HCR | $T_{inst}$              | [Nm] | 20   | 35    | 50   | 110  | 200   | 290   | -     |
| Durchgangsloch im<br>anzuschließenden Bauteil |                                 | $d_f \! \leq \!$        | [mm] | 9    | 12    | 14   | 18   | 22    | 26    | 30    |
| Standardvera                                  | nkerungstiefe                   |                         |      |      |       |      |      |       |       |       |
|                                               | Stahl verzinkt                  | $h_1 \geq$              | [mm] | 60   | 75    | 90   | 110  | 125   | 145   | 160   |
| Bohrlochtiefe                                 | nichtrostender<br>Stahl A4, HCR | $h_1 \geq$              | [mm] | 60   | 75    | 90   | 110  | 125   | 155   | -     |
| Eff. Ver-                                     | Stahl verzinkt                  | $h_{ef}$                | [mm] | 46   | 60    | 70   | 85   | 100   | 115   | 125   |
| ankerungs-<br>tiefe                           | nichtrostender<br>Stahl A4, HCR | h <sub>ef</sub>         | [mm] | 46   | 60    | 70   | 85   | 100   | 125   | -     |
| Reduzierte Verankerungstiefe                  |                                 |                         |      |      |       |      |      |       |       |       |
| Bohrlochtiefe                                 |                                 | $h_{1,\text{red}} \geq$ | [mm] | 49   | 55    | 70   | 90   |       |       |       |
| Reduzierte, effektive<br>Verankerungstiefe    |                                 | h <sub>ef,red</sub>     | [mm] | 35   | 40    | 50   | 65   | -     | -     | -     |



# Verwendungszweck Montagekennwerte Anhang B3



| Tabelle B2: Minimale Achs- und Randabstände, Standardverankerungstiefe, HB-E |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

| Dübelgröße                     |                    |         | M8   | M10   | M12   | M16   | M20   | M24   | M27      |
|--------------------------------|--------------------|---------|------|-------|-------|-------|-------|-------|----------|
| Standardbauteildicke           |                    |         | IVIO | IVITO | IVITZ | IVITO | IVIZU | 10124 | IVIZI    |
|                                |                    |         |      |       |       |       |       |       |          |
| Stahl verzinkt                 | h                  | [ma 1   | 100  | 100   | 140   | 170   | 200   | 222   | 252      |
| Standardbauteildicke           | h <sub>min,1</sub> | [mm]    | 100  | 120   | 140   | 170   | 200   | 230   | 250      |
| Gerissener Beton               |                    | [mains] | 40   | 45    |       |       | 0.5   | 100   | 105      |
| Minimaler Achsabstand          | S <sub>min</sub>   | [mm]    | 40   | 45    | 60    | 60    | 95    | 100   | 125      |
| Mission Boodshaland            | für c ≥            | [mm]    | 70   | 70    | 100   | 100   | 150   | 180   | 300      |
| Minimaler Randabstand          | C <sub>min</sub>   | [mm]    | 40   | 45    | 60    | 60    | 95    | 100   | 180      |
| Un navia canan Batan           | für s ≥            | [mm]    | 80   | 90    | 140   | 180   | 200   | 220   | 540      |
| Ungerissener Beton             |                    | f       | 40   | 45    |       | 0.5   | 00    | 400   | 405      |
| Minimaler Achsabstand          | Smin               | [mm]    | 40   | 45    | 60    | 65    | 90    | 100   | 125      |
| Minimalas Dandahatas 1         | fürc≥              | [mm]    | 80   | 70    | 120   | 120   | 180   | 180   | 300      |
| Minimaler Randabstand          | C <sub>min</sub>   | [mm]    | 50   | 50    | 75    | 80    | 130   | 100   | 180      |
|                                | für s ≥            | [mm]    | 100  | 100   | 150   | 150   | 240   | 220   | 540      |
| Nichtrostender Stahl A4, HCR   |                    |         |      |       |       |       | - :   |       |          |
| Standardbauteildicke           | h <sub>min,1</sub> | [mm]    | 100  | 120   | 140   | 160   | 200   | 250   | -        |
| Gerissener Beton               |                    |         | -    | _     | T -   | T -   | _     | I -   |          |
| Minimaler Achsabstand          | S <sub>min</sub>   | [mm]    | 40   | 50    | 60    | 60    | 95    | 125   |          |
| L                              | für c ≥            | [mm]    | 70   | 75    | 100   | 100   | 150   | 125   | _        |
| Minimaler Randabstand          | C <sub>min</sub>   | [mm]    | 40   | 55    | 60    | 60    | 95    | 125   |          |
|                                | für s ≥            | [mm]    | 80   | 90    | 140   | 180   | 200   | 125   |          |
| Ungerissener Beton             |                    |         |      |       |       |       |       |       |          |
| Minimaler Achsabstand          | S <sub>min</sub>   | [mm]    | 40   | 50    | 60    | 65    | 90    | 125   |          |
|                                | für c ≥            | [mm]    | 80   | 75    | 120   | 120   | 180   | 125   |          |
| Minimaler Randabstand          | C <sub>min</sub>   | [mm]    | 50   | 60    | 75    | 80    | 130   | 125   | -        |
| l                              | für s ≥            | [mm]    | 100  | 120   | 150   | 150   | 240   | 125   |          |
| Mindestbauteildicke            |                    |         |      |       |       |       |       |       |          |
| Stahl verzinkt, nichtrostender | Stahl A4,          | HCR     |      |       |       |       |       |       |          |
| Mindestbauteildicke            | h <sub>min,2</sub> | [mm]    | 80   | 100   | 120   | 140   | -     | -     | -        |
| Gerissener Beton               |                    |         |      |       |       |       |       |       |          |
| Minimaler Achsabstand          | S <sub>min</sub>   | [mm]    | 40   | 45    | 60    | 70    |       |       |          |
|                                | für c ≥            | [mm]    | 70   | 90    | 100   | 160   | ]     |       |          |
| Minimaler Randabstand          | C <sub>min</sub>   | [mm]    | 40   | 50    | 60    | 80    | _     | _     | -        |
|                                | für s ≥            | [mm]    | 80   | 115   | 140   | 180   |       |       | <u> </u> |
| Ungerissener Beton             |                    |         |      |       |       |       |       |       |          |
| Minimaler Achsabstand          | S <sub>min</sub>   | [mm]    | 40   | 60    | 60    | 80    |       |       |          |
|                                | für c ≥            | [mm]    | 80   | 140   | 120   | 180   |       |       |          |
| Minimaler Randabstand          | C <sub>min</sub>   | [mm]    | 50   | 90    | 75    | 90    | ] -   | -     | -        |
|                                | für s ≥            | [mm]    | 100  | 140   | 150   | 200   |       |       |          |

| Brandbeanspruchung von einer Seite          |                        |                           |  |  |  |  |  |
|---------------------------------------------|------------------------|---------------------------|--|--|--|--|--|
| Minimaler Achsabstand                       | s <sub>min,fi</sub> [m | m] Siehe Normaltemperatur |  |  |  |  |  |
| Minimaler Randabstand                       | c <sub>min,fi</sub> [m | m] Siehe Normaltemperatur |  |  |  |  |  |
| Brandbeanspruchung von mehr als einer Seite |                        |                           |  |  |  |  |  |
| Minimaler Achsabstand                       | s <sub>min,fi</sub> [m | m] Siehe Normaltemperatur |  |  |  |  |  |
| Minimaler Randabstand                       | c <sub>min,fi</sub> [m | m] ≥ 300 mm               |  |  |  |  |  |

Zwischenwerte dürfen interpoliert werden.

#### **Bolzenanker HB-BZ**

#### Verwendungszweck

Minimale Achs- und Randabstände für Standardverankerungstiefe

Anhang B4

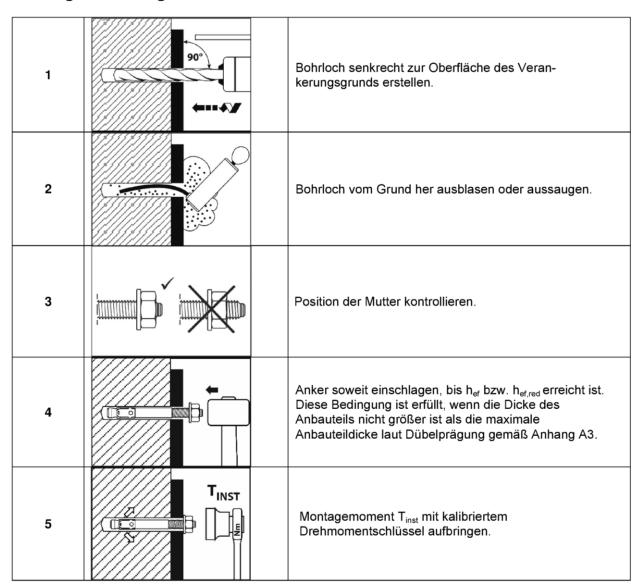


Tabelle B3: Minimale Achs- und Randabstände, reduzierte Verankerungstiefe, HB-BZ

| Dübelgröße                 |                     |       | М8                        | M10         | M12          | M16 |  |  |
|----------------------------|---------------------|-------|---------------------------|-------------|--------------|-----|--|--|
| Mindestbauteildicke        | h <sub>min,3</sub>  | [mm]  | 80                        | 80          | 100          | 140 |  |  |
| Gerissener Beton           |                     |       |                           |             |              |     |  |  |
| Minimaler Achsabstand      | S <sub>min</sub>    | [mm]  | 50                        | 50          | 50           | 65  |  |  |
| Millillalei Aciisabstalid  | für c ≥             | [mm]  | 60                        | 100         | 160          | 170 |  |  |
| Minimaler Randabstand      | C <sub>min</sub>    | [mm]  | 40                        | 65          | 65           | 100 |  |  |
| Millillaler Randabstand    | für s ≥             | [mm]  | 185                       | 180         | 250          | 250 |  |  |
| Ungerissener Beton         |                     |       |                           |             |              |     |  |  |
| Minimalan Ashanbatand      | S <sub>min</sub>    | [mm]  | 50                        | 50          | 50           | 65  |  |  |
| Minimaler Achsabstand      | für c ≥             | [mm]  | 60                        | 100         | 160          | 170 |  |  |
| Minimaler Randabstand      | C <sub>min</sub>    | [mm]  | 40                        | 65          | 100          | 170 |  |  |
| Millillaler Randabstand    | für s ≥             | [mm]  | 185                       | 180         | 185          | 65  |  |  |
| Brandbeanspruchung von eir | ner Seite           |       |                           |             |              |     |  |  |
| Minimaler Achsabstand      | S <sub>min,fi</sub> | [mm]  |                           | Siehe Norma | altemperatur |     |  |  |
| Minimaler Randabstand      | C <sub>min,fi</sub> | [mm]  | m] Siehe Normaltemperatur |             |              |     |  |  |
| Brandbeanspruchung von me  | ehr als einer S     | Seite |                           |             |              |     |  |  |
| Minimaler Achsabstand      | S <sub>min,fi</sub> | [mm]  | Siehe Normaltemperatur    |             |              |     |  |  |
| Minimaler Randabstand      | C <sub>min,fi</sub> | [mm]  |                           | ≥ 300       | 0 mm         |     |  |  |

Zwischenwerte dürfen interpoliert werden.

