

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0006 of 6 September 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Chemofast Injection system C-RE 385 for concrete

Bonded anchor for use in concrete

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

Chemofast Anchoring GmbH

19 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors",

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-09/0006 issued on 10 October 2014

European Technical Assessment ETA-09/0006

Page 2 of 19 | 6 September 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z42886.16 8.06.01-179/16

European Technical Assessment ETA-09/0006

Page 3 of 19 | 6 September 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Chemofast Injection System C-RE 385 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Chemofast C-RE 385 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm or a threaded sleeves with internal thread in the range of M6 to M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance of tension and shear loads	See Annex C 1 to C 6		
Displacements under tension and shear loads	See Annex C 7 to C 9		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z42886.16 8.06.01-179/16

European Technical Assessment ETA-09/0006

Page 4 of 19 | 6 September 2016

English translation prepared by DIBt

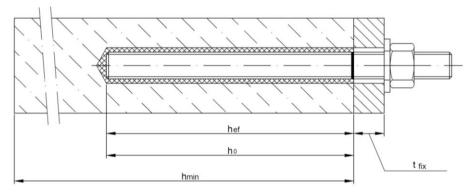
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

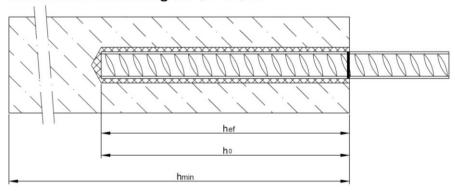
The system to be applied is: 1

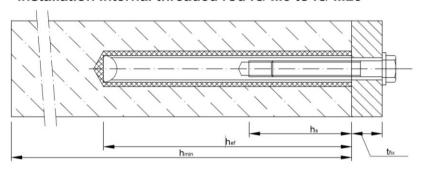
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 6 September 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:*Baderschneider


