

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0077 of 22 November 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product TOX Chemical Capsule Anchor Contact TVA Product family Bonded anchor for use in non-cracked concrete to which the construction product belongs TOX-Dübel-Technik GmbH Manufacturer Brunnenstraße 31 72505 Krauchenwies-Ablach DEUTSCHLAND TOX Werk 1, NIEDERLANDE Manufacturing plant This European Technical Assessment 12 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded issued in accordance with Regulation (EU) anchors", April 2013, No 305/2011, on the basis of used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-09/0077

Page 2 of 12 | 22 November 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 | 22 November 2016

Specific Part

1 Technical description of the product

The TOX Chemical Capsule Anchor Contact TVA is a bonded anchor consisting of a glass capsule TOX Contact TVA-M and a threaded anchor rod with hexagon nut and washer. The anchor rod (including nut and washer) is made of zinc-plated steel, hot-dip galvanised steel, stainless steel or made of high corrosion resistant steel.

The glass capsule is placed into the hole and the anchor rod is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between anchor rod, chemical mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static loads, Displacements	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Anchorages satisfy requirements for Class A1			
Resistance to fire	No performance assessed			

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-09/0077

Page 4 of 12 | 22 November 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC] The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 22 November 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-09/0077 of 22 November 2016

English translation prepared by DIBt

Marking anchor rod Stix TVA-Z-G

Manufacturer	В			
Size	8, 10, 12, 16, 20, 24			
Material				
Galvanised property class 5.8			Stainless steel 1.4401, property class 70	С
Galvanised property class 8.8		В	Stainless steel 1.4404, property class 70	K
Hot dipped galvanised property class 5.8		Н	Stainless steel 1.4529, property class 70	E
Hot dipped galva	nised property class 8.8	I	Stainless steel 1.4565, property class 70	R
			Stainless steel 1.4571, property class 70	D
			Stainless steel 1.4401, property class 80	М
			Stainless steel 1.4404, property class 80	Р
			Stainless steel 1.4571, property class 80	0

Table A1: **Dimensions**

	Anchor size		M8	M10	M12	M16	M20	M24
1	Threaded rod	\oslash d ₂ / D _a	M8	M10	M12	M16	M20	M24
	Stix V-A and	$L/L_a^{1)} \ge$	90	100	120	140	190	235
	Stix TVA-Z-G	h _{ef}	80	90	110	125	170	210
2	Hexagon nut	SW	13	17	19	24	30	36
4	Glass capsule	D _P	9	11	13	17	22	24
		L _P	80	80	95	95	175	210

¹⁾ Other lengths on demand

Dimensions in mm

z.B. B16A

Table A2: **Materials Glas Capsule**

Part	Designation	Material
4	Glaspatrone	Glasampulle, Quarzsand, Harz, Härter

TOX Chemical Capsule Anchor Contact TVA

Product description Threaded rod Stix TVA-Z-G, Dimensions, Materials Glass Capsule

Annex A 3

Tab	Table A3: Materials Threaded rod Stix V-A								
Part	Designation	Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042:1999	Steel, hot-dip galvanised ≥ 40 μm acc. to EN ISO 2009						
1	Threaded rod	Steel, Property class 5.8, 8.8, acc. to EN ISO 898-1:2013	Steel, Property class 5.8, 8.8, acc. to EN ISO 898-1:2013						
2	Hexagon nut according to DIN 934	Property class 8 acc. to EN ISO 898-2:2012, galvanised	Property class 8 acc. to EN ISO 898-2:2012, hot-dip galvanised						
3	Washer	Steel, galvanised	Steel, hot-dip galvanised						
Part	Designation	Stainless steel A4	High corrosion resistant steel (HCR)						
1	Threaded rod	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088-1:2014, Property class 70, acc. to EN ISO 3506-1:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088-1:2014, Property class 70, acc. to EN ISO 3506-1:2009						
2	Hexagon nut according to DIN 934	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088-1:2014, Property class 70, acc. to EN ISO 3506-1:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088-1:2014, Property class 70, acc. to EN ISO 3506-1:2009						
3	Washer	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088-1:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088-1:2014						