**Bolzenanker HB-BZ** 


Verwendungszweck

Minimale Achs- und Randabstände für reduzierte Verankerungstiefe

Anhang B5



#### Montageanweisung HB-BZ



| Bolzenanker HB-BZ                    |           |
|--------------------------------------|-----------|
| Verwendungszweck<br>Montageanweisung | Anhang B6 |



#### Tabelle B4: Montage- und Dübelkennwerte HB-BZ-IG

| Dübelgröße                                                 |               |                       |      | М6   | М8    | M10  | M12  |
|------------------------------------------------------------|---------------|-----------------------|------|------|-------|------|------|
| Effektive Verankerungstiefe                                |               | h <sub>ef</sub>       | [mm] | 45   | 58    | 65   | 80   |
| Bohrernenndurchmesser                                      |               | do                    | [mm] | 8    | 10    | 12   | 16   |
| Bohrerschneidendurchmesser                                 |               | $d_{\text{cut}} \leq$ | [mm] | 8,45 | 10,45 | 12,5 | 16,5 |
| Bohrlochtiefe                                              |               | $h_1 \geq$            | [mm] | 60   | 75    | 90   | 105  |
| Einschraubtiefe der Gewindestange                          |               | $L_{sd}^{2)} \ge$     | [mm] | 9    | 12    | 15   | 18   |
| Dankan area at haire Maranlara                             |               | S                     | [Nm] | 10   | 30    | 30   | 55   |
| Drehmoment beim Verankern,<br>Stahl verzinkt               | $T_{inst}$    | SK                    | [Nm] | 10   | 25    | 40   | 50   |
| Starii Verzirikt                                           |               | В                     | [Nm] | 8    | 25    | 30   | 45   |
| Dankan and haire Variable as                               |               | S                     | [Nm] | 15   | 40    | 50   | 100  |
| Drehmoment beim Verankern,<br>nichtrostender Stahl A4, HCR | $T_{inst}$    | SK                    | [Nm] | 12   | 25    | 45   | 60   |
| michirosterider Staff A4, FICK                             |               | В                     | [Nm] | 8    | 25    | 40   | 80   |
| Montageart V (Vorsteckmontage)                             |               |                       |      |      |       |      |      |
| Durchgangsloch im Anbauteil                                |               | $d_f \le$             | [mm] | 7    | 9     | 12   | 14   |
|                                                            |               | S                     | [mm] | 1    | 1     | 1    | 1    |
| Minimale Anbauteildicke                                    | $t_{fix} \ge$ | SK                    | [mm] | 5    | 7     | 8    | 9    |
|                                                            |               | В                     | [mm] | 1    | 1     | 1    | 1    |
| Montageart D (Durchsteckmontage)                           |               |                       |      |      |       |      |      |
| Durchgangsloch im Anbauteil                                |               | $d_f \leq$            | [mm] | 9    | 12    | 14   | 18   |
|                                                            |               | S                     | [mm  | 5    | 7     | 8    | 9    |
| Minimale Anbauteildicke 1)                                 | $t_{fix} \ge$ | SK                    | [mm] | 9    | 12    | 14   | 16   |
|                                                            |               | В                     | [mm] | 5    | 7     | 8    | 9    |

<sup>&</sup>lt;sup>1)</sup> Die Anbauteildicke kann bis zu dem Wert für Vorsteckmontage reduziert werden, wenn die Querlast mit Hebelarm bemessen wird. <sup>2)</sup> siehe Anhang A5

#### Tabelle B5: Minimale Achs- und Randabstände HB-BZ-IG

| Dübelgröße                      |                     |      | М6                         | М8          | M10         | M12 |
|---------------------------------|---------------------|------|----------------------------|-------------|-------------|-----|
| Mindestbauteildicke             | h <sub>min</sub>    | [mm] | 100                        | 120         | 130         | 160 |
| Gerissener Beton                |                     |      |                            |             |             |     |
| Minimaler Achsabstand           | S <sub>min</sub>    | [mm] | 50                         | 60          | 70          | 80  |
|                                 | für c ≥             | [mm] | 60                         | 80          | 100         | 120 |
| Minimaler Randabstand           | C <sub>min</sub>    | [mm] | 50                         | 60          | 70          | 80  |
|                                 | für s ≥             | [mm] | 75                         | 100         | 100         | 120 |
| Ungerissener Beton              |                     |      |                            |             |             |     |
| Minimaler Achsabstand           | S <sub>min</sub>    | [mm] | 50                         | 60          | 65          | 80  |
|                                 | für c ≥             | [mm] | 80                         | 100         | 120         | 160 |
| Minimaler Randabstand           | C <sub>min</sub>    | [mm] | 50                         | 60          | 70          | 100 |
|                                 | für s ≥             | [mm] | 115                        | 155         | 170         | 210 |
| Brandbeanspruchung von einer Se | eite                |      |                            |             |             |     |
| Minimaler Achsabstand           | S <sub>min,fi</sub> | [mm] |                            | Siehe Norma | altemperatu | r   |
| Minimaler Randabstand           | C <sub>min,fi</sub> | [mm] |                            | Siehe Norma | altemperatu | r   |
| Brandbeanspruchung von mehr als |                     |      |                            |             |             |     |
| Minimaler Achsabstand           | S <sub>min,fi</sub> | [mm] | mm] Siehe Normaltemperatur |             |             |     |
| Minimaler Randabstand           | C <sub>min,fi</sub> | [mm] |                            | ≥ 300       | 0 mm        |     |

Zwischenwerte dürfen interpoliert werden.

#### **Bolzenanker HB-BZ-IG**

#### Verwendungszweck

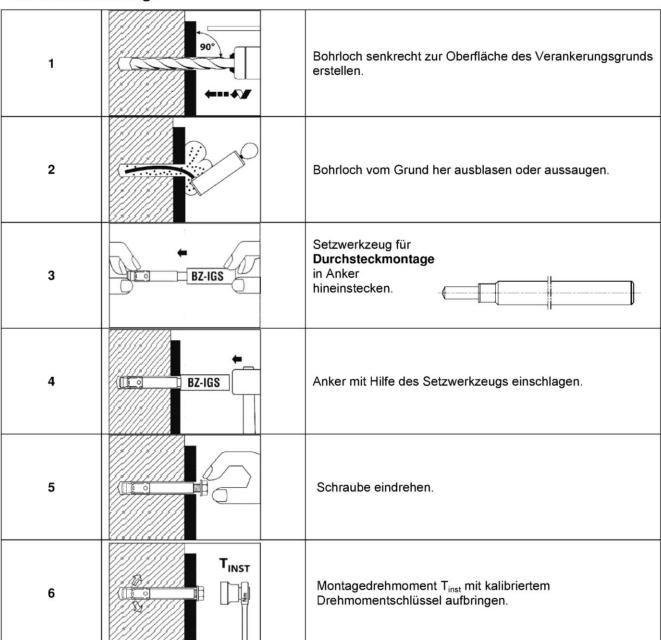
Montage- und Dübelkennwerte, minimale Achs- und Randabstände

**Anhang B7** 



## Montageanweisung HB-BZ-IG

## Vorsteckmontage


| 1 | 90°     | Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen.                     |
|---|---------|-----------------------------------------------------------------------------------------|
| 2 |         | Bohrloch vom Grund her ausblasen oder aussaugen.                                        |
| 3 | \$30-Z8 | Setzwerkzeug für Vorsteckmontage in Anker hineinstecken.                                |
| 4 | BZ-163  | Anker mit Hilfe des Setzwerkzeugs einschlagen.                                          |
| 5 |         | Schraube eindrehen.                                                                     |
| 6 | Tinst   | Montagedrehmoment T <sub>inst</sub> mit kalibriertem<br>Drehmomentschlüssel aufbringen. |

| Bolzenanker HB-BZ-IG                                  |           |
|-------------------------------------------------------|-----------|
| Verwendungszweck Montageanweisung für Vorsteckmontage | Anhang B8 |