Z42886.16 8.06.01-179/16

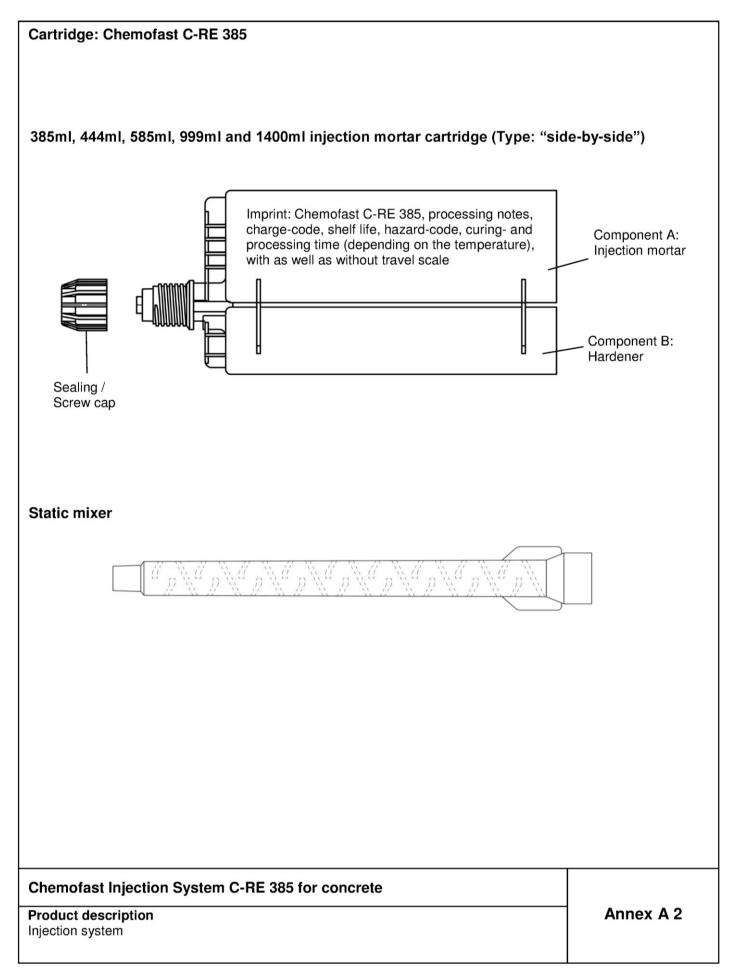

Installation threaded rod M8 to M30

Installation reinforcing bar Ø8 to Ø32

Installation internal threaded rod IG-M6 to IG-M20

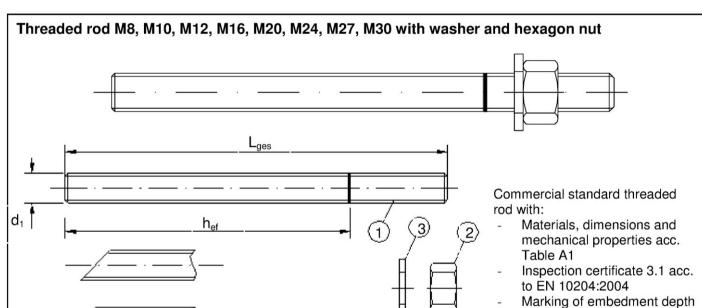
d_f = diameter of clearance hole in the fixture

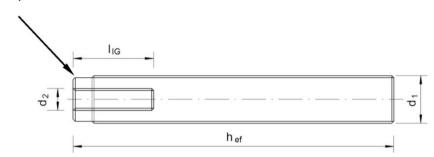
 t_{fix} = thickness of fixture

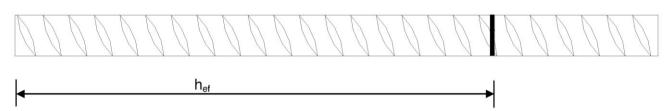

h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

 h_{min} = minimum thickness of member


Chemofast Injection System C-RE 385 for concrete	
Product description Installed condition	Annex A 1


Z51789.16


Internal Threaded Sleeve IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Mark of the producer

Marking: e.g. <\inline{\lambda}

Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 28, Ø 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range $0.05d \le h \le 0.07d$ (d: Nominal diameter of the bar; h: Rip height of the bar)

Chemofast Injection System C-RE 385 for concrete Annex A 3 **Product description** Threaded rod, Internal Threaded Sleeve and reinforcing bar

electronic copy of the eta by dibt: eta-09/0006

English translation prepared by DIBt

Designation	Material			
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1				
Steel, hot-dip galvanised ≥ 40 µm acc. to EN IS				
Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 4.8, 5.8, 8.8, EN 199 $A_5 > 8\%$ fracture elongation	3-1-8:2005+AC:2009		
Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 and 4.8 rd Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	od) EN ISO 898-2:2012, SO 898-2:2012,		
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised			
Internally threaded sleeve Steel, zinc plated				
Stainless steel				
Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506- \leq M24: Property class 70 EN ISO 3506- A_5 > 8% fracture elongation	1:2009 1:2009		
Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009			
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000 Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005				
Internally threaded sleeve	Stainless steel: 1.4401 / 1.4404 / 1.4571	, EN 10088-1:2005		
High corrosion resistance steel				
Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506- \leq M24: Property class 70 EN ISO 3506- \leq A ₅ > 8% fracture elongation	1:2009		
Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 > M24: Property class 50 (for class 50 rd ≤ M24: Property class 70 (for class 70 rd	od) EN ISO 3506-2:2009		
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005		
Reinforcing bars				
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	l 1992-1-1/NA:2013		
Chemofast Injection System C-RE 385 for	concrete			
Product description Materials		Annex A 4		

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
 II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer for seismic loading are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded sleeve.

