

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0157 of 13 September 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

BTI simplex anchor BAZ

Torque controlled expansion anchor for use in concrete

BTI Befestigungstechnik GmbH & Co. KG Salzstraße 51 74653 Ingelfingen DEUTSCHLAND

BTI Herstellwerk 1

21 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-09/0157

Page 2 of 21 | 13 September 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 13 September 2016

Specific Part

1 Technical description of the product

The BTI simplex anchor BAZ is an anchor made of galvanised steel (BAZ) or made of stainless steel (BAZ A4) or high corrosion resistant steel (BAZ C) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action	See Annex C 1 to C 3
Characteristic resistance for seismic performance categories C1 and C2	See Annex C 6 to C 7
Displacements under static and quasi static action	See Annex C 8
Displacements under seismic action	See Annex C 9

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic resistance under fire exposure	See Annex C 4 and C 5

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

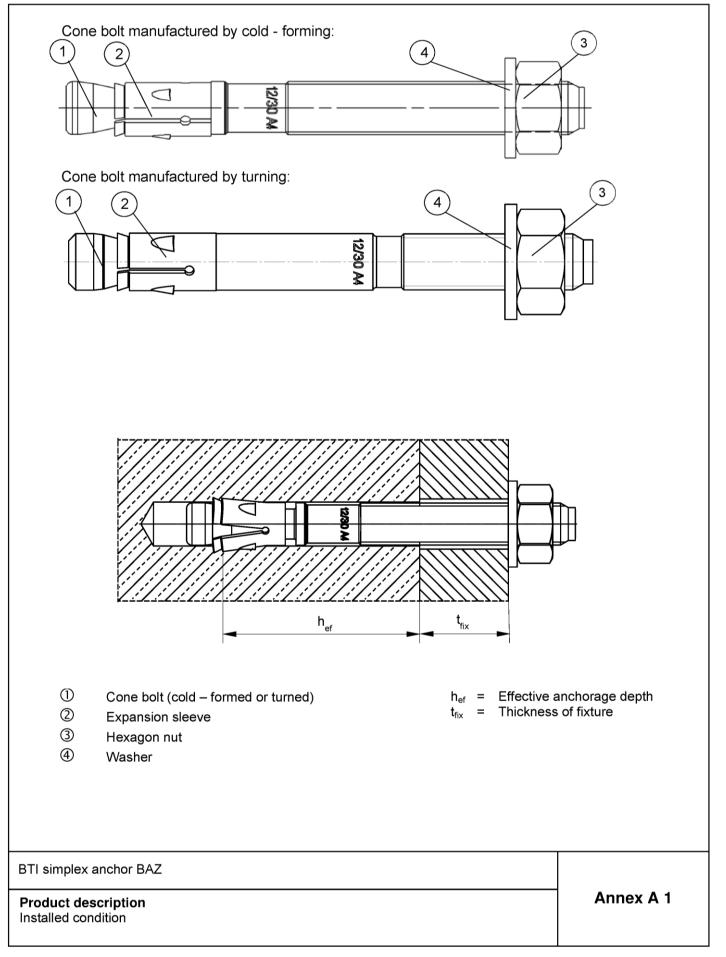
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

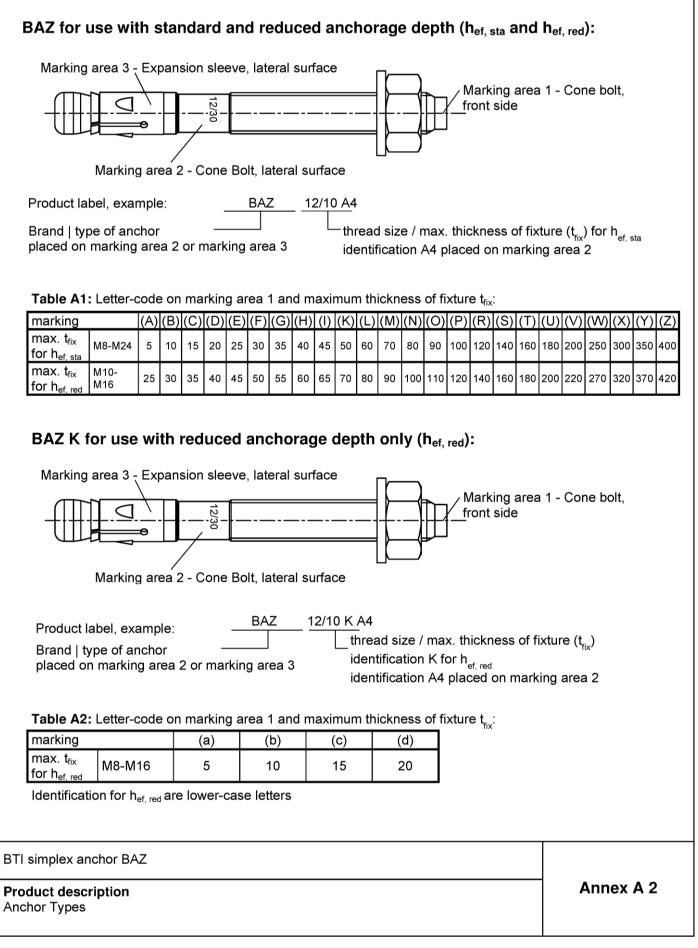
European Technical Assessment ETA-09/0157