#### Montageanweisung HB-BZ-IG

#### Durchsteckmontage



# Bolzenanker HB-BZ-IG

Verwendungszweck Montageanweisung für Durchsteckmontage Anhang B9



**Tabelle C1:** Charakteristische Werte bei **Zugbeanspruchung**, HB-BZ **verzinkt**, **gerissener Beton**, statische oder quasi-statische Belastung

| Dübelgröße                                         |                            |      | М8               | M10 | M12 | M16                                       | M20 | M24 | M27 |
|----------------------------------------------------|----------------------------|------|------------------|-----|-----|-------------------------------------------|-----|-----|-----|
| Montagesicherheitsbeiwert                          | $\gamma_2 = \gamma_{inst}$ | [-]  |                  |     |     | 1,0                                       |     |     |     |
| Stahlversagen                                      |                            |      |                  |     |     |                                           |     |     |     |
| Charakteristische Zugtragfähigkeit                 | $N_{Rk,s}$                 | [kN] | 16               | 27  | 40  | 60                                        | 86  | 126 | 196 |
| Teilsicherheitsbeiwert                             | γ̃Ms                       | [-]  | 1,               | 53  | 1   | ,5                                        | 1,6 | 1,  | 5   |
| Herausziehen                                       |                            |      |                  |     |     |                                           |     |     |     |
| Standardverankerungstiefe                          |                            |      |                  |     |     |                                           |     |     |     |
| Charakteristische Tragfähigkeit im<br>Beton C20/25 | $N_{Rk,p}$                 | [kN] | 5                | 9   | 16  | 25                                        | 1)  | 1)  | 1)  |
| Reduzierte Verankerungstiefe                       |                            |      |                  |     |     |                                           |     |     |     |
| Charakteristische Tragfähigkeit im Beton C20/25    | $N_{Rk,p}$                 | [kN] | 5                | 7,5 | 1)  | 1)                                        | -   | -   | -   |
| Erhöhungsfaktor für N <sub>Rk,p</sub>              | ψс                         | [-]  |                  |     | (   | $\left(\frac{f_{ck,cube}}{25}\right)^{0}$ | 5   |     |     |
| Betonausbruch                                      |                            |      |                  |     |     |                                           |     |     |     |
| Effektive Verankerungstiefe                        | h <sub>ef</sub>            | [mm] | 46               | 60  | 70  | 85                                        | 100 | 115 | 125 |
| Reduzierte Verankerungstiefe                       | $h_{\text{ef,red}}$        | [mm] | 35 <sup>2)</sup> | 40  | 50  | 65                                        | -   | -   | -   |
| Faktor gemäß CEN/TS 1992-4                         | k <sub>cr</sub>            | [-]  |                  |     |     | 7,2                                       |     |     |     |

<sup>1)</sup> Herausziehen ist nicht maßgebend.

Leistung
Charakteristische Werte bei Zugbeanspruchung, HB-BZ verzinkt,
gerissener Beton, statische oder quasi-statische Belastung

Anhang C1

<sup>&</sup>lt;sup>2)</sup> Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt.



**Tabelle C2:** Charakteristische Werte bei **Zugbeanspruchung**, HB-BZ **A4** / **HCR**, **gerissener Beton**, statische oder quasi-statische Belastung

| Dübelgröße                                         |                            |      | М8               | M10 | M12                                 | M16 | M20  | M24 |
|----------------------------------------------------|----------------------------|------|------------------|-----|-------------------------------------|-----|------|-----|
| Montagesicherheitsbeiwert                          | $\gamma_2 = \gamma_{inst}$ | [-]  |                  |     | 1                                   | ,0  |      |     |
| Stahlversagen                                      |                            |      |                  |     |                                     |     |      |     |
| Charakteristische Zugtragfähigkeit                 | $N_{Rk,s}$                 | [kN] | 16               | 27  | 40                                  | 64  | 108  | 110 |
| Teilsicherheitsbeiwert                             | γMs                        | [-]  |                  | 1   | ,5                                  |     | 1,68 | 1,5 |
| Herausziehen                                       |                            |      |                  |     |                                     |     |      |     |
| Standardverankerungstiefe                          |                            |      |                  |     |                                     |     |      |     |
| Charakteristische Tragfähigkeit im<br>Beton C20/25 | $N_{Rk,p}$                 | [kN] | 5                | 9   | 16                                  | 25  | 1)   | 40  |
| Reduzierte Verankerungstiefe                       |                            |      |                  |     |                                     |     |      |     |
| Charakteristische Tragfähigkeit im<br>Beton C20/25 | $N_{Rk,p}$                 | [kN] | 5                | 7,5 | 1)                                  | 1)  | -    | -   |
| Erhöhungsfaktor für N <sub>Rk,p</sub>              | ψс                         | [-]  |                  |     | $\left(\frac{f_{ck,cu}}{25}\right)$ | 0,5 |      |     |
| Betonausbruch                                      |                            |      |                  |     |                                     |     |      |     |
| Effektive Verankerungstiefe                        | h <sub>ef</sub>            | [mm] | 46               | 60  | 70                                  | 85  | 100  | 125 |
| Reduzierte Verankerungstiefe                       | $h_{\text{ef,red}}$        | [mm] | 35 <sup>2)</sup> | 40  | 50                                  | 65  | -    | -   |
| Faktor gemäß CEN/TS 1992-4                         | k <sub>cr</sub>            | [-]  |                  |     | 7                                   | ,2  |      |     |

<sup>1)</sup> Herausziehen ist nicht maßgebend.

# Bolzenanker HB-BZ Leistung Charakteristische Werte bei Zugbeanspruchung, HB-BZ A4 / HCR, gerissener Beton, statische oder quasi-statische Belastung Anhang C2

<sup>&</sup>lt;sup>2)</sup> Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt.



**Tabelle C3:** Charakteristische Werte bei **Zugbeanspruchung**, HB-BZ **verzinkt**, **ungerissener Beton**, statische oder quasi-statische Belastung

| Dübelgröße                                                                                                                  | · · · · · · · · · · · · · · · · · · · | M8               | M10                                   | M12             | M16                                       | M20                 | M24               | M27               |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------------------------------------|-----------------|-------------------------------------------|---------------------|-------------------|-------------------|
| Montagesicherheitsbeiwert $\gamma_2 =$                                                                                      | γ <sub>inst</sub> [-]                 |                  |                                       |                 | 1,0                                       |                     |                   |                   |
| Stahlversagen                                                                                                               |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Charakteristische Zugtragfähigkeit N                                                                                        | Rk,s [kN]                             | 16               | 27                                    | 40              | 60                                        | 86                  | 126               | 196               |
|                                                                                                                             | γ <sub>Ms</sub> [-]                   | 1,               | 53                                    | 1               | ,5                                        | 1,6                 | 1                 | ,5                |
| Herausziehen                                                                                                                |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Standardverankerungstiefe                                                                                                   |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                                | Rk,p [kN]                             | 12               | 16                                    | 25              | 35                                        | 1)                  | 1)                | 1)                |
| Reduzierte Verankerungstiefe                                                                                                |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                                | <sub>Rk,p</sub> [kN]                  | 7,5              | 9                                     | 1)              | 1)                                        | -                   | -                 | -                 |
| <b>Spalten</b> Beim Spaltennachweis ist für N <sup>0</sup> <sub>Rk,c</sub> do                                               | er hier ange                          | gebene W         | ert N <sup>0</sup> <sub>Rk,sp</sub> z | u verwende      | en; Bauteila                              | bmessunge           | en sind ein       | zuhalten          |
| Standardverankerungstiefe                                                                                                   |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Spalten bei <b>Standardbauteildicke</b> (Es dan Die Werte s <sub>cr.sp</sub> und c <sub>cr.sp</sub> dürfen für Bauteildicke |                                       |                  |                                       |                 |                                           |                     |                   |                   |
|                                                                                                                             | , <sub>1</sub> ≥ [mm]                 | 100              | 120                                   | 140             | 170                                       | 200                 | 230               | 250               |
| Fall 1                                                                                                                      |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                                | Rk,sp [kN]                            | 9                | 12                                    | 20              | 30                                        | 40                  | 62,3              | 50                |
| Achsabstand (Randabstand) s <sub>cr,sp</sub> (= 2 c <sub>c</sub>                                                            | <sub>r,sp</sub> ) [mm]                |                  | •                                     |                 | 3 h <sub>ef</sub>                         |                     |                   |                   |
| Fall 2                                                                                                                      |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                                | Rk,sp [kN]                            | 12               | 16                                    | 25              | 35                                        | 50,5                | 62,3              | 70,6              |
| Achsabstand (Randabstand) s <sub>cr,sp</sub> (= 2 c <sub>c</sub>                                                            | <sub>r,sp</sub> ) [mm]                |                  | 4                                     | h <sub>ef</sub> |                                           | 4,4 h <sub>ef</sub> | 3 h <sub>ef</sub> | 5 h <sub>ef</sub> |
| Spalten bei Mindestbauteildicke                                                                                             |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Mindestbauteildicke h <sub>min</sub>                                                                                        | <sub>1,2</sub> ≥ [mm]                 | 80               | 100                                   | 120             | 140                                       |                     |                   |                   |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                                | Rk,sp [kN]                            | 12               | 16                                    | 25              | 35                                        | -                   | -                 | -                 |
| Achsabstand (Randabstand) s <sub>cr,sp</sub> (= 2 c <sub>c</sub>                                                            | er,sp) [mm]                           |                  | 5                                     | $h_{\text{ef}}$ |                                           |                     |                   |                   |
| Reduzierte Verankerungstiefe                                                                                                |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Mindestbauteildicke h <sub>min</sub>                                                                                        | <sub>1,3</sub> ≥ [mm]                 | 80               | 80                                    | 100             | 140                                       |                     |                   |                   |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                                | Rk,sp [kN]                            | 7,5              | 9                                     | 17,9            | 26,5                                      | -                   | -                 | -                 |
| Achsabstand (Randabstand) s <sub>cr,sp</sub> (= 2 c <sub>c</sub>                                                            | er.sp) [mm]                           | 200              | 200                                   | 250             | 300                                       |                     |                   |                   |
| Erhöhungsfaktor<br>für N <sub>Rk,p</sub> und N <sup>0</sup> <sub>Rk,sp</sub>                                                | ψс [-]                                |                  |                                       | (               | $\left(\frac{f_{ck,cube}}{25}\right)^{0}$ | 5                   |                   |                   |
| Betonausbruch                                                                                                               |                                       |                  |                                       |                 |                                           |                     |                   |                   |
| Effektive Verankerungstiefe                                                                                                 | h <sub>ef</sub> [mm]                  | 46               | 60                                    | 70              | 85                                        | 100                 | 115               | 125               |
| Reduzierte Verankerungstiefe h                                                                                              | ef,red [mm]                           | 35 <sup>2)</sup> | 40                                    | 50              | 65                                        | -                   | -                 | -                 |
| -                                                                                                                           | k <sub>ucr</sub> [-]                  |                  |                                       |                 | 10,1                                      |                     |                   |                   |

Herausziehen ist nicht maßgebend.

# Bolzenanker HB-BZ Leistung Charakteristische Werte bei Zugbeanspruchung, HB-BZ verzinkt, ungerissener Beton, statische oder quasi-statische Belastung Anhang C3

Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt.