Chemofast Injection System C-RE 385 for concrete	
Intended Use Specifications	Annex B 1

Z51789.16 8.06.01-179/16

electronic copy of the eta by dibt: eta-09/0006

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective afficiliting depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] ≤	9	12	14	18	22	26	30	33
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn				h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

¹⁾ For larger clearance hole see TR029 section 1.1

Installation parameters for rebar Table B2:

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	$h_{ef,max} [mm] =$	96	120	144	168	192	240	300	336	384
Minimum thickness of	h _{min} [mm]	h _{ef} + 30 mm		$h_{ef} + 2d_0$						
member	''min [''''']	≥ 100) mm				riet + 200)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Installation parameters for internally threaded sleeve Table B3:

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of sleeve ²⁾	$d_1 = d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	24	28	35
Effective anchorage depth	h _{ef,min} [mm] =	70	70	80	90	96	120
Effective affictionage depth	$h_{ef,max}[mm] =$	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	$d_f\left[mm\right] =$	7	9	12	14	18	22
Installation torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I_{IG} [mm] =	8/20	8/20	10/20	12/30	16/40	20/50
Minimum thickness of member	h _{min} [mm]		ef mm		h _{ef} +	- 2d ₀	
Minimum spacing	s _{min} [mm]	50	60	80	100	120	135
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	135

¹⁾ For larger clearance hole see TR029 section 1.1 With metric threads according to EN 1993-1-8:2005+AC:2009

Chemofast Injection System C-RE 385 for concrete	
Intended Use Installation parameters	Annex B 2

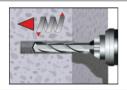
Steel brush

Table B4: Parameter cleaning and setting tools

Rod Rebar Threa		Internal Threaded Sleeve	d₀ Drill bit - Ø	d₀ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[No.]
M8			10	12	10,5	
M10	8	IG-M6	12	14	12,5	
M12	10	IG-M8	14	16	14,5	No
	12		16	18	16,5	piston plug required
M16	14	IG-M10	18	20	18,5	,
	16		20	22	20,5	
M20	20	IG-M12	24	26	24,5	# 24
M24		IG-M16	28	30	28,5	# 28
M27	25		32	34	32,5	# 32
M30	28	IG-M20	35	37	35,5	# 35
	32		40	41,5	40,5	# 38

MAC: Hand pump (volume 750 ml)
Drill bit diameter (d₀): 10 mm to 20 mm

CAC: Recommended compressed air tool (min 6 bar)
Drill bit diameter (d₀): 10 mm to 40 mm


Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 40 mm

Chemofast Injection System C-RE 385 for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2 or B3). In case of aborted drill hole: the drill hole shall be filled with mortar

or

or

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (CAC) (min. 6 bar) or a hand pump (MAC) (Annex B 3) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

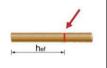
MAC: The hand-pump¹⁾ can **only** be used for anchor sizes in uncracked concrete, either up to bore hole diameter 20mm or embedment depth up to 240mm.

CAC: Compressed air (min. 6 bar, oil-free) can be used for all sizes in cracked and uncracked concrete.

2b. Check brush diameter (Table B4) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times.

If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B4).

2c. Finally blow the hole clean again with compressed air (CAC) (min. 6 bar) or a hand pump (MAC) (Annex B 3) a minimum of two times. If the bore hole ground is not reached an extension shall be used.


MAC: The hand-pump¹⁾ can **only** be used for anchor sizes in uncracked concrete, either up to bore hole diameter 20mm or embedment depth up to 240mm.

CAC: Compressed air (min. 6 bar, oil-free) can be used for all sizes in cracked and uncracked concrete.

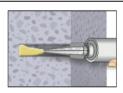
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

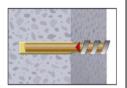
¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 240 mm also in cracked concrete with hand-pump.

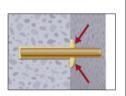
- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.
 - For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

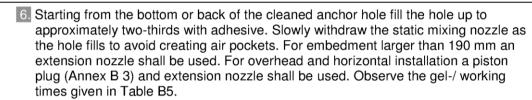
Chemofast Injection System C-RE 385 for concrete

Intended Use

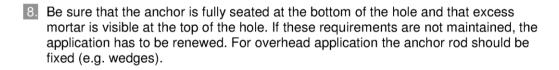

Installation instructions

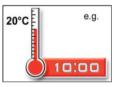

Annex B 4

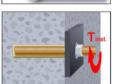

Z51789.16



Installation instructions (continuation)







7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

- 9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).
- 10. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench.