Page 4 of 21 | 13 September 2016

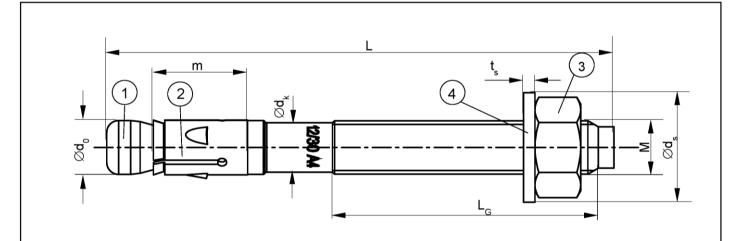
English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 13 September 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider



Page 7 of European Technical Assessment ETA-09/0157 of 13 September 2016

English translation prepared by DIBt

Table A3: Anchor dimensions [mm]

Part	Designation				E	BAZ, BAZ	A4, BAZ	С	
Fait	Part Designation		M8	M10	M12	M16	M20	M24	
		thread	size M	M8	M10	M12	M16	M20	M24
	Core half	$\oslash d_0$		7,8	9,8	11,8	15,7	19,8	23,5
1	Cone bolt	$\emptyset d_k$		7,1	8,9	10,7	14,5	18,2	21,8
		L _G	≥	19	26	31	40	50	57
				17,8	20,0	20,6	27,5	33,4	40,2
2	Expansion sleeve	sheet t	hickness	1,3	1,4	1,6	2,4	2,4	3,0
3	Hexagon nut	wrench	size	13	17	19	24	30	36
	\A/acher	t _s	≥	1,4	1,8	2,3	2,7	2,7	3,7
4	Washer	$\oslash d_{s}$	≥	15	19	23	29	36	43
Thisla	and of finding	4	2	0	0	0	0	0	0
Inickr	ness of fixture	t _{fix}	≤	200	250	300	400	500	600
Lanct			=	54,5	64,5	79	102	141	174
Lengti	h of anchor	L _{max}	=	267	336	401	525	644	777

BTI simplex anchor BAZ

Product description Anchor dimensions Annex A 3

Page 8 of European Technical Assessment ETA-09/0157 of 13 September 2016

English translation prepared by DIBt

Table A4: Materials BAZ

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel (zinc plated) Nominal steel tensile strength: $f_{uk} \le 1000 \text{ N/mm}^2$ (thread)
2	Expansion sleeve	Cold strip, EN 10139:2016 (zinc plated) ¹⁾
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012 (zinc plated)
4	Washer	Cold strip, EN 10139: 2016 (zinc plated)

¹⁾ Optional stainless steel EN 10088:2014

Table A5: Materials BAZ A4

Part	Designation	Material
1	Cone bolt	stainless steel EN 10088:2014 Nominal steel tensile strength: f _{uk} ≤ 1000 N/mm² (thread)
2	Expansion sleeve	stainless steel EN 10088:2014
3	Hexagon nut	stainless steel EN 10088:2014; ISO 3506-2: 2009; property class – min. 70
4	Washer	stainless steel EN 10088:2014

Table A6: Materials BAZ C

Part	Designation	Material					
1	Cone bolt	high corrosion resistant steel EN 10088:2014 Nominal steel tensile strength: f _{uk} ≤ 1000 N/mm² (thread)					
2	Expansion sleeve	sion sleeve stainless steel EN 10088:2014					
3	Hexagon nut	high corrosion resistant steel EN 10088:2014; ISO 3506-2:2009; property class – min. 70					
4	Washer	high corrosion resistant steel EN 10088:2014					

BTI simplex anchor BAZ

Product description Materials Annex A 4

Specifications	of intended use
Anchorages subject to:	
Standard anchorage depth	✓
Bolt Anchor BAZ, BAZ A4, BAZ C	M8 M10 M12 M16 M20 M24
Static and quasi-static loads	✓
Cracked and uncracked concrete	✓
Fire exposure	✓
Seismic action for Performance Category C1	✓
C2 ¹	- / -
Reduced anchorage depth	✓
Bolt Anchor BAZ, BAZ A4, BAZ C	M8 ²⁾ M10 M12 M16
Static and quasi-static loads	✓ <i>✓</i>
Cracked and uncracked concrete	✓ -
Fire exposure	✓
Seismic action for Performance Category C1	✓
Seismic action for Penormance Category C2 ¹	- 1

¹⁾ BAZ C: Only valid for cold-formed version (see A1)

²⁾ Use restricted to anchoring of structural components which are statically indeterminate

Base materials:

- Reinforced and unreinforced normal weight concrete (cracked and uncracked) according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (BAZ, BAZ A4, BAZ C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (BAZ, BAZ A4, BAZ C)
- Structures subject to external atmospheric exposure and permanently damp internal condition, if other particular aggressive conditions exist (BAZ C)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are to be designed in accordance with (please choose the relevant design method):
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions (cracked concrete) are to be designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed
- Anchorages under fire exposure are to be designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4:2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur

BTI simplex anchor BAZ

Intended Use

Specifications

Annex B 1

Deutsches Institut für Bautechnik

Table B1: Installation parameters										
Type of anchor / size		BAZ, BAZ A4, BAZ C								
		M8	M10	M12	M16	M20	M24			
Nominal drill hole diameter	d ₀ = [mm]	8	10	12	16	20	24			
Cutting diameter of drill bit	$d_{cut} \leq [mm]$	8,45	10,45	12,5	16,5	20,55	24,55			
Standard anchorage depth	h _{ef,sta} ≥ [mm]	45	60	70	85	100	125			
Depth of drill hole in concrete for $h_{ef,sta}$	h _{1,sta} ≥ [mm]	55	75	90	110	125	155			
Reduced anchorage depth	$h_{\text{ef,red}} \geq [mm]$	35 ²⁾	40	50	65	-	-			
Depth of drill hole in concrete for $h_{ef,red}$	$h_{1,red} \ge [mm]$	45 ²⁾	55	70	90	-	-			
Diameter of clearance hole in the fixture ¹⁾	$d_{f} \leq \text{[mm]}$	9	12	14	18	22	26			
Required torque moment	T _{inst} = [Nm]	20	45	60	110	200	270			

¹⁾ If a larger diameter of the clearance hole in the fixture is used, see Chapter 4.2.2.1 of ETAG 001, Annex C ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

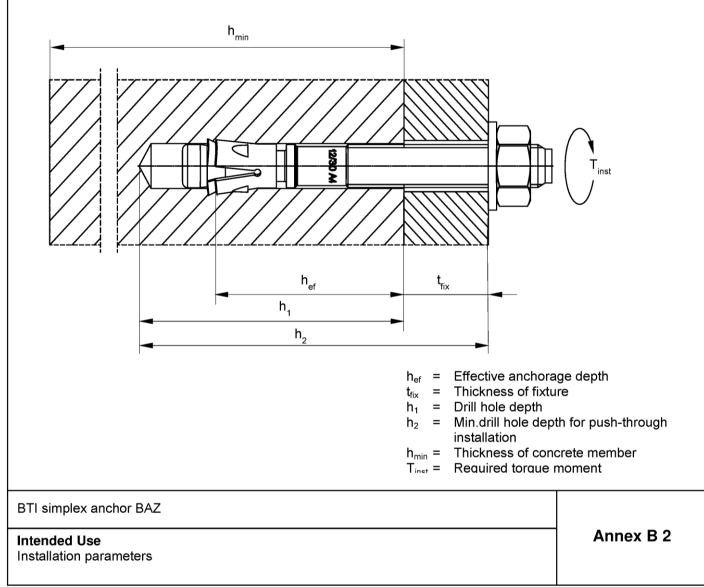


 Table B2:
 Minimum thickness of concrete members, minimum spacings and minimum edge distances of anchors for standard anchorage depth (h_{ef, sta})

	Turne of each on (since		- ,	B	AZ, BAZ	A4, BAZ	С	
	Type of anchor / size		M8	M10	M12	M16	M20	M24
Standard	effective anchorage depth	h_{ef,sta} ≥ [mm]	45	60	70	85	100	125
a	Minimum thickness of concrete member	h _{min, 1} [mm]	100	120	140	170	200	250
Applications with concrete members of thickness ≥ 2 x h _{el,sta}	Minimum spacing	s _{min} [mm]	40	40	50	65	95	100
	Minimum spacing	for $c \ge [mm]$	50	60	70	95	180	200
	Minimum edge distance	c _{min} [mm]	40	45	55	65	95	135
nsv rsof 2 x	Minimum edge distance	for $s \ge [mm]$	100	80	110	150	190	235
≥ 2	Cracked concrete							
pplications members ≥23	Minimum spacing -	s _{min} [mm]	35	40	50	65	95	100
nd p		for $c \ge [mm]$	50	55	70	95	140	170
Ā	Minimum odgo distanco	c _{min} [mm]	40	45	55	65	85	100
	Minimum edge distance	for $s \ge [mm]$	70	80	110	150	190	220
Applications with concrete members of thickness < 2 x h _{ef,sta}	Minimum thickness of concrete member	h _{min, 2} [mm]	80	100	120	140	160	200
s w nbe	Cracked and uncracked con	crete						
tion men < 2		s _{min} [mm]	35	40	50	80	125	150
licat ete r iess	Minimum spacing	for $c \ge [mm]$	70	100	90	130	220	230
Applications with concrete members thickness < 2 x h _{ef,s}	Minimum edge distance	c _{min} [mm]	40	60	60	65	125	135
thi	winning the edge distance	for $s \ge [mm]$	100	90	120	180	230	235

Intermediate values for s_{min} and c_{min} inside of the same thickness of concrete member by linear interpolation.