**Tabelle C4:** Charakteristische Werte bei **Zugbeanspruchung**, HB-BZ **A4** / **HCR**, **ungerissener Beton**, statische oder quasi-statische Belastung

| Dübelgröße                                                                                                  |                                              |        | М8                      | M10           | M12                                 | M16             | M20         | M24       |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|-------------------------|---------------|-------------------------------------|-----------------|-------------|-----------|
| Montagesicherheitsbeiwert                                                                                   | $\gamma_2 = \gamma_{inst}$                   | [-]    |                         |               | 1,                                  | 0               |             |           |
| Stahlversagen                                                                                               |                                              |        |                         |               |                                     |                 |             |           |
| Charakteristische Zugtragfähigke                                                                            | it N <sub>Rk,s</sub>                         | [kN]   | 16                      | 27            | 40                                  | 64              | 108         | 110       |
| Teilsicherheitsbeiwert                                                                                      | γMs                                          | [-]    |                         | 1             | ,5                                  |                 | 1,68        | 1,5       |
| Herausziehen                                                                                                | ,                                            |        |                         |               |                                     |                 |             |           |
| Standardverankerungstiefe                                                                                   |                                              |        |                         |               |                                     |                 |             |           |
| Charakteristische Tragfähigkeit in<br>ungerissenen Beton C20/25                                             | n N <sub>Rk,p</sub>                          | [kN]   | 12                      | 16            | 25                                  | 35              | 1)          | 1)        |
| Reduzierte Verankerungstiefe                                                                                |                                              |        |                         |               |                                     |                 |             |           |
| Charakteristische Tragfähigkeit in<br>ungerissenen Beton C20/25                                             | n N <sub>Rk,p</sub>                          | [kN]   | 7,5                     | 9             | 1)                                  | 1)              | -           | -         |
| Spalten Beim Spaltennachweis ist fo                                                                         | ür N <sup>0</sup> <sub>Rk,c</sub> der hier a | ngegeb | ene Wert N <sup>o</sup> | Rk,sp zu verw | enden; Bau                          | teilabmessu     | ngen sind e | inzuhalte |
| Standardverankerungstiefe                                                                                   |                                              |        |                         |               |                                     |                 |             |           |
| Spalten bei <b>Standardbauteildick</b><br>Die Werte s <sub>cr.sp</sub> und c <sub>cr.sp</sub> dürfen für Ba | *                                            |        |                         |               | •                                   |                 | ,           |           |
| Standardbauteildicke                                                                                        | h <sub>min,1</sub> ≥                         | [mm]   | 100                     | 120           | 140                                 | 160             | 200         | 250       |
| Fall 1                                                                                                      |                                              |        |                         |               |                                     |                 |             |           |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                | $N^0_{Rk,sp}$                                | [kN]   | 9                       | 12            | 20                                  | 30              | 40          | -         |
| Achsabstand (Randabstand)                                                                                   | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )               | [mm]   |                         |               | 3                                   | h <sub>ef</sub> |             |           |
| Fall 2                                                                                                      |                                              |        |                         |               |                                     |                 |             |           |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                | $N^0_{Rk,sp}$                                | [kN]   | 12                      | 16            | 25                                  | 35              | 50,5        | 70,6      |
| Achsabstand (Randabstand)                                                                                   | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )               | [mm]   | 230                     | 250           | 280                                 | 400             | 440         | 500       |
| Spalten bei <b>Mindestbauteildicke</b>                                                                      | •                                            |        |                         |               |                                     |                 |             |           |
| Mindestbauteildicke                                                                                         | h <sub>min,2</sub> ≥                         | [mm]   | 80                      | 100           | 120                                 | 140             |             |           |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                | $N^0_{Rk,sp}$                                | [kN]   | 12                      | 16            | 25                                  | 35              | -           | -         |
| Achsabstand (Randabstand)                                                                                   | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )               | [mm]   |                         | 5             | h <sub>ef</sub>                     |                 |             |           |
| Reduzierte Verankerungstiefe                                                                                |                                              |        |                         |               |                                     |                 |             |           |
| Mindestbauteildicke                                                                                         | h <sub>min,3</sub> ≥                         | [mm]   | 80                      | 80            | 100                                 | 140             |             |           |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                                                | $N^0_{Rk,sp}$                                | [kN]   | 7,5                     | 9             | 17,9                                | 26,5            | -           | -         |
| Achsabstand (Randabstand)                                                                                   | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )               | [mm]   | 200                     | 200           | 250                                 | 300             |             |           |
| Erhöhungsfaktor<br>für N <sub>Rk,p</sub> und N <sup>0</sup> <sub>Rk,sp</sub>                                | ψс                                           | [-]    |                         |               | $\left(\frac{f_{ck,cu}}{25}\right)$ |                 |             |           |
| Betonausbruch                                                                                               |                                              |        |                         |               |                                     |                 |             |           |
| Effektive Verankerungstiefe                                                                                 | h <sub>ef</sub>                              | [mm]   | 46                      | 60            | 70                                  | 85              | 100         | 125       |
| Reduzierte Verankerungstiefe                                                                                | $h_{\sf ef,red}$                             | [mm]   | 35 <sup>2)</sup>        | 40            | 50                                  | 65              | -           | -         |
| Faktor gemäß CEN/TS 1992-4                                                                                  | k <sub>ucr</sub>                             | [-]    |                         |               | 10                                  | D, 1            |             |           |

Herausziehen ist nicht maßgebend.

#### **Bolzenanker HB-BZ**

#### Leistung

Charakteristische Werte bei **Zugbeanspruchung**, HB-BZ **A4** / **HCR**, **ungerissener Beton**, statische oder quasi-statische Belastung

Anhang C4

Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt.



Tabelle C5: Charakteristische Werte bei Querbeanspruchung, HB-BZ, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

| D                                                  |                                     |                            |         | 140              | 1110 | 1110 | 1110 | 1100 | 1404  | 110=   |
|----------------------------------------------------|-------------------------------------|----------------------------|---------|------------------|------|------|------|------|-------|--------|
| Dübelgröße                                         |                                     |                            |         | M8               | M10  | M12  | M16  | M20  | M24   | M27    |
| Montagesicherheits                                 | sbeiwert                            | $\gamma_2 = \gamma_{inst}$ | [-]     |                  |      |      | 1,0  |      |       |        |
| Stahlversagen oh                                   | ne Hebelarm, Stahl                  | verzink                    | t       |                  |      |      |      |      |       |        |
| Charakteristische C                                | Quertragfähigkeit                   | $V_{Rk,s}$                 | [kN]    | 12,2             | 20,1 | 30   | 55   | 69   | 114   | 169,4  |
| Duktilitätsfaktor                                  |                                     | $k_2$                      | [-]     |                  |      |      | 1,0  |      |       |        |
| Teilsicherheitsbeiw                                | ert                                 | γMs                        | [-]     |                  | 1,   | 25   |      | 1,33 | 1,25  | 1,25   |
| Stahlversagen oh                                   | ne Hebelarm, nicht                  | rostend                    | er Stah | I A4, HC         | R    |      |      |      |       |        |
| Charakteristische C                                | Quertragfähigkeit                   | $V_{Rk,s}$                 | [kN]    | 13               | 20   | 30   | 55   | 86   | 123,6 |        |
| Duktilitätsfaktor                                  |                                     | $k_2$                      | [-]     |                  |      | 1,   | 0    |      |       | _      |
| Teilsicherheitsbeiw                                | ert                                 | γ <sub>Ms</sub>            | [-]     |                  | 1,   | 25   |      | 1,4  | 1,25  |        |
| Stahlversagen mit                                  | t Hebelarm, Stahl v                 | erzinkt                    |         |                  |      |      |      |      |       |        |
| Charakteristische E                                | Biegemomente                        | $M^0_{Rk,s}$               | [Nm]    | 23               | 47   | 82   | 216  | 363  | 898   | 1331,5 |
| Teilsicherheitsbeiw                                | ert                                 | γMs                        | [-]     |                  | 1,   | 25   |      | 1,33 | 1,25  | 1,25   |
| Stahlversagen mit                                  | Stahlversagen mit Hebelarm, nichtro |                            | Stahl   | A4, HCR          |      |      |      |      |       |        |
| Charakteristische E                                | Biegemomente                        | $M^0_{Rk,s}$               | [Nm]    | 26               | 52   | 92   | 200  | 454  | 785,4 |        |
| Teilsicherheitsbeiw                                | ert                                 | γMs                        | [-]     |                  | 1,   | 25   |      | 1,4  | 1,25  | _      |
| Betonausbruch au                                   | uf der lastabgewan                  | dten Se                    | ite     |                  |      |      |      |      |       |        |
| Faktor k gemäß ET<br>bzw. k <sub>3</sub> gemäß CEI | AG 001, Anhang C<br>N/TS 1992-4     | k <sub>(3)</sub>           | [-]     |                  | 2,   | 4    |      |      | 2,8   |        |
| Betonkantenbruck                                   | h                                   |                            |         |                  |      |      |      |      |       |        |
| Wirksame<br>Dübellänge bei                         | Stahl verzinkt                      | $I_{f}$                    | [mm]    | 46               | 60   | 70   | 85   | 100  | 115   | 125    |
| Querlast mit <b>h</b> <sub>ef</sub>                | nichtrostender Stahl<br>A4, HCR     | I <sub>f</sub>             | [mm]    | 46               | 60   | 70   | 85   | 100  | 125   | -      |
| Wirksame<br>Dübellänge bei                         | Stahl verzinkt                      | $I_{\rm f,red}$            | [mm]    | 35 <sup>1)</sup> | 40   | 50   | 65   |      |       |        |
| Querlast mit <b>h</b> <sub>ef,red</sub>            | nichtrostender Stahl<br>A4, HCR     | $I_{\rm f,red}$            | [mm]    | 35 <sup>1)</sup> | 40   | 50   | 65   | -    | -     | -      |
| Wirksamer Außend                                   | lurchmesser                         | $d_{nom}$                  | [mm]    | 8                | 10   | 12   | 16   | 20   | 24    | 27     |

<sup>1)</sup> Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt.