Table B5: Minimum curing time

Concrete temperature	Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete		
+ 5 °C to + 9 °C	120 min	50 h	100 h		
+ 10 °C to + 19 °C	90 min	30 h	60 h		
+ 20 °C to + 29 °C	30 min	10 h	20 h		
+ 30 °C to + 39 °C	20 min	6 h	12 h		
+ 40 °C	12 min	4 h	8 h		
Cartridge temperature	+5°C to +40°C				

Chemofast Injection System C-RE 385 for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 5

English translation prepared by DIBt

Anchor size threaded	l rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure		NI	 								
Characteristic tension	resistance	$N_{Rk,s} = N_{Rk,s,C1} =$	[kN]				A_s •	f_{uk}			
Combined pull out or	nd concrete cone failure	N _{Rk,s,C2}									
	sistance in non-cracked of		25								
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III: 72°C/43°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm²] [N/mm²]	8,5 8,5	8,5 8,5	8,0 8,0	7,5 7,5	7,0 7,0	7,0 6.0	6,5 5,5	6,5 5,5
	sistance in cracked conci		[[14/11111]]	0,0	0,0	0,0	7,0	7,0	0,0	0,0	0,0
		τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		τ _{Rk,C2}	[N/mm ²]		PD	2,4	2,2			Determined	,
40°C/24°C	flooded bare bala	τ _{Rk,cr}	[N/mm²] [N/mm²]	7,0 5,9	7,0 7,0	7,5 7,1	6,0 5,8	5,0 4,8	4,5 4,5	4,0 4,0	4,0 4.0
	flooded bore hole	τ _{Rk,C1} τ _{Rk,C2}	[N/mm²]		7,0 PD	2,4	2,1			Determined	
		τ _{Rk,C2}	[N/mm²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	τ _{Rk,C1}	[N/mm²]	3,7	4,5	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		τ _{Rk,C2}	[N/mm ²]		PD	1,4	1,4			Determined	,
60°C/43°C	(leasted because to the	τ _{Rk,cr}	[N/mm²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	τ _{Rk,C1}	[N/mm²]	3,7	4,5 PD	4,3 1,4	3,8 1,4	3,4	3,5	3,5	3,5
		T _{Rk,C2}	[N/mm²]	4,0	4,0	4,0	3,5	3,0	3.0	Determined 3,0	3.0
	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	3,2	4,0	3,9	3,4	3,0	3.0	3,0	3,0
Temperature range III:	1 -	τ _{Rk,C2}	[N/mm²]		PD	1,3	1,2		formance	Determined	
72°C/43°C		τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,C1}	[N/mm²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0
		τ _{Rk,C2}	[N/mm²]	N	PD	1,3	1,2		formance	Determined	d (NPD)
		C30/					1,0				
Increasing factors for c	concrete	C35/					1,0				
Ψc		C40/					1,0				
		C45/ C50/					1,0 1,1				
Factor according to	Non-cracked concrete	030/	00				10				
CEN/TS 1992-4-5		k ₈	[-]								
Section 6.2.2.3	Cracked concrete						7,	2			
Concrete cone failure		. 1									
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	K _{ucr}	[-]				10	,1			
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7,	2			
Edge distance		C _{cr,N}	[mm]				1,5				
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure	h/h _{ef} ≥ 2,0	I					1,0	h.,			
	17/11et = 2,0						/	.)			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{ef} = 2,$	$5-\frac{h}{h}$			
	1.0							h _{ef}			
Avial distance	h/h _{ef} ≤ 1,3		[mm]				2,4				
Axial distance Installation safety factor	or	S _{cr,sp}	[mm]				2 c	cr,sp			
(dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]		1	,2			1	,4	
Installation safety facto	or (flooded bore hole)	$\gamma_2 = \gamma_{inst}$	[-]				1,	4			
Ohamafaat Inia	ation Custom C	DE 205 to						\top			
Chemotast inje	ection System C-	nE 385 10	concre	ıe							
										nex C	

