

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0340 of 13 December 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Mungo Injection system MIT600RE for concrete
Product family to which the construction product belongs	Bonded anchor for use in concrete
Manufacturer	Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ
Manufacturing plant	Mungo 2
This European Technical Assessment contains	22 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.
This version replaces	ETA-09/0340 issued on 20 October 2014

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-09/0340

Page 2 of 22 | 13 December 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 22 | 13 December 2016

Specific Part

1 Technical description of the product

The "Mungo Injection system MIT600RE for concrete" is a bonded anchor consisting of a cartridge with injection mortar MIT600RE and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

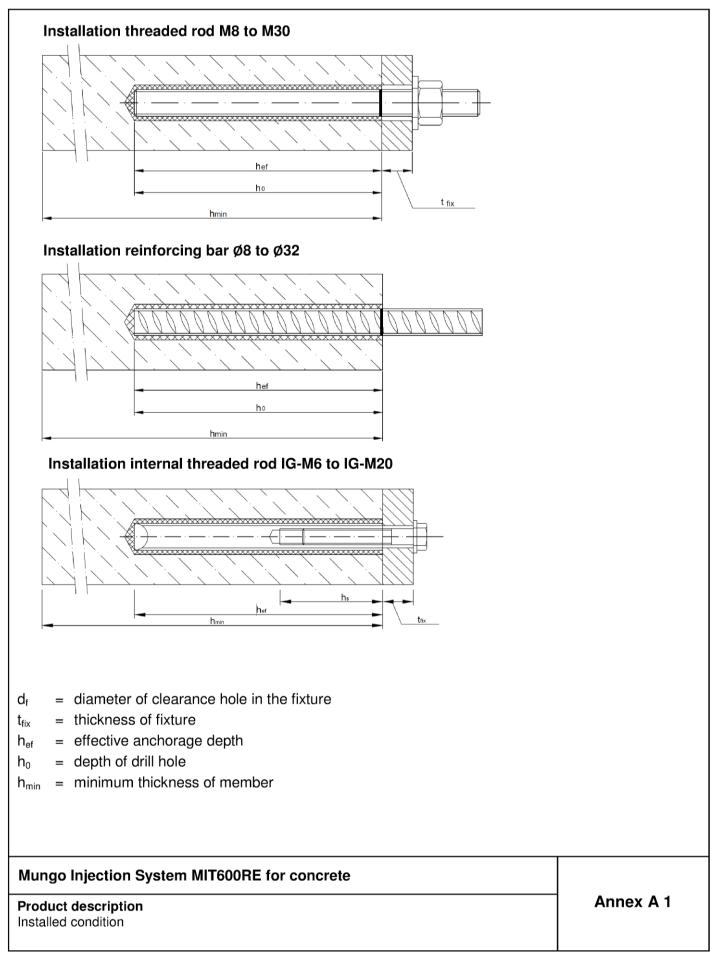
European Technical Assessment ETA-09/0340

Page 4 of 22 | 13 December 2016

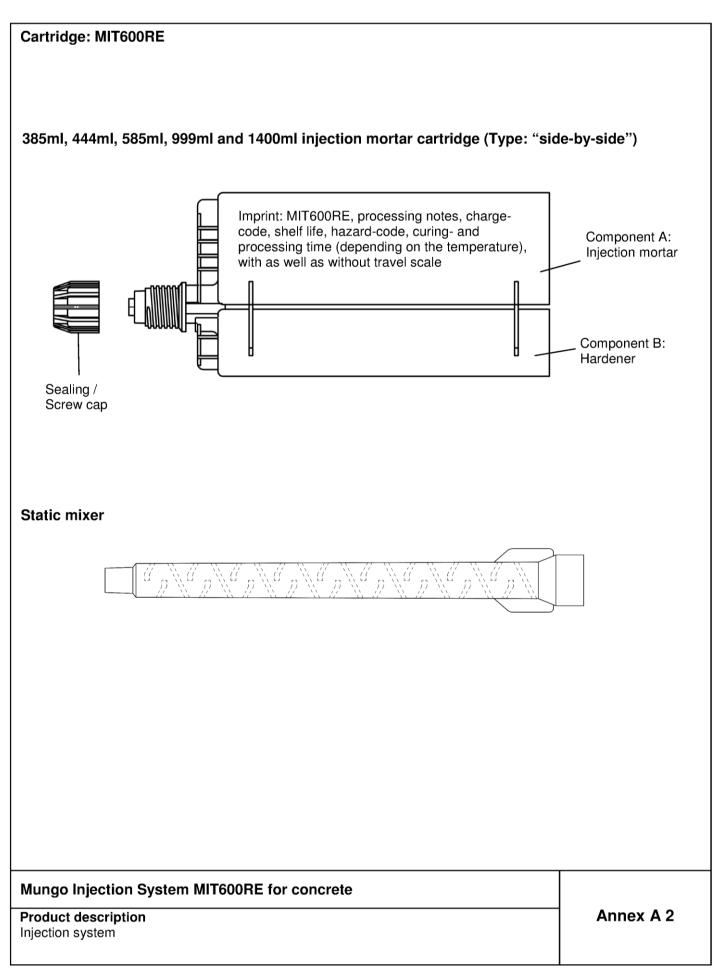
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 13 December 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider

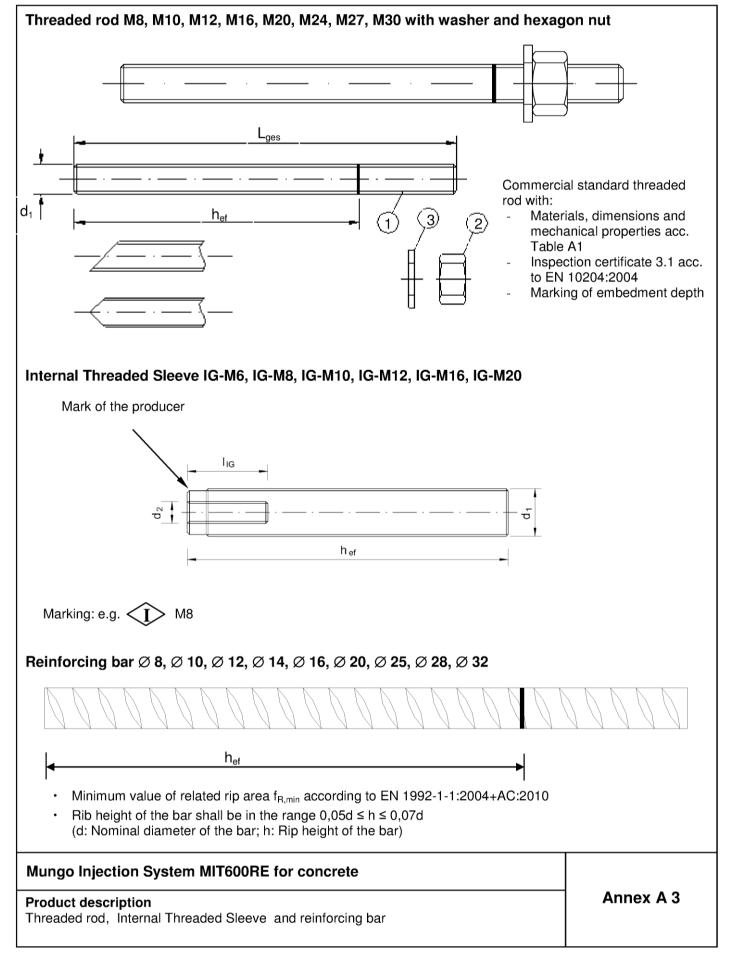


Table A1: Materials

Designation	Matavial						
Designation	Material						
Steel, zinc plated \geq 5 µm acc. to EN ISO 4042:1 Steel, hot-dip galvanised \geq 40 µm acc. to EN IS		C:2009					
	Steel, EN 10087:1998 or EN 10263:200						
Anchor rod	Property class 4.6, 4.8, 5.8, 8.8, EN 199	3-1-8:2005+AC:2009					
	$A_5 > 8\%$ fracture elongation						
	Steel acc. to EN 10087:1998 or EN 102						
Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 and 4.8 rod) EN ISO 898-2:20 Property class 5 (for class 5.8 rod) EN ISO 898-2:2012,						
	SO 898-2:2012, SO 898-2:2012						
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	50 030-2.2012						
Internally threaded sleeve	Steel, zinc plated or hot-dip galvanised Steel, zinc plated						
	Steel, zind plated						
Stainless steel							
	Material 1.4401 / 1.4404 / 1.4571, EN 10						
Anchor rod	> M24: Property class 50 EN ISO 3506-						
	\leq M24: Property class 70 EN ISO 3506- A ₅ > 8% fracture elongation	1:2009					
	088:2005,						
Hexagon nut, EN ISO 4032:2012	od) EN ISO 3506-2:2009						
	$\leq M24: \text{ Property class 50 (for class 50 rod)}$						
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	t.					
Internally threaded sleeve	Stainless steel: 1.4401 / 1.4404 / 1.4571	, EN 10088-1:2005					
High corrosion resistance steel	-						
	Material 1.4529 / 1.4565, EN 10088-1:20	005,					
Anchor rod	> M24: Property class 50 EN ISO 3506-1:2009						
Allchor rod	≤ M24: Property class 70 EN ISO 3506-	1:2009					
	$A_5 > 8\%$ fracture elongation						
	Material 1.4529 / 1.4565 EN 10088-1:20						
Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rd						
	≤ M24: Property class 70 (for class 70 ro	od) EN ISO 3506-2:2009					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005					
Reinforcing bars							
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	l 1992-1-1/NA:2013					
Mungo Injection System MIT600RE for co	ncrete						
Product description Materials		Annex A 4					