# Bolzenanker HB-BZ Leistung Charakteristische Werte bei Querbeanspruchung, HB-BZ, gerissener und ungerissener Beton, statische oder quasi-statische Belastung Anhang C5



**Tabelle C6:** Charakteristische Werte bei **seismischer Beanspruchung**, HB-BZ, **Standardverankerungstiefe**, Kategorie **C1** und **C2** 

| Dübelgröße                                                     |                              |                 | M8            | M10   | M12  | M16  | M20  |  |
|----------------------------------------------------------------|------------------------------|-----------------|---------------|-------|------|------|------|--|
| Zugbeanspruchung                                               |                              |                 |               |       |      |      |      |  |
| Montagesicherheitsbeiwer                                       | t $\gamma_2 = \gamma_{inst}$ | [-]             |               |       | 1,0  |      |      |  |
| Stahlversagen, Stahl ver                                       | zinkt                        |                 |               |       |      |      |      |  |
| Charakteristische<br>Zugtragfähigkeit <b>C1</b>                | $N_{\text{Rk,s,seis,C1}}$    | [kN]            | 16            | 27    | 40   | 60   | 86   |  |
| Charakteristische<br>Zugtragfähigkeit <b>C2</b>                | $N_{\text{Rk,s,seis,C2}}$    | [kN]            | 16            | 27    | 40   | 60   | 86   |  |
| Teilsicherheitsbeiwert                                         | γ <sub>Ms,seis</sub>         | [-]             | 1,            | 53    | 1    | ,5   | 1,6  |  |
| Stahlversagen, nichtrost                                       | ender Stah                   | I <b>A</b> 4, F | ICR           |       |      |      |      |  |
| Charakteristische<br>Zugtragfähigkeit <b>C1</b>                | $N_{\text{Rk,s,seis,C1}}$    | [kN]            | 16            | 27    | 40   | 64   | 108  |  |
| Charakteristische<br>Zugtragfähigkeit <b>C2</b>                | $N_{\text{Rk,s,seis,C2}}$    | [kN]            | 16            | 27    | 40   | 64   | 108  |  |
| Teilsicherheitsbeiwert                                         | γ <sub>Ms,seis</sub>         | [-]             |               | 1,    | 5    |      | 1,68 |  |
| Herausziehen (Stahl verzinkt, nichtrostender Stahl A4 und HCR) |                              |                 |               |       |      |      |      |  |
| Charakteristische<br>Zugtragfähigkeit <b>C1</b>                | $N_{\text{Rk,p,seis,C1}}$    | [kN]            | 5             | 9     | 16   | 25   | 36   |  |
| Charakteristische<br>Zugtragfähigkeit <b>C2</b>                | $N_{\text{Rk,p,seis,C2}}$    | [kN]            | 2,3           | 3,6   | 10,2 | 13,8 | 24,4 |  |
| Erhöhungsfaktor für $N_{Rk,p}$                                 | ψс                           | [-]             |               |       | 1,0  |      |      |  |
| Querbeanspruchung                                              |                              |                 |               |       |      |      |      |  |
| Stahlversagen ohne Heb                                         | elarm, Stah                  | ıl verz         | inkt          |       |      |      |      |  |
| Charakteristische<br>Quertragfähigkeit <b>C1</b>               | $V_{Rk,s,seis,C1}$           | [kN]            | 9,3           | 20    | 27   | 44   | 69   |  |
| Charakteristische<br>Quertragfähigkeit <b>C2</b>               | $V_{\text{Rk,s,seis,C2}}$    | [kN]            | 6,7           | 14    | 16,2 | 35,7 | 55,2 |  |
| Teilsicherheitsbeiwert                                         | γ <sub>Ms,seis</sub>         | [-]             |               | 1,    | 25   |      | 1,33 |  |
| Stahlversagen ohne Heb                                         | elarm, nich                  | troste          | nder Stahl A4 | , HCR |      |      |      |  |
| Charakteristische<br>Quertragfähigkeit <b>C1</b>               | $V_{Rk,s,seis,C1}$           | [kN]            | 9,3           | 20    | 27   | 44   | 69   |  |
| Charakteristische<br>Quertragfähigkeit <b>C2</b>               | $V_{\rm Rk,s,seis,C2}$       | [kN]            | 6,7           | 14    | 16,2 | 35,7 | 55,2 |  |
| Teilsicherheitsbeiwert                                         | γMs,seis                     | [-]             |               | 1,    | 25   |      | 1,4  |  |

| Bolzenanker HB-BZ                                                                                                     |           |
|-----------------------------------------------------------------------------------------------------------------------|-----------|
| Leistung Charakteristische Werte bei seismischer Beanspruchung, HB-BZ, Standardverankerungstiefe, Kategorie C1 und C2 | Anhang C6 |



**Tabelle C7:** Charakteristische Werte bei **Zug- und Querbeanspruchung** unter **Brandeinwirkung**, HB-BZ, **Standardverankerungstiefe**, gerissener und ungerissener Beton C20/25 bis C50/60

| Dübelgröße            |            |                 |        | M8  | M10 | M12  | M16  | M20  | M24   | M27  |
|-----------------------|------------|-----------------|--------|-----|-----|------|------|------|-------|------|
| Zugbeanspruchu        | ng         |                 |        |     |     |      |      |      |       |      |
| Stahlversagen         |            |                 |        |     |     |      |      |      |       |      |
| Stahl, galvanisch     | verzinkt   |                 |        |     |     |      |      |      |       |      |
|                       | R30        |                 |        | 1,5 | 2,6 | 4,1  | 7,7  | 9,4  | 13,6  | 17,6 |
| Charakteristische     | R60        | NI              | [kN]   | 1,1 | 1,9 | 3,0  | 5,6  | 8,2  | 11,8  | 15,3 |
| Tragfähigkeit         | R90        | $N_{Rk,s,fi}$   | [KIN]  | 0,8 | 1,4 | 2,4  | 4,4  | 6,9  | 10,0  | 13,0 |
|                       | R120       |                 |        | 0,7 | 1,2 | 2,2  | 4,0  | 6,3  | 9,1   | 11,8 |
| Nichtrostender Sta    | ahl A4, HC | R               |        |     |     |      |      |      |       |      |
|                       | R30        |                 |        | 3,8 | 6,9 | 12,7 | 23,7 | 33,5 | 48,2  |      |
| Charakteristische     | R60        | N               | FI-NIT | 2,9 | 5,3 | 9,4  | 17,6 | 25,0 | 35,9  |      |
| Tragfähigkeit         | R90        | $N_{Rk,s,fi}$   | [kN]   | 2,0 | 3,6 | 6,1  | 11,5 | 16,4 | 23,6  | -    |
|                       | R120       |                 |        | 1,6 | 2,8 | 4,5  | 8,4  | 12,1 | 17,4  |      |
| Querbeanspruchu       | ng         |                 |        |     |     |      |      |      |       |      |
| Stahlversagen ohr     | ne Hebelar | m               |        |     |     |      |      |      |       |      |
| Stahl, galvanisch     | verzinkt   |                 |        |     |     |      |      |      |       |      |
|                       | R30        |                 |        | 1,6 | 2,6 | 4,1  | 7,7  | 11   | 16    | 20,6 |
| Charakteristische R60 | .,         | [kN]            | 1,5    | 2,5 | 3,6 | 6,8  | 11   | 15   | 19,8  |      |
| Tragfähigkeit         | R90        | $V_{Rk,s,fi}$   | [kN]   | 1,2 | 2,1 | 3,5  | 6,5  | 10   | 15    | 19,0 |
|                       | R120       |                 |        | 1,0 | 2,0 | 3,4  | 6,4  | 10   | 14    | 18,6 |
| Nichtrostender Sta    | ahl A4, HC | R               |        |     |     |      |      |      |       |      |
|                       | R30        |                 |        | 3,8 | 6,9 | 12,7 | 23,7 | 33,5 | 48,2  |      |
| Charakteristische     | R60        | .,              |        | 2,9 | 5,3 | 9,4  | 17,6 | 25,0 | 35,9  |      |
| Tragfähigkeit         | R90        | $V_{Rk,s,fi}$   | [kN]   | 2,0 | 3,6 | 6,1  | 11,5 | 16,4 | 23,6  | -    |
|                       | R120       |                 |        | 1,6 | 2,8 | 4,5  | 8,4  | 12,1 | 17,4  |      |
| Stahlversagen mit     | Hebelarm   |                 |        |     | ,   |      | ,    | ,    | ,     |      |
| Stahl, galvanisch     |            |                 |        |     |     |      |      |      |       |      |
| , 0                   | R30        |                 |        | 1,7 | 3,3 | 6,4  | 16,3 | 29   | 50    | 75   |
| Charakteristische     |            | 0               |        | 1,6 | 3,2 | 5,6  | 14   | 28   | 48    | 72   |
| Tragfähigkeit         | R90        | $M^0_{Rk,s,fi}$ | [Nm]   | 1,2 | 2,7 | 5,4  | 14   | 27   | 47    | 69   |
|                       | R120       |                 |        | 1,1 | 2,5 | 5,3  | 13   | 26   | 46    | 68   |
| Nichtrostender Sta    | ahl A4, HC | R               |        |     |     |      |      |      |       |      |
|                       | R30        |                 |        | 3,8 | 9,0 | 19,7 | 50,1 | 88,8 | 153,5 |      |
| Charakteristische     | R60        | <b>3.4</b> 0    | ,, ,   | 2,9 | 6,8 | 14,6 | 37,2 | 66,1 | 114,3 |      |
| Tragfähigkeit         | R90        | $M^0_{Rk,s,fi}$ | [Nm]   | 2,1 | 4,7 | 9,5  | 24,2 | 43,4 | 75,1  | -    |
|                       | R120       |                 |        | 1,6 | 3,6 | 7,0  | 17,8 | 32,1 | 55,5  |      |

Die charakteristischen Tragfähigkeiten für Herausziehen, Betonausbruch, Betonausbruch auf der lastabgewandten Seite und Betonkantenbruch können nach TR020 bzw. CEN/TS 1992-4 berechnet werden. Wenn Herausziehen nicht maßgebend ist, muss  $N_{Rk,p}$  in Gleichung 2.4 und 2.5, TR 020 durch  $N^0_{Rk,c}$  ersetzt werden.