Table C2: Characteris seismic act						-	si-stati	ic actio	on and	l			
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30			
Steel failure without lever arm													
	$V_{Rk,s}$	[kN]				0,50 •	A _s • f _{uk}						
Characteristic shear resistance	aracteristic shear resistance $V_{Rk,s,C1}$ [kN]						f _{uk}	0	,40 • A _s • 1	f _{uk}			
	$V_{Rk,s,C2}$	[kN]	NI	PD	0,40 •	$A_s \cdot f_{uk}$	No Perf	ormance l	Determine	d (NPD)			
Steel failure with lever arm													
	M ⁰ _{Rk,s}	[Nm]				1.2 • \	N _{el} ∙ f _{uk}						
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]	No Performance Determined (NPD)										
	M ⁰ _{Rk,s,C2}	[Nm]			No Fen	ormance	Determine	a (NPD)					
Concrete pry-out failure													
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]				2	2,0						
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0						
Concrete edge failure	-												
Effective length of anchor	l _f	[mm]	$I_{t} = min(h_{et}; 8 d_{nom})$										
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Installation safety factor	γ ₂ = γinst	[-]		•	•	1	,0	•					

Chemofast Injection System C-RE 385 for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2)	Annex C 2

Machor size internally Transfer Machor M		haracteristic value		n loa	ds for i	nternal	thread	ed slee	ves und	ler			
Seel starting Canacideristic tension resistance. Nime. Rel. 10 17 29 42 76 123 123 124 126 123 124 124 126 124 124 126 124 126 124 126 124 126 124 126 124 126 124 126 124 126 126 124 126 1		<u> </u>	elic action										
Characteristic tension resistance, Steel, strength class 5.8 Nin, a Rely 16 27 36 37 36 12 38 38 38 38 38 38 38 3	-	threaded sleeves			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Size Strength class 5.8		acietanca											
Partial safety factor			N _{Rk,s}	[kN]	10	17	29	42	76	123			
Seles Strength class as 8 Ninc Seles Strength class as 8 Ninc Seles Strength class as 8 Ninc N			γMs,N	[-]			1	,5					
Select strength class all a control tests are in the part of the			N _{Rk.s}		16	27	46	67	121	196			
Characteristic tension restance, Stainless Stage Variable Va		<u> </u>	YMe N	+			1	.5					
Strength class 70 Mask M	,	esistance.	/ MS,N	+ ' '									
Combined pull-out arrivation concrete cone failure Characteristic bond resistance in non-racked concrete C20/25	Stainless Steel A4		$N_{Rk,s}$	[kN]	14	26	41	59	110	172			
Characteristic bond resistance in non-cracked concrete C20/25 Temperature range I: dov/ and wet concrete of C70/C4°C flowed bore hole of Tribuse* Tribuse* mm² 14 13 10 9.5 8.5 7.0 7.5	Partial safety factor		γмs,N	[-]			1,	87					
Temperature range	Combined pull-out an	d concrete cone failure	·										
40°C/24°C flooded bore hole flooded bo	Characteristic bond res	istance in non-cracked concre	te C20/25										
March Control Contro		dry and wet concrete	Tal										
Factor according to concrete or cacked concrete o	40°C/24°C	flooded bore hole	VHK,ucr	m²]					_				
Mode of Normal Mode		,	Televier										
Table Tabl	60°C/43°C	flooded bore hole	r HK,ucr	m²]									
Table Tabl			Tek yer	1									
Temperature range 1: dry and wet concrete flooded bore hole flooded bore hol				m ²]	8,5	8,0	7,5	7,0	6,0	5,5			
Age C/24 or C C C C C C C C C	Characteristic bond res	T	20/25										
Mon-cracked concrete Mon-cracked concrete			Tek or	1									
60°C/43°C flooded bore hole File.cr Fil	40°C/24°C		VIN,CI	m²]			,						
1000ed bore note 1000ed bor			T _{Bk cr}	1.									
Table Tab			TIN,CI	m²]			,						
Non-cracked concrete Non-cracked concret		,	$\tau_{\rm Bk,cr}$	1									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	72.0/43.0	flooded bore hole											
Increasing factors for ccrete C35/45 1,07 C40/50 1,08 C45/55 1,09 C50/60 1,10 Factor according to CEN/TS 1992-4-5 Section 6.2.2.3 Non-cracked concrete k ₈ [-] 10,1 CEN/TS 1992-4-5 Section 6.2.2.3 Non-cracked concrete k _{Wcr} [-] 10,1 CEN/TS 1992-4-5 Section 6.2.3.1 Non-cracked concrete k _{Wcr} [-] 10,1 CEN/TS 1992-4-5 Section 6.2.3.1 Non-cracked concrete k _{Wcr} [-] 10,1 10,1 Edge distance K _{cr} [-] 1,5 h _{ct} Splitting failure Edge distance 1,0 h _{ct} 2 · h _{ct} (2,5 - h/h _{ct}) N/h _{ct} ≥ 1,3 2 · h _{ct} (2,5 - h/h _{ct}) h _{ct} (2,5 - h/h _{ct}) 1,4 Axial distance Installation safety facto					/-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	la ana a in a factora for a												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	oncrete			, ·								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ψς			_	7**								
					-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Factor according to	Non-cracked concrete	300/00										
	CEN/TS 1992-4-5		─ k ₈	[-]									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							/	,∠					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T	1.					2.1					
			_										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Section 6.2.3.1	Cracked concrete	k _{cr}	[-]			7	,2					
			C _{cr,N}	[mm]			1,5	5 h _{ef}					
			S _{cr,N}	[mm]			3,0) h _{ef}					
Edge distance	Splitting failure												
Edge distance		h/h _{ef} ≥ 2,0					1,0) h _{ef}					
Axial distance $s_{cr,sp}$ [mm] $2c_{cr,sp}$ Installation safety factor (dry and wet concrete) $\gamma_2 = \gamma_{inst}$ [-] $1,2$ $1,4$	Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]		2 · h · 2·5							
Installation safety factor (dry and wet concrete) $\gamma_{2} = \gamma_{inst}$ [-] 1,2 1,4		h/h _{ef} ≤ 1,3					2,4	1 h _{ef}					
(dry and wet concrete) $\frac{\gamma_2 = \gamma_{inst}}{1,2}$			S _{cr,sp}	[mm]	n] 2 c _{cr,sp}								
(dry and wet condition)		r	$\gamma_2 = \gamma_{inst}$	[-]	1,2 1,4								
I I I I I I I I I I I I I I I I I I I		r (flooded bore hole)	$\gamma_2 = \gamma_{inst}$	[-]			1	.4					