Table B3:Minimum thickness of concrete members, minimum spacings and minimum edge distances
of anchors for reduced anchorage depth (hef, red)

	Minimum thickness of concrete member Uncracked concrete Minimum spacing — Minimum edge distance — Cracked concrete Minimum spacing —		BAZ, BAZ A4, BAZ C				
	Type of anchor / size		M8	M10	M12	M16	
Reduced	effective anchorage depth	h _{ef,red} ≥ [mm]	35 ¹⁾	40	50	65	
e	Reduced effective anchorage depth Minimum thickness of concrete member Uncracked concrete Minimum spacing Minimum edge distance Cracked concrete	h _{min, 3} [mm]	80	80	100	140	
ret	uced effective anchorage depth Minimum thickness of concrete member Uncracked concrete Minimum spacing Minimum edge distance Cracked concrete Minimum spacing Minimum spacing Minimum spacing Minimum spacing Minimum spacing Minimum spacing						
nes	Minimum anaging	s _{min} [mm]	40	40	50	65	
ick ed	et'red	for $c \ge [mm]$	100	100	110	130	
vith th	Auced effective anchorage depth Minimum thickness of concrete member Uncracked concrete Minimum spacing Minimum edge distance Cracked concrete Minimum spacing	c _{min} [mm]	45	45	55	65	
s of s of t x f		for $s \ge [mm]$	180	180	220	250	
er: ≥ 2	Cracked concrete						
cat	Concrete member Uncracked concrete Minimum spacing Minimum edge distance Cracked concrete Minimum spacing	s _{min} [mm]	40	40	50	65	
ppli	winimum spacing	for $c \ge [mm]$	90	90	110	130	
A			45	45	55	65	
	winimum eage distance	for $s \ge [mm]$	180	180	220	250	

Intermediate values for s_{min} and c_{min} by linear interpolation.

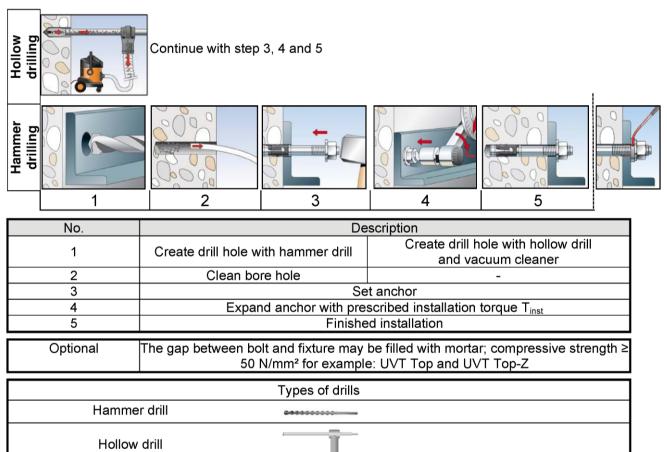
¹⁾ Only in anchoring structural components which are statically indeterminate

BTI simplex anchor BAZ

Intended Use

Minimum thickness of member, minimum spacings and edge distances

Annex B 3


Table B4:Minimum spacings and minimum edge distances of anchors
according to TR 020 and ETAG 001, Annex C under fire exposure and
according to CEN/TS 1992-4: 2009, Annex D under fire exposure

Type of anchor / size		BAZ, BAZ A4, BAZ C						
		M8	M10	M12	M16	M20	M24	
Spacing	S _{min}	[mm]	35	40	50	60	95	100
Edge distance	C _{min}	[mm]	for fi	re exposure		2 x h _{ef} , than one s	ide c _{min} ≥ 30	00 mm

Installation instructions

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- · Edge distances and spacing not less than the specified values without minus tolerances
- Drill hole perpendicular to concrete surface, positioning without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

BTI simplex anchor BAZ

Intended Use

Minimum spacings and minimum edge distances of anchors Installation parameters Annex B 4

Table C1: Characteristic values of tension resistance for standard anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

Type of epoker (size				B	AZ, BAZ	2 A4, BA	ZC			
Type of anchor / size			M8	M10	M12	M16	M20	M24		
Steel failure for standard anchorag	e depth									
Characteristic resistance $\frac{BAZ}{BAZ}$	$N_{Rk,s}$	[kN]	16,0	27,0	41,5	66,0	111,0	150,0		
BAZ A4/C	$N_{Rk,s}$	[kN]	17,0	27,2	44,3	70,6	111,0	160,8		
Partial safety factor	γMs					1,5				
Pullout failure for standard anchor	age deptł	า								
Effective anchorage depth	$\mathbf{h}_{ef,sta} \geq$	[mm]	45	60	70	85	100	125		
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	12	20		_ 1)			
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	25		_ 1)			
		C25/30				,10				
		C30/37				,22				
Increasing factors for $N_{Rk,p}$ for	ψ_{c}	C35/45				,34				
cracked and uncracked concrete		C40/50				,41				
		C45/55				,48				
la stelle fiere e sfete fe stere	3) 4	C50/60				,55				
Installation safety factor	γ2 = γinst					1,0				
Concrete cone and splitting failure members of thickness $\ge 2x h_{ef,sta}$	for stand	lard ancr	orage	depth ir	1 applic	ations v	with con	crete		
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	100	125		
Factor for uncracked concrete	k _{ucr} ⁴⁾	[-]			1	0,1	I			
Factor for cracked concrete	k _{cr}	[-]			7	7,2				
Min. thickness of concrete member	h _{min,1}	[mm]	100	120	140	170	200	250		
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}				
Characteristic edge distance	C _{cr,N}	[mm]			1,:	5 h _{ef}				
Spacing (splitting failure) ²⁾	S cr,sp	[mm]	140	180	210	260	370	430		
Edge distance (splitting failure) ²⁾	C _{cr,sp}	[mm]	70	90	105	130	185	215		
Concrete cone and splitting failure members of thickness < 2x h _{ef,sta}	for stand	lard anch	norage	depth ir	n applic	ations v	vith con	crete		
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	100	125		
Factor for uncracked concrete	k _{ucr} ⁴⁾	[-]			1	0,1				
Factor for cracked concrete	k _{cr}	[-]			7	7,2				
Min. thickness of concrete member	h _{min,2}	[mm]	80	100	120	140	160	200		
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}	I			
Characteristic edge distance	C _{cr,N}	[mm]				5 h _{ef}				
Spacing (splitting failure) ²⁾	S _{cr,sp}	[mm]	180	240	280	340	480	550		
Edge distance (splitting failure) ²⁾	C _{cr,sp}	[mm]	90	120	140	170	240	275		