#### **Bolzenanker HB-BZ**

#### Leistung

Charakteristische Werte bei **Zug- und Querbeanspruchung** unter **Brandeinwirkung**, HB-BZ, **Standardverankerungstiefe**, gerissener und ungerissener Beton C20/25 bis C50/60

**Anhang C7** 



Tabelle C8: Charakteristische Werte bei Zug- und Querbeanspruchung unter Brandeinwirkung, HB-BZ, reduzierte Verankerungstiefe, gerissener und ungerissener Beton C20/25 bis C50/60

| Dübelgröße                         |          |                 |       | M8  | M10 | M12  | M16  |
|------------------------------------|----------|-----------------|-------|-----|-----|------|------|
| Zugbeanspruchung                   |          |                 |       |     |     |      |      |
| Stahlversagen                      |          |                 |       |     |     |      |      |
| Stahl, galvanisch verz             | inkt     |                 |       |     |     |      |      |
|                                    | R30      |                 |       | 1,5 | 2,6 | 4,1  | 7,7  |
| Charakteristische                  | R60      | N               | [kN]  | 1,1 | 1,9 | 3,0  | 5,6  |
| Tragfähigkeit                      | R90      | $N_{Rk,s,fi}$   | [KIN] | 0,8 | 1,3 | 1,9  | 3,5  |
|                                    | R120     |                 |       | 0,6 | 1,0 | 1,3  | 2,5  |
| Nichtrostender Stahl /             | A4, HCR  |                 |       |     |     |      |      |
|                                    | R30      |                 |       | 3,2 | 6,9 | 12,7 | 23,7 |
| Charakteristische                  | R60      | N               | [kN]  | 2,5 | 5,3 | 9,4  | 17,6 |
| Tragfähigkeit                      | R90      | $N_{Rk,s,fi}$   | [KIN] | 1,9 | 3,6 | 6,1  | 11,5 |
|                                    | R120     |                 |       | 1,6 | 2,8 | 4,5  | 8,4  |
| Querbeanspruchung                  |          |                 |       |     |     |      |      |
| Stahlversagen ohne H               | lebelarm |                 |       |     |     |      |      |
| Stahl, galvanisch verz             | inkt     |                 |       |     |     |      |      |
| Charakteristische<br>Tragfähigkeit | R30      |                 |       | 1,5 | 2,6 | 4,1  | 7,7  |
|                                    | R60      | \/              | [LNI] | 1,1 | 1,9 | 3,0  | 5,6  |
|                                    | R90      | $ V_{Rk,s,fi}$  | [kN]  | 0,8 | 1,3 | 1,9  | 3,5  |
|                                    | R120     |                 |       | 0,6 | 1,0 | 1,3  | 2,5  |
| Nichtrostender Stahl /             | A4, HCR  |                 |       |     |     |      |      |
|                                    | R30      |                 |       | 3,2 | 6,9 | 12,7 | 23,7 |
| Charakteristische                  | R60      | \/              | [LAI] | 2,5 | 5,3 | 9,4  | 17,6 |
| Tragfähigkeit                      | R90      | $V_{Rk,s,fi}$   | [kN]  | 1,9 | 3,6 | 6,1  | 11,5 |
|                                    | R120     |                 |       | 1,6 | 2,8 | 4,5  | 8,4  |
| Stahlversagen mit Hel              | belarm   |                 |       |     |     |      |      |
| Stahl, galvanisch verz             | inkt     |                 |       |     |     |      |      |
|                                    | R30      |                 |       | 1,5 | 3,3 | 6,4  | 16,3 |
| Charakteristische                  | R60      | NAO             | [NI1  | 1,2 | 2,5 | 4,7  | 11,9 |
| Tragfähigkeit                      | R90      | $M^0_{Rk,s,fi}$ | [Nm]  | 0,8 | 1,7 | 3,0  | 7,5  |
|                                    | R120     |                 |       | 0,6 | 1,2 | 2,1  | 5,3  |
| Nichtrostender Stahl /             | A4, HCR  |                 |       |     |     |      |      |
|                                    | R30      |                 |       | 3,2 | 8,9 | 19,7 | 50,1 |
| Charakteristische                  | R60      | N40             | [N]1  | 2,6 | 6,8 | 14,6 | 37,2 |
| Tragfähigkeit                      | R90      | $M^0_{Rk,s,fi}$ | [Nm]  | 2,0 | 4,7 | 9,5  | 24,2 |
|                                    | R120     |                 |       | 1,6 | 3,6 | 7,0  | 17,8 |

Die charakteristischen Tragfähigkeiten für Herausziehen, Betonausbruch, Betonausbruch auf der lastabgewandten Seite und Betonkantenbruch können nach TR020 bzw. CEN/TS 1992-4 berechnet werden. Wenn Herausziehen nicht maßgebend ist, muss  $N_{Rk,p}$  in Gleichung 2.4 und 2.5, TR 020 durch  $N^0_{Rk,c}$  ersetzt werden.

#### **Bolzenanker HB-BZ**

#### Leistung

Charakteristische Werte bei **Zug- und Querbeanspruchung** unter **Brandeinwirkung**, HB-BZ, **reduzierte Verankerungstiefe**, gerissener und ungerissener Beton C20/25 bis C50/60

Anhang C8



### Tabelle C9: Verschiebung unter Zuglast, HB-BZ

| Dübelgröße                         |                                  |      | М8  | M10  | M12  | M16  | M20  | M24  | M27 |
|------------------------------------|----------------------------------|------|-----|------|------|------|------|------|-----|
| Standardverankerungstiefe          |                                  |      |     |      |      |      |      |      |     |
| Stahl verzinkt                     |                                  |      |     |      |      |      |      |      |     |
| Zuglast im gerissenen Beton        | N                                | [kN] | 2,4 | 4,3  | 7,6  | 11,9 | 17,1 | 21,1 | 24  |
| Verschiebung                       | $\delta_{N0}$                    | [mm] | 0,6 | 1,0  | 0,4  | 1,0  | 0,9  | 0,7  | 0,9 |
|                                    | $\delta_{N_{\infty}}$            | [mm] | 1,4 | 1,2  | 1,4  | 1,3  | 1,0  | 1,2  | 1,4 |
| Zuglast im ungerissenen Beton      | N                                | [kN] | 5,7 | 7,6  | 11,9 | 16,7 | 23,8 | 29,6 | 34  |
| Verschiebung                       | $\delta_{N0}$                    | [mm] | 0,4 | 0,5  | 0,7  | 0,3  | 0,4  | 0,5  | 0,3 |
|                                    | $\delta_{N\infty}$               | [mm] | 0,  | ,8   | 1,4  |      | 0,8  |      | 1,4 |
| Verschiebung unter seismischer Ein | wirkung C2                       |      |     |      |      |      |      |      |     |
| Verschiebung für DLS               | $\delta_{\text{N,seis,C2(DLS)}}$ | [mm] | 2,3 | 4,1  | 4,9  | 3,6  | 5,1  |      |     |
| Verschiebung für ULS               | $\delta_{\text{N,seis,C2(ULS)}}$ | [mm] | 8,2 | 13,8 | 15,7 | 9,5  | 15,2 | _    | -   |
| Nichtrostender Stahl A4, HCR       |                                  |      |     |      |      |      |      |      |     |
| Zuglast im gerissenen Beton        | N                                | [kN] | 2,4 | 4,3  | 7,6  | 11,9 | 17,1 | 19,0 |     |
| Verschiebung                       | $\delta_{\text{N0}}$             | [mm] | 0,7 | 1,8  | 0,4  | 0,7  | 0,9  | 0,5  | -   |
|                                    | $\delta_{N_{\infty}}$            | [mm] | 1,2 | 1,4  | 1,4  | 1,4  | 1,0  | 1,8  |     |
| Zuglast im ungerissenen Beton      | N                                | [kN] | 5,8 | 7,6  | 11,9 | 16,7 | 23,8 | 33,5 |     |
| Verschiebung                       | $\delta_{\text{N0}}$             | [mm] | 0,6 | 0,5  | 0,7  | 0,2  | 0,4  | 0,5  | -   |
|                                    | $\delta_{N_{\infty}}$            | [mm] | 1,2 | 1,0  | 1,4  | 0,4  | 0,8  | 1,1  |     |
| Verschiebung unter seismischer Ein | wirkung <b>C2</b>                |      |     |      |      |      |      |      |     |
| Verschiebung für DLS               | $\delta_{\text{N,seis,C2(DLS)}}$ | [mm] | 2,3 | 4,1  | 4,9  | 3,6  | 5,1  |      |     |
| Verschiebung für ULS               | $\delta_{\text{N,seis,C2(ULS)}}$ | [mm] | 8,2 | 13,8 | 15,7 | 9,5  | 15,2 | _    | _   |
| Reduzierte Verankerungstiefe       |                                  |      |     |      |      |      |      |      |     |
| Stahl verzinkt, nichtrostender Sta | hl A4, HCR                       |      |     |      |      |      |      |      |     |
| Zuglast im gerissenen Beton        | N                                | [kN] | 2,4 | 3,6  | 6,1  | 9,0  |      |      |     |
| Verschiebung                       | $\delta_{N0}$                    | [mm] | 0,8 | 0,7  | 0,5  | 1,0  | -    | -    | -   |
|                                    | $\delta_{N\infty}$               | [mm] | 1,2 | 1,0  | 0,8  | 1,1  |      |      |     |
| Zuglast im ungerissenen Beton      | N                                | [kN] | 3,7 | 4,3  | 8,5  | 12,6 |      |      |     |
| Verschiebung                       | $\delta_{N0}$                    | [mm] | 0,1 | 0,2  | 0,2  | 0,2  | -    | -    | -   |
|                                    | $\delta_{N^{\infty}}$            | [mm] | 0,7 | 0,7  | 0,7  | 0,7  |      |      |     |

|  | R٥ | lzen: | anker | HR- | <b>R7</b> |
|--|----|-------|-------|-----|-----------|
|--|----|-------|-------|-----|-----------|