Chemofast Injection System C-RE 385 for concrete Performances Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action Annex C 3

Table C4: Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

Anchor size for internally threaded	elegyoe										
	sieeves		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Steel failure without lever arm											
Characteristic shear resistance, Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	38	61			
Partial safety factor	γMs,V	[-]			1,2	5					
Characteristic shear resistance, Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98			
Partial safety factor	γ _{Ms,V}	[-]			1,2	5					
Characteristic shear resistance, Stainless Steel A4 Strength class 70	$V_{Rk,s}$	[kN]	7 13 20 30 55								
Partial safety factor	γ _{Ms,V}	[-]			1,5	6					
Steel failure with lever arm											
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325			
Partial safety factor	γms,v	[-]			1,2	5					
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519			
Partial safety factor	γms,v	[-]			1,2	5					
Characteristic bending moment, Stainless Steel A4 Strength class 70	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	454			
Partial safety factor	γMs,V	[-]			1,5	6					
Concrete pry-out failure											
Factor k₃ in equation (27) of DEN/TS 1992-4-5 Section 6.3.3 Factor k₃ in equation (5.7) of Fechnical Report TR 029	k ₍₃₎	[-]			2,0)					
nstallation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0								
Concrete edge failure											
Effective length of anchor	If	[mm]			$I_{\rm f}={\rm min}({\rm h_{ef}}$; 8 d _{nom})					
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30			
nstallation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0)					