²⁾ Intermediate values for $s_{cr,sp}$ and $c_{cr,sp}$ between concrete thickness $h_{min,2}$ and $h_{min,1}$ by linear interpolation. ³⁾ Parameter relevant for design according to ETAG 001, Annex C

⁴⁾ Parameter relevant for design according to CEN/TS 1992-4:2009

BTI simplex anchor BAZ

Performances

Characteristic values of resistance under tension loads for standard anchorage depth

Annex C 1

electronic copy of the eta by dibt: eta-09/0157

Table C2:Characteristic values of tension resistance for reduced anchorage depth under static
and quasi-static action (Design method A, according to ETAG 001, Annex C or
CEN/TS 1992-4:2009)

Type of anchor / size				BAZ, BA	Z A4, BAZ	C	
Type of anchor / size			M8	M10	M12	M16	
Steel failure for reduced anchorage	e depth						
BAZ	$N_{Rk,s}$	[kN]	16,0	27,0	41,5	66,0	
Characteristic resistance BAZ A4/C	N _{Rk,s}	[kN]	17,0	27,2	44,3	70,6	
Partial safety factor	γMs				1,5		
Pullout failure for reduced anchora	ge depth						
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	35 ²⁾	40	50	65	
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5 - 1)				
Characteristic resistance in uncracked concrete 20/25	$N_{Rk,p}$	[kN]	_ 1)				
		C25/30	1,10				
	117	C30/37					
Increasing factors for $N_{Rk,p}$ for		C35/45					
cracked and uncracked concrete	Ψ¢	C40/50	1,41				
		C45/55			1,48		
		C50/60			1,55		
Installation safety factor	$\gamma_2^{(3)} = \gamma_{inst}^{(4)}$)			1,0		
Concrete cone and splitting failure			orage dep	th			
Effective anchorage depth	h _{ef}	[mm]	35 ²⁾	40	50	65	
Factor for uncracked concrete	$k_{ucr}^{4)}$ $k_{cr}^{4)}$	[-]			10,1		
Factor for cracked concrete		[-]			7,2		
Min. thickness of concrete member	h _{min,3}	[mm]	80	80	100	140	
Characteristic spacing	S _{cr,N}	[mm]			3 h _{ef}		
Characteristic edge distance	C _{cr,N}	[mm]			,5 h _{ef}		
Spacing (splitting failure)	S cr,sp	[mm]	140	160	200	260	
Edge distance (splitting failure)	C _{cr,sp}	[mm]	70	80	100	130	

¹⁾ Pullout failure not relevant.

²⁾ Use restricted to anchoring of structural components which are statically indeterminate

³⁾ Parameter relevant for design according to ETAG 001, Annex C

⁴⁾ Parameter relevant for design according to CEN/TS 1992-4:2009

Performances

Characteristic values of resistance under tension for reduced anchorage depth

Table C3: Characteristic values of shear resistance for standard and reduced anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

Type of anchor / size					B	AZ, BAZ	: A4, BA	ZC	
Type of anchor / size				M8	M10	M12	M16	M20	M24
Steel failure without lever	^r arm for star	ndard an	d reduce	ed anch	orage d	lepth			
Characteristic resistance	BAZ	$V_{Rk,s}$	— [kN]	12,0	20,0	29,5	55,0	70,0	86,0
Characteristic resistance	BAZ A4/C	$V_{Rk,s}$	- [KN]	17,6	23,8	36,5	70,9	94,4	138,2
Partial safety factor		γ́Ms				1	,25		
Factor for ductility		$k_2^{(2)}$	[-]				1,0		
		tandard	anchora	ge dept	h				
Steel failure with lever arr									
Characteristic bending	BAZ	M ⁰ _{Rk,s}	– [Nm]	26	52	92	233	487	769
resistance	BAZ A4/C	M ⁰ _{Rk,s}	[]	29	56	94	256	454	785
Partial safety factor		γMs					,25		
Factor for ductility		$k_2^{(2)}$	[-]				1,0		
Concrete pryout failure									
Factor k according to ETAG 001, Annex C $k^{1}=k_{(3)}^{2}$ [-] 2,2 or k_3 according to CEN/TS 1992-4					,2	2,4	2,8		
Concrete edge failure									
Effective length of anchor in shear loading	I	f	[mm]	45	60	70	85	100	125
Effective diameter of ancho		d _{nom}	[mm]	8	10	12	16	20	24
Installation safety factor		$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$					1,0		
		educed	anchora	ge dept	h				
Steel failure with lever arr									
Characteristic bending	BAZ	M ⁰ _{Rk,s}	- [Nm]	15	38,3	89	171	-	-
resistance	BAZ A4/C	M ⁰ _{Rk,s}	[]	18,9	38,3	90,7	179,5	-	-
Partial safety factor		γMs				1	,25		
		$k_2^{2)}$	[-]				1,0		
Factor for ductility		R2							
Factor for ductility Concrete pryout failure		K2							
,		$k^{1)} = k_{(3)}$		1,0	2,0	2	,3	-	-
Concrete pryout failure Factor k according to ETAG		-		1,0	2,0	2	,3	-	-
Concrete pryout failure Factor k according to ETAG or k ₃ according to CEN/TS 19		-		1,0	2,0	2 50	,3 65	-	-