Leistung

Verschiebung unter Zuglast

**Anhang C9** 



## Tabelle C10: Verschiebungen unter Querlast, HB-BZ

| Dübelgröße                                       |                    |               | М8  | M10  | M12  | M16  | M20  | M24  | M27  |
|--------------------------------------------------|--------------------|---------------|-----|------|------|------|------|------|------|
| Standardverankerungstiefe                        | •                  |               |     |      |      |      |      |      |      |
| Stahl verzinkt                                   |                    |               |     |      |      |      |      |      |      |
| Querlast in gerissenem und<br>ungerissenem Beton | V                  | [kN]          | 6,9 | 11,4 | 17,1 | 31,4 | 36,8 | 64,9 | 96,8 |
| Verschiebung                                     | $\delta_{V0}$      | [mm]          | 2,0 | 3,2  | 3,6  | 3,5  | 1,8  | 3,5  | 3,6  |
|                                                  | $\delta_{V\infty}$ | [mm]          | 3,0 | 4,7  | 5,5  | 5,3  | 2,7  | 5,3  | 5,4  |
| Verschiebung unter seismisch                     | ner Querla         | ast <b>C2</b> |     |      |      |      |      |      |      |
| Verschiebung DLS $\delta_{V,s}$                  | seis,C2(DLS)       | [mm]          | 3,0 | 2,7  | 3,5  | 4,3  | 4,7  |      |      |
| Verschiebung ULS $\delta_{V,s}$                  | seis,C2(ULS)       | [mm]          | 5,9 | 5,3  | 9,5  | 9,6  | 10,1 | _    | -    |
| Nichtrostender Stahl A4, HC                      | CR                 |               |     |      |      |      |      |      |      |
| Querlast in gerissenem und<br>ungerissenem Beton | V                  | [kN]          | 7,3 | 11,4 | 17,1 | 31,4 | 43,8 | 70,6 |      |
| Verschiebung                                     | $\delta_{V0}$      | [mm]          | 1,9 | 2,4  | 4,0  | 4,3  | 2,9  | 2,8  | -    |
|                                                  | $\delta_{V\infty}$ | [mm]          | 2,9 | 3,6  | 5,9  | 6,4  | 4,3  | 4,2  |      |
| Verschiebung unter seismisch                     | ner Querla         | ast <b>C2</b> |     |      |      |      |      |      |      |
| Verschiebung DLS $\delta_{V,s}$                  | seis,C2(DLS)       | [mm]          | 3,0 | 2,7  | 3,5  | 4,3  | 4,7  |      |      |
| Verschiebung ULS $\delta_{V,s}$                  | seis,C2(ULS)       | [mm]          | 5,9 | 5,3  | 9,5  | 9,6  | 10,1 | _    | -    |
| Reduzierte Verankerungsti                        | efe                |               |     |      |      |      |      |      |      |
| Stahl verzinkt                                   |                    |               |     |      |      |      |      |      |      |
| Querlast in gerissenem und<br>ungerissenem Beton | V                  | [kN]          | 6,9 | 11,4 | 17,1 | 31,4 |      |      |      |
| Verschiebung                                     | $\delta_{V0}$      | [mm]          | 2,0 | 3,2  | 3,6  | 3,5  | -    | -    | -    |
|                                                  | $\delta_{V\infty}$ | [mm]          | 3,0 | 4,7  | 5,5  | 5,3  |      |      |      |
| Nichtrostender Stahl A4, HO                      | CR                 |               |     |      |      |      |      |      |      |
| Querlast in gerissenem und<br>ungerissenem Beton | V                  | [kN]          | 7,3 | 11,4 | 17,1 | 31,4 |      |      |      |
| Verschiebung                                     | $\delta_{V0}$      | [mm]          | 1,9 | 2,4  | 4,0  | 4,3  | -    | -    | -    |
|                                                  | $\delta_{V\infty}$ | [mm]          | 2,9 | 3,6  | 5,9  | 6,4  |      |      |      |

| Bolzenanker HB-BZ                       |            |
|-----------------------------------------|------------|
| Leistung<br>Verschiebung unter Querlast | Anhang C10 |



# Tabelle C11: Charakteristische Werte bei Zugbeanspruchung, HB-BZ-IG, gerissener Beton, statische oder quasi-statische Belastung

| Dübelgröße                                                       |                            |      | М6                                          | М8   | M10  | M12  |  |
|------------------------------------------------------------------|----------------------------|------|---------------------------------------------|------|------|------|--|
| Montagesicherheitsbeiwert                                        | $\gamma_2 = \gamma_{inst}$ | [-]  | 1,2                                         |      |      |      |  |
| Stahlversagen                                                    |                            |      |                                             |      |      |      |  |
| Charakteristische Zugtragfähigkeit, Stahl verzinkt               | $N_{Rk,s}$                 | [kN] | 16,1                                        | 22,6 | 26,0 | 56,6 |  |
| Teilsicherheitsbeiwert                                           | γMs                        | [-]  | 1,5                                         |      |      |      |  |
| Charakteristische Zugtragfähigkeit, nichtrostender Stahl A4, HCR | $N_{Rk,s}$                 | [kN] | 14,1                                        | 25,6 | 35,8 | 59,0 |  |
| Teilsicherheitsbeiwert                                           | $\gamma_{Ms}$              | [-]  | 1,87                                        |      |      |      |  |
| Herausziehen                                                     |                            |      |                                             |      |      |      |  |
| Charakteristische Tragfähigkeit im gerissenen Beton C20/25       | $N_{Rk,p}$                 | [kN] | 5                                           | 9    | 12   | 20   |  |
| Erhöhungsfaktor                                                  | ψс                         | [-]  | $\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$ |      |      |      |  |
| Betonausbruch                                                    |                            |      |                                             |      |      |      |  |
| Effektive Verankerungstiefe                                      | h <sub>ef</sub>            | [mm] | 45                                          | 58   | 65   | 80   |  |
| Faktor gemäß CEN/TS 1992-4                                       | k <sub>cr</sub>            | [-]  | 7,2                                         |      |      |      |  |

**Bolzenanker HB-BZ-IG** 

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **HB-BZ-IG**, **gerissener Beton**, statische oder quasi-statische Belastung

**Anhang C11** 



# Tabelle C12: Charakteristische Werte bei Zugbeanspruchung, HB-BZ-IG, ungerissener Beton, statische oder quasi-statische Belastung

| Dübelgröße                                                                            | М6                                          | M8        | M10                                         | M12           |                 |               |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------|-----------|---------------------------------------------|---------------|-----------------|---------------|--|--|
| Montagesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-]                              |                                             |           |                                             | 1,2           |                 |               |  |  |
| Stahlversagen                                                                         |                                             |           |                                             |               |                 |               |  |  |
| Charakteristische Zugtragfähigkeit,<br>Stahl verzinkt                                 | $N_{Rk,s}$                                  | [kN]      | 16,1                                        | 22,6          | 26,0            | 56,6          |  |  |
| Teilsicherheitsbeiwert                                                                | γ̃Ms                                        | [-]       |                                             | 1             | ,5              |               |  |  |
| Charakteristische Zugtragfähigkeit, nichtrostender Stahl A4, HCR                      | $N_{Rk,s}$                                  | [kN]      | 14,1                                        | 25,6          | 35,8            | 59,0          |  |  |
| Teilsicherheitsbeiwert                                                                | γ̃Ms                                        | [-]       |                                             | 1,            | 87              |               |  |  |
| Herausziehen                                                                          |                                             |           |                                             |               |                 |               |  |  |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                          | $N_{Rk,p}$                                  | [kN]      | 12                                          | 16            | 20              | 30            |  |  |
| <b>Spalten</b> (Beim Spaltennachweis ist für aus Fall 1 und Fall 2 angesetzt werden.) | N <sup>0</sup> <sub>Rk,c</sub> der hier ang | egebene ' | Wert N <sup>0</sup> <sub>Rk,sp</sub> zu     | verwenden. Es | darf der höhe   | re Widerstand |  |  |
| Mindestbauteildicke                                                                   | $h_{min}$                                   | [mm]      | 100                                         | 120           | 130             | 160           |  |  |
| Fall 1                                                                                |                                             |           |                                             |               |                 |               |  |  |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                          | $N^0_{Rk,sp}$                               | [kN]      | 9                                           | 12            | 16              | 25            |  |  |
| Achsabstand (Randabstand)                                                             | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )              | [mm]      |                                             | 3             | h <sub>ef</sub> |               |  |  |
| Fall 2                                                                                |                                             |           |                                             |               |                 |               |  |  |
| Charakteristische Tragfähigkeit im ungerissenen Beton C20/25                          | $N^0_{Rk,sp}$                               | [kN]      | 12                                          | 16            | 20              | 30            |  |  |
| Achsabstand (Randabstand)                                                             | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )              | [mm]      |                                             | 5             | h <sub>ef</sub> |               |  |  |
| Erhöhungsfaktor<br>für N <sub>Rk,p</sub> und N <sup>0</sup> <sub>Rk,sp</sub>          | ψс                                          | [-]       | $\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$ |               |                 |               |  |  |
| Betonausbruch                                                                         |                                             |           |                                             |               |                 |               |  |  |
| Effektive Verankerungstiefe                                                           | h <sub>ef</sub>                             | [mm]      | 45                                          | 58            | 65              | 80            |  |  |
| Faktor gemäß CEN/TS 1992-4                                                            | $k_{ucr}$                                   | [-]       | 10,1                                        |               |                 |               |  |  |

#### **Bolzenanker HB-BZ-IG**

#### Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **HB-BZ-IG**, **ungerissener Beton**, statische oder quasi-statische Belastung