Performances

Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

Annex C 4

	characteristic va eismic action (p					er sta	atic, q	_l uasi-	statio	actio	on an	d		
Anchor size reinforcii	ng bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3		
Steel failure														
Characteristic tension r	resistance	N _{Rk,s}	[kN]					A _s • f _{uk}						
Combined pull-out an	nd concrete cone failure	,.												
<u> </u>	sistance in non-cracked co	ncrete C20	/25											
	dry and wet concrete	1	[N/mm²]	14	14	13	13	12	12	11	11	11		
Temperature range I: 40°C/24°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0		
	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5		
Temperature range II: 60°C/43°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0		
		τ _{Rk,ucr}	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0		
Temperature range III: 72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5		
		τ _{Rk,ucr}	[14/11111-]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,0		
Characteristic bond res	sistance in cracked concre	1	[N]/may 27	7.0	7.0	7.5	7.0	0.5						
Tomporeture recent	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	7,0 5,9	7,0 7,0	7,5 7,1	7,0 6,4	6,5 6,2	6,0 5,7	5,5 5,5	5,5 5,5	5,5 5,5		
Temperature range I: 40°C/24°C		τ _{Rk,cr}	[N/mm²]	7,0	7,0	7,1	6,5	6,0	5,7	4,5	4,0	4,0		
	flooded bore hole	TRk,C1	[N/mm²]	5,9	7,0	7,1	6,0	5,7	4,8	4,5	4,0	4,0		
		τ _{Rk,cr}	[N/mm²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,5		
Temperature range II:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5		
60°C/43°C	flooded bare bala	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,0		
	flooded bore hole	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,0		
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
Temperature range III:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0		
72°C/43°C	2°C/43°C flooded bore hole		[N/mm²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
		τ _{Rk,C1}	[N/mm²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0		
			25/30 30/37					1,02						
Increasing factors for a	operata		85/45					1,04						
Increasing factors for c Ψ_c	oncrete		10/50	1,08										
7.0			15/55	1,09										
			50/60	1,10										
Factor according to	Non-cracked concrete	1.						10,1						
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	☐ K ₈	[-]					7,2						
Concrete cone failure	1													
Factor according to	Non-cracked concrete	k _{ucr}	[-]					10,1						
CEN/TS 1992-4-5	Cracked concrete	K _{cr}	[-]					7,2						
Section 6.2.3.1 Edge distance	Oracked concrete	_						1,5 h _{ef}						
Axial distance		C _{cr,N}	[mm] [mm]					3,0 h _{ef}						
Splitting failure		S _{cr,N}	[[[[]]]					3,0 Hef						
Splitting failule	h/h _{ef} ≥ 2,0	T						1,0 h _{ef}						
	11/11 _{ef} ≥ 2,0	-						/ / Ilef	.)					
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{a}$	$_{\rm ef}$ $\left(2,5-\right)$	$\frac{h}{h_{ef}}$					
	h/h _{ef} ≤ 1,3							2,4 h _{ef}						
Axial distance		S _{cr,sp}	[mm]					$2\;c_{\text{cr,sp}}$						
	r (dry and wet concrete)	$\gamma_2 = \gamma_{inst}$	[-]			1,2		_		1	,4			
Installation safety facto	r (flooded bore hole)	$\gamma_2 = \gamma_{inst}$	[-]					1,4						
Performances Characteristic value	ection System C-F				ınd seis	mic act	on			Anne	ex C 5	i		

Z51789.16

			Ι	Г			Π			<u> </u>	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	$V_{Rk,s}$	[kN]				0,	50 • A _s •	f_{uk}			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,40 •	A _s • f _{uk}			0,	.44 • A _s •	f_{uk}		
Steel failure with lever arm		·									
	M ⁰ _{Rk,s}	[Nm]				1.	.2 • W _{el} •	f_uk			
Characteristic bending moment	M ⁰ Rk,s,C1	[Nm]			No F	Performa	nce Dete	rmined (N	NPD)		
Concrete pry-out failure											
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]					2,0				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Concrete edge failure											
Effective length of anchor	I _f	[mm]				$l_f = n$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 14 16 20 25 28								32
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0								

Chemofast Injection System C-RE 385 for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 6