²⁾ Parameter relevant for design according to CEN/TS 1992-4:2009

BTI simplex anchor BAZ

Performances

Characteristic values of resistance under shear loads

Table C4: Characteristic values of tension resistance under fire exposure in cracked and uncracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4: 2009, Annex D)

		R30			R60		
Type of anchor / size	Fire res	sistance 30		Fire resistance 60 minutes			
BÁZ, BAZ A4, BAZ C	N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]	
Standard anchorage depth							
M8	1,4	2,0	2,4	1,2	2,0	2,4	
M10	2,8	3,3	5,0	2,3	3,3	5,0	
M12	5,0	5,0	7,4	4,1	5,0	7,4	
M16	9,4	7,1	12,0	7,7	7,1	12,0	
M20	14,7	9,0	18,0	12,0	9,0	18,0	
M24	21,1	12,6	31,4	17,3	12,6	31,4	
Reduced anchorage depth							
M8	0,9 ¹⁾ (0,6) ²⁾	0,9 ¹⁾ (0,6) ²⁾	0,9 ¹⁾ (0,6) ²⁾	0,8 ¹⁾ (0,6) ²⁾	0,8 ¹⁾ (0,6) ²⁾	0,8 ¹⁾ (0,6) ²⁾	
M10	2,8	2,3	1,8	2,3	2,3	1,8	
M12	5,0	3,2	3,2	4,1	3,2	3,2	
M16	9,4	4,7	6,1	7,7	4,7	6,1	

	Fire res	R90 sistance 90	minutes	R120 Fire resistance 120 minutes			
	N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120} [kN]	N ⁰ _{Rk,c,fi,120} [kN]	
Standard anchorage depth							
M8	0,9	2,0	2,4	0,8	1,6	1,9	
M10	1,9	3,3	5,0	1,6	2,6	4,0	
M12	3,2	5,0	7,4	2,8	4,0	5,9	
M16	6,0	7,1	12,0	5,2	5,6	9,6	
M20	9,4	9,0	18,0	8,1	7,2	14,4	
M24	13,5	12,6	31,4	11,6	10,1	25,1	
Reduced anchorage depth							
M8	0,5	0,5	0,5	0,3	0,3	0,3	
M10	1,9	2,3	1,8	1,6	1,8	1,4	
M12	3,2	3,2	3,2	2,8	2,5	2,5	
M16	6,0	4,7	6,1	5,2	3,8	4,9	

 $^{1)}$ Values for $s_{cr,fi}$ = 120 mm and $c_{cr,fi}$ = 60 mm $^{2)}$ Values for $s_{cr,fi}$ = 100 mm and $c_{cr,fi}$ = 50 mm

BTI simplex anchor BAZ

Performances:

Characteristic values of resistance under tension loads

Table C5: Characteristic values of shear resistance under fire exposure in cracked and uncracked concrete for standard and reduced anchorage depth (Design according to TR 020 and ETAG 001, Annex C or CEN/TS 1992-4:2009, Annex D)

		R30		R60 Fire resistance 60 minutes			
Type of anchor / size	Fire resi	stance 30 minut	es	Fire resis		tes	
BAZ, BAZ A4, BAZ C	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	k(3)	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]	k(3)	
Standard anchorage depth							
M8	1,8	1,4	2,2	1,6	1,2	2,2	
M10	3,6	3,6	2,2	2,9	3,0	2,2	
M12	6,3	7,8	2,4	4,9	6,4	2,4	
M16	11,7	19,9	2,8	9,1	16,3	2,8	
M20	18,2	39,0	2,8	14,2	31,8	2,8	
M24	26,3	67,3	2,8	20,5	55,0	2,8	
Reduced anchorage depth							
M8	1,8	1,4	1,0	1,6	1,2	1,0	
M10	3,6	3,6	2,0	2,9	3,0	2,0	
M12	6,3	7,8	2,3	4,9	6,4	2,3	
M16	11,7	20,0	2,3	9,1	16,3	2,3	

	Fire resi	R90 stance 90 minut	es	R120 Fire resistance 120 minutes				
	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	k(3)	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]	k(3)		
Standard anchorage depth								
M8	1,3	1,0	2,2	1,2	0,8	2,2		
M10	2,2	2,4	2,2	1,9	2,1	2,2		
M12	3,5	5,0	2,4	2,8	4,3	2,4		
M16	6,6	12,6	2,8	5,3	11,0	2,8		
M20	10,3	24,6	2,8	8,3	21,4	2,8		
M24	14,8	42,6	2,8	11,9	37,0	2,8		
Reduced anchorage depth								
M8	1,3	1,0	1,0	1,2	0,9	1,0		
M10	2,2	2,4	2,0	1,9	2,1	2,0		
M12	3,5	5,0	2,3	2,8	4,3	2,3		
M16	6,6	12,6	2,3	5,3	11,0	2,3		