Table A4: Materials Threaded rod Stix TVA-Z-G

Part	Designation	Material							
1	Threaded rod	Carbo property cla EN ISO 8 Galvanised steel ≥ 5µm acc. to EN ISO 4042:1999 A5 > 8% fracture elongation	on steel ass 5.8 or 8.8 398-1:2013 Hot dip galvanised steel EN ISO 10684:2004+AC:2009 A5 > 8% fracture elongation	Stainless steel 1.4401, 1.4404 or 1.4571 property class A4-70 or A4-80 EN ISO 3506-1:2009 A5 > 8% fracture elongation	High Corrosion resistant steel 1.4529 or 1.4565 property class 70 EN ISO 3506-1:2009 A5 > 8% fracture elongation				
2	Hexagon nut	Carbon steel property class 5 to 8 EN ISO 898-2:2012 Galvanised steel Hot dip galvanised ≥ 5µm acc. to steel EN ISO 4042:1999 10684:2004+AC:2009		Stainless steel 1.4401, 1.4404 or 1.4571 property class A4-70 or A4-80 EN ISO 3506-2:2009	High Corrosion resistant steel 1.4529 or 1.4565 property class 70 EN ISO 3506-2:2009				
3	Washer	Carbo Galvanised steel ≥ 5µm acc. to EN ISO 4042:1999 EN ISO	hon steel Hot dip galvanised steel 10684:2004+AC:2009 887:2006 oder EN ISO	Stainless steel 1.4401, 1.4404 or 1.4571 7089:2000 bis EN ISO 7	High Corrosion resistant steel 1.4529 or 1.4565 7094:2000				

TOX Chemical Capsule Anchor Contact TVA

Product description Materials Threaded rods Annex A 4

electronic copy of the eta by dibt: eta-09/0077

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: all sizes.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40°C to +80°C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Dry or wet concrete: all sizes.
- Hole drilling by hammer drilling.
- cleaning the drill hole:
- removing possibly existing water in the drill hole completely and cleaning the drill hole by at least one blowing operation, by at least 1 x brushing / 1 x blowing / 1 x brushing operation by using the steel brush supplied by the manufacturer; before brushing cleaning the brush and checking whether the brush diameter according to Annex B 2, Table B1 is still sufficient. The steel brush shall produce natural resistance as it enters the anchor hole. If this is not the case a new brush or a brush with a larger diameter must be used.
- the anchor component installation temperature shall be at least +5 °C; during curing of the chemical mortar the temperature of the concrete must not fall below -5 °C.

TOX Chemical Capsule Anchor Contact TVA

Intended Use Specifications Annex B 1

Table B1:Installation parameters,Minimum thickness of concrete, spacing and edge distance

Anchor size			M8	M10	M12	M16	M20	M24
Nominal diameter of drill hole	d ₀ =	[mm]	10	12	14	18	25	28
Cutting diameter of drill hole	$d_{\text{cut}} \leq$	[mm]	10,5	12,5	14,5	18,5	25,5	28,5
Depth of drill hole	$h_0 \geq$	[mm]	80	90	110	125	170	210
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	9	12	14	18	22	26
Diameter of steel brush	$D \geq$	[mm]	11	13	16	20	27	30
Installation torque	T _{inst}	[Nm]	10	20	40	80	120	180
Minimum thickness of concrete	$h_{min}\!\geq\!$	[mm]	110	120	140	160	220	260
Minimum spacing	S _{min} ≥	[mm]	40	45	55	65	85	105
Minimum edge distance	$c_{min} \ge$	[mm]	40	45	55	65	85	105

Steel brush

setting

capsule

Installation procedure

øр

setting

anchor rod

waiting

mounting

fixture

Table B2:

32: Minimum curing time

Temperature [°C]	Minimum curing time						
in the drill hole	dry concrete	dry concrete					
≥ +35 °C	10 min	20 min					
≥ + 30 °C	10 min	20 min					
≥ +20 °C	20 min	40 min					
≥ + 10 °C	1 h	2 h					
≥ + 5 °C	1 h	2 h					
$2^{\circ} 0 \leq$	5 h	10 h					
\geq - 5 °C	5 h	10 h					

TOX Chemical Capsule Anchor Contact TVA

Intended Use

Installations parameters, minimum thickness of concrete member, Minimum edge distance and spacing, Minimum curing time Annex B 2

Table C1: Design Charact	method A teristic values	s for te	ension le	oads				
Anchor size			M8	M10	M12	M16	M20	M24
Steel failure					L	L		L
Characteristic resistance Property class 5.8	N _{Rk,s}	[kN]	18	29	42	78	123	177
Characteristic resistance Property class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282
Characteristic resistance Property class 70	N _{Rk,s}	[kN]	26	40	59	110	172	247
Combined pull-out and concr	ete failure							
Characteristic resistance in nor	n-cracked concret	te C20/2	5 to C50/	60				
Temperature range I	$N^0_{Rk,p}$ 1)	[kN]	20	30	40	60	90	120
Temperature range II	$N^0_{Rk,p}$ 1)	[kN]	20	30	40	50	75	90
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3	k ₈	[-]		1	1	0,1	1	1
Concrete cone failure								
Factor according to CEN/TS 1992-4-5 Section 6.2.3.1	k _{ucr}	[-]			1	0,1		
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Characteristic spacing	S _{cr,N}	[mm]		•	3	h _{ef}	•	
Characteristic edge distance	C _{cr,N}	[mm]			1,	5 h _{ef}		
Splitting ²⁾								
Spacing	S _{cr,Sp}	[mm]	3 h _{ef}			2 h _{ef}		
Edge distance	C _{cr,Sp}	[mm]	1,5 h _{ef}			1 h _{ef}		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,2		

¹⁾ $\tau_{Rk} = N_{Rk,p}^{0} / (h_{ef} \cdot d_2 \cdot \pi), d_2 \text{ acc. Table A1}$

²⁾ For the proof against splitting failure, $N^{0}_{Rk,c}$ has to be replaced by $N^{0}_{Rk,p}$.

Table C2: Displacements under tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Tension load	Ν	[kN]	8	12	16	20	30	38
Displacement	δ _{Ν0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N\infty}$	[mm]	0,5					

TOX Chemical Capsule Anchor Contact TV	Ά
--	---

Performance Characteristic values for tension loads Displacements Annex C 1

Table C3:Design method ACharacteristic values for shear loads

Anchor size			M8	M10	M12	M16	M20	M24		
Steel failure without lever arm							·			
Characteristic shear resistance Property class 5.8	V _{Rk,s}	[kN]	9	14	21	39	61	88		
Characteristic shear resistance Property class 8.8	V _{Rk,s}	[kN]	15	23	33	63	98	141		
Characteristic shear resistance Property class 70	$V_{Rk,s}$	[kN]	13	20	29	55	86	124		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]	0,8							
Steel failure with lever arm										
Characteristic bending moment Property class 5.8	$M^0_{Rk,s}$	[Nm]	19	37	65	166	325	561		
Characteristic bending moment Property class 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	898		
Characteristic bending moment Property class 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454	785		
Concrete pryout failure										
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]	2,0							
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0							
Concrete edge failure										
Effective length of anchor in shear load	l _f	[mm]	80	90	110	125	170	210		
Diameter of anchor	d _{nom}	[mm]	10	12	14	18	25	28		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0							

Table C4: Displacements under shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Shear load	V	[kN]	5	8	12	22	35	50
Displacements	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V\infty}$	[mm]	4	5	5	6	7	7

TOX Chemical Capsule Anchor Contact TVA

Performance Characteristic values for shear loads Displacements Annex C 2

electronic copy of the eta by dibt: eta-09/0077