English translation prepared by DIBt

Table C7: Di	splacements u	nder tension	load ¹⁾	(threa	ded ro	od)				
Anchor size thread	led rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Non-cracked conc	rete C20/25 under	static and qua	si-statio	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete	C20/25 under stat	ic, quasi-static	and sei	smic C	1 action	l				
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,058
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Cracked concrete	C20/25 under seis	mic C2 action								
Temperature range I:	$\delta_{N,seis(DLS)}$ -factor	[mm/(N/mm²)]			0,03	0,05				
40°C/24°C	$\delta_{N,seis(ULS)}$ -factor	[mm/(N/mm²)]			0,06	0,09				
Temperature range II:	$\delta_{\text{N,seis}(\text{DLS})}$ -factor	[mm/(N/mm²)]		ormance mined	0,03	0,05	No Porf	ormance [Determine	d (NDD)
60°C/43°C	$\delta_{\text{N,seis(ULS)}}$ -factor	[mm/(N/mm²)]		PD)	0,06	0,09	No Fen	omance i	Jetermine	ט (וארט)
Temperature range III:	$\delta_{\text{N,seis}(\text{DLS})}$ -factor	[mm/(N/mm²)]] `	,	0,03	0,05				
72°C/43°C	$\delta_{\text{N,seis(ULS)}}$ -factor	[mm/(N/mm²)]			0,06	0,09]			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ $\delta_{\text{N,seis}(\text{DLS})} = \delta_{\text{N,seis}(\text{DLS})}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \quad \tau; \qquad \qquad \delta_{N,seis(ULS)} = \delta_{N,seis(ULS)} \text{-factor} \quad \tau;$

Table C8: Displacements under shear load (threaded rod)

Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action											
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete C20/25 under seismic C2 action											

All temperature	$\delta_{V,seis(DLS)}$ -factor	[mm/kN]	No Performance Determined	0,2	0,1	No Performance Determined (NPD)
ranges	$\delta_{V,seis(ULS)}$ -factor	[mm/kN]	(NPD)	0,2	0,1	No renormance betermined (NFB)

1) Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \ V; \end{split}$$

V: action shear load

$$\begin{split} &\delta_{\text{V,seis}(\text{DLS})} = \delta_{\text{V,seis}(\text{DLS})}\text{-factor} &\cdot \text{V}; \\ &\delta_{\text{V,seis}(\text{ULS})} = \delta_{\text{V,seis}(\text{ULS})}\text{-factor} &\cdot \text{V}; \end{split}$$

Chemofast Injection System C-RE 385 for concrete

Performances

Displacements (threaded rods)

Annex C7

Table C9: Displacements under tension load ¹⁾ (internally threaded sleeve)									
Anchor size internally threaded sleeve IG-M 6 IG-M 8 IG-M 10 IG-M 12 IG-M 16 IG-M 20									
Non-cracked concrete C20/25 under static and quasi-static action									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029	0,035	
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	0,140	
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043	
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043	
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161	
Cracked concrete (C20/25 under sta	atic and quasi-sta	tic action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,042	0,048	0,058	
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067	
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067	
72°C/43°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C10: Displacements under shear load¹⁾ (internally threaded sleeve)

Anchor size internally threaded sleeve			IG-M 6	I 6 I G-M 8 I G-M 10		IG-M 12	IG-M 16	IG-M 20	
Non-cracked and	d cracked concre	ete C20/25 und	der static a	nd quasi-s	tatic actior	ı			
All temperature	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04	
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Chemofast Injection System C-RE 385 for concrete	
Performances Displacements (internally threaded sleeve)	Annex C 8

electronic copy of the eta by dibt: eta-09/0006

English translation prepared by DIBt

Table C11: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 32											
Non-cracked cond	crete C20/2	25 under static	and qua	asi-stati	c action	1					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete	C20/25 ui	nder static, qua	si-statio	and se	ismic C	1 action	n				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20	25 under s	seismic	c C1 act	ion							
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$
V: action shear load

Chemofast Injection System C-RE 385 for concrete	
Performances	Annex C 9
Displacements (rebar)	