Concrete pryout failure: In Equation (5.6) of ETAG 001, Annex C, 5.2.3.3 the k₍₃₎-factor of Table C5 and

the relevant values of N_{0Rk,c,fi} of Table C4 have to be considered. **Concrete edge failure:** The characteristic resistance $V_{Rk,c,fi}^0$ in concrete C20/25 to C50/60 is determined by: $V_{Rk,c,fi}^0 = 0.25 \times V_{Rk,c}^0$ (R30, R60, R90), $V_{Rk,c,fi}^0 = 0.20 \times V_{Rk,c}^0$ (R120) with $V_{Rk,c}^0$ as initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to ETAG 001, Annex C, 5.2.3.4.

BTI simplex anchor BAZ

Performances:

Characteristic values of resistance under shear loads and fire exposure

Table C6:	Valid anchor sizes for seismic design	, performance category C1, standard and reduced
	anchorage depth	

Tune of eacher / size			В	AZ, BAZ	A4, BAZ	C	
Type of anchor / size		M8	M10	M12	M16	M20	M24
Standard effective anchorage depth	$h_{ef,sta} \ge [mm]$	45	60	70	85	100	125
Thickness of fixture —	$t_{fix,min} = [mm]$	0	0	0	0	0	0
	t _{fix,max} = [mm]	100	100	120	160	250	300
Length of anchor —	L _{min} = [mm]	54,5	84,5	99	122	141	174
	L _{max} = [mm]	167	186	221	285	394	477
Reduced effective anchorage depth	$h_{ef,red} \ge [mm]$		40	50	65		
	$t_{fix,min} = [mm]$		0	0	0		
Thickness of fixture —	t _{fix,max} = [mm]	-	120	140	180	-	-
Longth of another	L _{min} = [mm]		64,5	79	102		
Length of anchor —	L _{max} = [mm]		186	221	285		

Table C7: Valid anchor sizes for seismic design, performance category C2, standard and reduced anchorage depth

Type of anchor / size			BA	Z, BAZ	44, BAZ	C ¹⁾	
Type of affection / size		M8	M10	M12	M16	M20	M24
Standard effective anchorage depth	h _{ef,sta} ≥ [mm]		60	70	85	100	
Thickness of fixture —	$t_{fix,min} = [mm]$		0	0	0	0	
	$t_{fix,max} = [mm]$	-	100	120	160	250	-
Longth of anobar	$L_{min} = [mm]$		84,5	99	122	141	
Length of anchor —	L _{max} = [mm]		186	221	285	394	
Reduced effective anchorage depth	$h_{ef,red} \ge [mm]$		40	50	65		
	$t_{fix,min} = [mm]$		0	0	0		
Thickness of fixture —	$t_{fix,max} = [mm]$	-	120	140	180	-	-
Longth of onchor	L _{min} = [mm]		64,5	79	102		
Length of anchor —	L _{max} = [mm]		186	221	284,5		

¹⁾ BAZ C: Only valid for cold-formed version (see A1)

BTI simplex anchor BAZ

Performances:

Valid sizes in cracked concrete for seismic design

Table C8: Characteristic values of tension and shear resistance for standard- and reduced
anchorage depth under seismic action
(Design according to TR 045: Performance category C1)

					-					
Turne of eacher / size			BAZ, BAZ A4, BAZ C							
Type of anchor / size			M8	M10	M12	M16	M20	M24		
Steel failure for standard ancho	rage dep	oth								
Characteristic resistance tension	h _{ef,sta}	N _{Rk,s,C1} [kN]	16,0	27,0	41,0	66,0	111,0	150,0		
load C1	$\mathbf{h}_{\text{ef, red.}}$	NRk,s,C1 [KIN]	-	27,0	41,0	66,0	-	-		
Partial safety factor		γ _{Ms,C1} [-]				1,5				
Pullout failure for standard anch	norage d	lepth								
Characteristic resistance tension	h _{ef,sta}	h _{ef,sta}	N _{Rk,p,C1} [kN]	4,6	0.0	16.0	20.0	36,0	50,3	
load in cracked concrete C1	h _{ef,red.}	IN _{Rk,p,C1} [KIN]	-	8,0	16,0	28,2	-	-		
Installation safety factor		γ _{2,C1} [-]				1,0				
Steel failure without lever arm for	or stand	ard anchorag	e depth							
Characteristic resistance shear	h _{ef,sta}	V _{Rk,s,C1} [kN]	11	- 17	27	47	56	69		
load C1	h _{ef,red.}	v _{Rk,s,C1} [KIN]	-			47	-	-		
Partial safety factor		γ _{Ms,C1} [-]			1	,25				

Table C9: Characteristic values of tension and shear resistance for standard- and reduced
anchorage depth under seismic action
(Design according to TR 045: Performance category C2)