**Anhang C12** 



Tabelle C13: Charakteristische Werte bei Querbeanspruchung, HB-BZ-IG, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

| Dübelgröße                                                                  |                    |      | М6   | M8   | M10  | M12   |  |  |
|-----------------------------------------------------------------------------|--------------------|------|------|------|------|-------|--|--|
| Montagesicherheitsbeiwert                                                   |                    | 1    | ,0   |      |      |       |  |  |
| HB-BZ-IG, Stahl verzinkt                                                    |                    |      |      |      |      |       |  |  |
| Stahlversagen ohne Hebelarm, Montage                                        | art V              |      |      |      |      |       |  |  |
| Charakteristische Quertragfähigkeit                                         | $V_{Rk,s}$         | [kN] | 5,8  | 6,9  | 10,4 | 25,8  |  |  |
| Stahlversagen ohne Hebelarm, Montageart D                                   |                    |      |      |      |      |       |  |  |
| Charakteristische Quertragfähigkeit                                         | $V_{Rk,s}$         | [kN] | 5,1  | 7,6  | 10,8 | 24,3  |  |  |
| Stahlversagen mit Hebelarm, Montagear                                       |                    |      |      |      |      |       |  |  |
| Charakteristische Biegemomente                                              | $M^0_{Rk,s}$       | [Nm] | 12,2 | 30,0 | 59,8 | 104,6 |  |  |
| Stahlversagen mit Hebelarm, Montagear                                       |                    |      |      |      |      |       |  |  |
| Charakteristische Biegemomente                                              | $M^0_{Rk,s}$       | [Nm] | 36,0 | 53,2 | 76,0 | 207   |  |  |
| Teilsicherheitsbeiwert für $V_{Rk,s}$ und $M^0_{Rk,s}$                      | γMs                | [-]  |      | 1,   | 25   |       |  |  |
| Duktilitätsfaktor                                                           | k <sub>2</sub>     | [-]  |      | 1    | ,0   |       |  |  |
| HB-BZ-IG, nichtrostender Stahl A4, HCR                                      |                    |      |      |      |      |       |  |  |
| Stahlversagen ohne Hebelarm, Montage                                        | art V              |      |      |      |      |       |  |  |
| Charakteristische Quertragfähigkeit                                         | $V_{Rk,s}$         | [kN] | 5,7  | 9,2  | 10,6 | 23,6  |  |  |
| Teilsicherheitsbeiwert                                                      | γMs                | [-]  | 1,25 |      |      |       |  |  |
| Stahlversagen ohne Hebelarm, Montage                                        | art D              |      |      |      |      |       |  |  |
| Charakteristische Quertragfähigkeit                                         | $V_{Rk,s}$         | [kN] | 7,3  | 7,6  | 9,7  | 29,6  |  |  |
| Teilsicherheitsbeiwert                                                      | γMs                | [-]  |      | 1,   | 25   |       |  |  |
| Stahlversagen mit Hebelarm, Montagear                                       | t V                |      |      |      |      |       |  |  |
| Charakteristische Biegemomente                                              | $M^0_{Rk,s}$       | [Nm] | 10,7 | 26,2 | 52,3 | 91,6  |  |  |
| Teilsicherheitsbeiwert                                                      | γMs                | [-]  |      | 1,   | 56   |       |  |  |
| Stahlversagen mit Hebelarm, Montagear                                       |                    |      |      |      |      |       |  |  |
| Charakteristische Biegemomente                                              | $M^0_{Rk,s}$       | [Nm] | 28,2 | 44,3 | 69,9 | 191,2 |  |  |
| Teilsicherheitsbeiwert                                                      | γMs                | [-]  |      | 1,   | 25   |       |  |  |
| Duktilitätsfaktor                                                           | k <sub>2</sub>     | [-]  |      | 1,   | ,0   |       |  |  |
| Betonausbruch auf der lastabgewandter                                       | n Seite            |      |      |      |      |       |  |  |
| Faktor k gemäß ETAG 001, Anhang C bzw<br>k <sub>3</sub> gemäß CEN/TS 1992-4 | . k <sub>(3)</sub> | [-]  | 1,5  | 1,5  | 2,0  | 2,0   |  |  |
| Betonkantenbruch                                                            |                    |      |      |      |      |       |  |  |
| Wirksame Dübellänge bei Querlast                                            | I <sub>f</sub>     | [mm] | 45   | 58   | 65   | 80    |  |  |
| Wirksamer Außendurchmesser                                                  | $d_{nom}$          | [mm] | 8    | 10   | 12   | 16    |  |  |
|                                                                             |                    |      |      |      |      |       |  |  |

#### **Bolzenanker HB-BZ-IG**

#### Leistung

Charakteristische Werte bei **Querbeanspruchung**, **HB-BZ-IG**, **gerissener und ungerissener Beton**, statische oder quasi-statische Belastung

**Anhang C13** 



Tabelle C14: Charakteristische Werte bei Zug- und Querbeanspruchung unter Brandeinwirkung, HB-BZ-IG, gerissener und ungerissener Beton C20/25 bis C50/60

| Dübelgröße        |                       |                 |                  | М6  | М8  | M10  | M12  |
|-------------------|-----------------------|-----------------|------------------|-----|-----|------|------|
| Zugbeanspruchui   | ng                    |                 |                  |     |     | •    |      |
| Stahlversagen     |                       |                 |                  |     |     |      |      |
| Stahl verzinkt    |                       |                 |                  |     |     |      |      |
|                   | R30                   |                 |                  | 0,7 | 1,4 | 2,5  | 3,7  |
| Charakteristische | R60                   | NI              | [ [LAI]          | 0,6 | 1,2 | 2,0  | 2,9  |
| Zugtragfähigkeit  | R90                   | $N_{Rk,s,fi}$   | [kN]             | 0,5 | 0,9 | 1,5  | 2,2  |
|                   | R120                  |                 |                  | 0,4 | 0,8 | 1,3  | 1,8  |
| Nichtrostender St | ahl A4, HCR           |                 |                  |     |     |      |      |
|                   | R30                   |                 |                  | 2,9 | 5,4 | 8,7  | 12,6 |
| Charakteristische | R60                   | N               | <sub>[LAI]</sub> | 1,9 | 3,8 | 6,3  | 9,2  |
| Zugtragfähigkeit  | R90                   | $N_{Rk,s,fi}$   | [kN]             | 1,0 | 2,1 | 3,9  | 5,7  |
|                   | R120                  |                 |                  | 0,5 | 1,3 | 2,7  | 4,0  |
| Querbeanspruchu   | ıng                   |                 |                  |     |     |      |      |
| Stahlversagen oh  | ne Hebelarm           | 1               |                  |     |     |      |      |
| Stahl verzinkt    |                       |                 |                  |     |     |      |      |
|                   | R30                   |                 | [ [ [ ]          | 0,7 | 1,4 | 2,5  | 3,7  |
| Charakteristische | Charakteristische R60 |                 |                  | 0,6 | 1,2 | 2,0  | 2,9  |
| Quertragfähigkeit | R90                   | $V_{Rk,s,fi}$   | [kN]             | 0,5 | 0,9 | 1,5  | 2,2  |
|                   | R120                  |                 |                  | 0,4 | 0,8 | 1,3  | 1,8  |
| Nichtrostender St | ahl A4, HCR           |                 |                  |     |     |      |      |
|                   | R30                   |                 |                  | 2,9 | 5,4 | 8,7  | 12,6 |
| Charakteristische | R60                   |                 | I ILAN           | 1,9 | 3,8 | 6,3  | 9,2  |
| Quertragfähigkeit | R90                   | $V_{Rk,s,fi}$   | [kN]             | 1,0 | 2,1 | 3,9  | 5,7  |
|                   | R120                  |                 |                  | 0,5 | 1,3 | 2,7  | 4,0  |
| Stahlversagen mi  | t Hebelarm            |                 |                  |     |     |      |      |
| Stahl verzinkt    |                       |                 |                  |     |     |      |      |
|                   | R30                   |                 |                  | 0,5 | 1,4 | 3,3  | 5,7  |
| Charakteristische | R60                   | n 40            | <sub>[N</sub> ,  | 0,4 | 1,2 | 2,6  | 4,6  |
| Quertragfähigkeit | R90                   | $M^0_{Rk,s,fi}$ | [Nm]             | 0,4 | 0,9 | 2,0  | 3,4  |
|                   | R120                  |                 | [                | 0,3 | 0,8 | 1,6  | 2,8  |
| Nichtrostender St | ahl A4, HCR           |                 |                  |     |     |      |      |
|                   | R30                   |                 |                  | 2,2 | 5,5 | 11,2 | 19,6 |
| Charakteristische | R60                   | NAO             | [ [N]            | 1,5 | 3,9 | 8,1  | 14,3 |
| Quertragfähigkeit | R90                   | $M^0_{Rk,s,fi}$ | [Nm]             | 0,7 | 2,2 | 5,1  | 8,9  |
|                   | R120                  |                 | [                | 0,4 | 1,3 | 3,5  | 6,2  |

Die charakteristische Tragfähigkeit für Herausziehen, Betonausbruch, Betonausbruch auf der lastabgewandten Seite und Betonkantenbruch können nach TR020 bzw. CEN/TS 1992-4 berechnet werden.

#### **Bolzenanker HB-BZ-IG**

#### Leistung

Charakteristische Werte bei **Zug-** und **Querbeanspruchung** unter **Brandeinwirkung**, **HB-BZ-IG**, gerissener und ungerissener Beton C20/25 bis C50/60

**Anhang C14** 



### Tabelle C15: Verschiebungen unter Zuglast, HB-BZ-IG

| Dübelgröße                    |                      |      | М6  | М8  | M10 | M12  |
|-------------------------------|----------------------|------|-----|-----|-----|------|
| Zuglast im gerissenen Beton   | N                    | [kN] | 2,0 | 3,6 | 4,8 | 8,0  |
| Verschiebungen                | $\delta_{\text{N0}}$ | [mm] | 0,6 | 0,6 | 0,8 | 1,0  |
|                               | $\delta_{N\infty}$   | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |
| Zuglast im ungerissenen Beton | N                    | [kN] | 4,8 | 6,4 | 8,0 | 12,0 |
| Verschiebungen                | $\delta_{\text{N0}}$ | [mm] | 0,4 | 0,5 | 0,7 | 0,8  |
| Verschiebungen                | $\delta_{N\infty}$   | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |

### Tabelle C16: Verschiebungen unter Querlast, HB-BZ-IG

| Dübelgröße                                       |                      | М6   | М8  | M10 | M12 |      |
|--------------------------------------------------|----------------------|------|-----|-----|-----|------|
| Querlast im gerissenen und<br>ungerissenen Beton | V                    | [kN] | 4,2 | 5,3 | 6,2 | 16,9 |
| Verschiebungen -                                 | $\delta_{\text{V0}}$ | [mm] | 2,8 | 2,9 | 2,5 | 3,6  |
| Verschiebungen                                   | $\delta_{V^\infty}$  | [mm] | 4,2 | 4,4 | 3,8 | 5,3  |

Bolzenanker HB-BZ-IG

Leistung

Verschiebungen unter Zuglast und Querlast

**Anhang C15**