Turne of eachers (size			BA	Z, BAZ	44, BAZ	C ¹⁾	
Type of anchor / size		M8	M10	M12	M16	M20	M24
Steel failure for standard anchor	rage depth						
Characteristic resistance tension load C2	h _{ef,sta} N _{Rk,s,C2} [kN]	-	27	41	66	111 -	-
Partial safety factor	γ _{Ms,C2} [-]			1	,5		
Pullout failure for standard anchorage depth							
Characteristic resistance tension	h _{ef,sta} N _{Rk,p,C2} [kN]		5,1	7,4	21,5	30,7	
load in cracked concrete C2	h _{ef,red.}	-	2,7	4,4	16,4	-	-
Installation safety factor	γ _{2,C2} [-]			1	,0		
Steel failure without lever arm for	or standard anchorag	je depth					
Characteristic resistance shear	h _{ef,sta} V _{Rk,s,C2} [kN]		10,0	17,4	27,5	39,9	
load C2	h _{ef,red.} V _{Rk,s,C2} [KN]	-	7,0	12,7	22,0	-	-
Partial safety factor	γ _{Ms,C2} [-]			1,	25		

¹⁾ BAZ C: Only valid for cold-formed version (see A1)

BTI simplex anchor BAZ

Performances:

Characteristic values of resistance under tension and shear loads under seismic action

Table C10: Displacements due to tension loads for standard and reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

		,					, - 0	
Type of anchor / size				B <i>i</i>	Z, BAZ	A4, BA	zc	
Type of anchor / size			M8	M10	M12	M16	M20	M24
Values for standard anchorage depth								
Tension load in cracked concrete	Ν	[kN]	2,3	4,2	7,5	13,2	16,4	22,9
Displacement	δ_{N0}	[mm]	0,5	0,5	0,7	1,0	1,2	1,2
Displacement	δ_{N^∞}	[mm]	1,8	1,7	1,4	1,2	1,4	1,5
Tension load in uncracked concrete	Ν	[kN]	4,2	7,5	11,7	18,7	23,3	32,5
Displacement	δ_{N0}	[mm]	0,3	0,3	0,5	0,7	1,2	1,2
Displacement	δ_{N^∞}	[mm]		1	1,4	1,5		
Values for reduced anchorage depth								
Tension load in cracked concrete	Ν	[kN]	2,3	4,2	6,0	9,0		
Displacement	δ_{N0}	[mm]	0,5	0,5	0,7	1,0	-	-
Displacement	δ_{N^∞}	[mm]		1	,2			
Tension load in uncracked concrete	Ν	[kN]	4,2	5,7	8,5	12,6		
Displacement	δ_{N0}	[mm]	0,3	0,3	0,5	0,7	-	-
Displacement	δ_{N^∞}	[mm]		. 1	,2			

Table C11: Displacements due to shear loads for standard and reduced anchorage depth (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

Type of anchor / size		BAZ							
		M8	M10	M12	M16	M20	M24		
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	16,9	31,4	39,4	48,5	
Displacement	δ_{V0}	[mm	2,4	4,2	4,5	3,0	3,6	3,6	
	$\delta_{V\infty}$	[mm	3,6	6,3	6,8	4,5	5,4	5,4	
Dübeltyp / Größe			BAZ A4, BAZ C						
			M8	M10	M12	M16	M20	M24	
Querlast in gerissenem und ungerissenem Beton	V	[kN]	10,1	13,6	20,9	40,5	53,9	79,0	
Verschiebung	δ_{V0}	[mm	1,8	2,0	2,2	3,0	1,9	4,7	
	$\delta_{V\infty}$	[mm	2,7	3,0	3,4	4,5	2,9	7,1	

BTI simplex anchor BAZ

Performances: Displacements under tension and shear loads

Table C12: Displacements due to tension loads for standard and reduced anchorage depth (Design according to TR 045: Performance category C2)

Type of anchor / size		BAZ, BAZ A4, BAZ C						
		M8	M10	M12	M16	M20	M24	
Values for standard anchorage depth								
Displacement DLS	$\delta_{\text{N,C2}(\text{DLS})}$	[mm]	-	2,7	4,4	4,4	5,6	-
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]	-	11,5	13,0	12,3	14,4	-
Values for reduced anchorage depth								
Displacement DLS	$\delta_{\text{N,C2}(\text{DLS})}$	[mm]	-	2,7	4,4	4,4	-	-
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]	-	11,5	13,0	12,3	-	-

Table C13: Displacements due to shear loads for standard and reduced anchorage depth (Design according to TR 045: Performance category C2)

Type of anchor / size		BAZ, BAZ A4, BAZ C							
		M8	M10	M12	M16	M20	M24		
Values for standard anchorage depth									
Displacement DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]	-	4,1	4,4	4,3	4,8	-	
Displacement ULS	$\delta_{\rm V,C2~(ULS)}$	[mm]	-	6,2	7,8	8,1	11,2	-	
Values for reduced anchorage depth									
Displacement DLS	$\delta_{\text{V,C2}(\text{DLS})}$	[mm]	-	3,6	4,7	5,5	-	-	
Displacement ULS	$\delta_{V,\text{C2 (ULS)}}$	[mm]	-	5,0	7,5	10,1	-	-	

BTI simplex anchor BAZ

Performances:

Displacements under tension and shear loads under seismic action