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32, IG-M8 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C) II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer for seismic loading are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded sleeve.

Mungo Injection System MIT600RE for concrete

Intended Use Specifications

Annex B 1

Anchor size			M 8	M 10	M 12	M 16	Ν	A 20	M 24	M 27	M 30
Nominal drill hole diameter	d _o [mm	1=	10	12	14	18		24	28	32	35
	h _{ef,min} [mm		60	60	70	80	_	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm		96	120	144	192		240	288	324	360
Diameter of clearance hole in the fixture ¹⁾	d _f [mm		9	12	14	18		22	26	30	33
Torque moment	T _{inst} [Nm]≤	10	20	40	80		120	160	180	200
Minimum thickness of member	h _{min} [m	m]		+ 30 m 100 mn				h	$_{ef}$ + 2d ₀		
Minimum spacing	s _{min} [m	_	40	50	60	80		100	120	135	150
Minimum edge distance	c _{min} [m	m]	40	50	60	80		100	120	135	150
Nominal drill hole diameter	d ₀ [mm] = h _{ef.min} [mm] =	0 8 12 60	14 60	16 70	5 18	8 2)	24 90	32 32	35	40
¹⁾ For larger clearance hole	366 TT1023 Section										
Rebar size	d [mm]	Ø 8	Ø 10					Ø 20	Ø 25	Ø 28	
Nominal drill nole diaméter			_							_	
Effective anchorage depth	h _{ef,max} [mm] =	96	120	_				240	300	336	
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 3$		30 mm 10 mm			h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60) 70	0 8)	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60) 70	0 8)	100	125	140	160
Table B3: Installation Anchor size	on parameters	s for i	interna IG-M		nreade G-M 8	d slee		IG-M 1	2 IG-	M 16	IG-M 20
Internal diameter of sleeve	d ₂ [mm] =	6		8	10		12		16	20
Outer diameter of sleeve ²⁾	$d_1 = d_{nom}$		10		12	16		20		24	30
Nominal drill hole diameter					14	18		24		28	35
	N _{ef.min}	mm =	70		70	80		90		96	120
Effective anchorage depth	h _{ef,min} [h _{ef,max} [70 240	80 320	-+	90 400		96 •80	
Effective anchorage depth Diameter of clearance hole in the fixture ¹⁾	h _{ef,max} [200						4		120
Diameter of clearance	h _{ef,max} [d _f [mm] =	200)	240	320		400		80	120 600
Diameter of clearance hole in the fixture ¹⁾	h _{ef,max} [d _f [T _{inst}	mm] = mm] =	200 7 10)	240 9	320 12)	400 14	2	80 18	120 600 22

¹⁾ For larger clearance hole see TR029 section 1.1
 ²⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

s_{min} [mm]

c_{min} [mm]

50

50

Mungo Injection System MIT600RE for concrete

Intended Use Installation parameters

Minimum spacing

Minimum edge distance

Annex B 2

120

120

80

80

60

60

100

100

135

135

Steel brush

Table B4: Parameter cleaning and setting tools

Threaded Rod	Rebar	Internal Threaded Sleeve	d₀ Drill bit - Ø	d_{b} Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[No.]
M8			10	12	10,5	
M10	8	IG-M6	12	14	12,5	
M12	10	IG-M8	14	16	14,5	No
	12		16	18	16,5	piston plug required
M16	14	IG-M10	18	20	18,5	
	16		20	22	20,5	
M20	20	IG-M12	24	26	24,5	# 24
M24		IG-M16	28	30	28,5	# 28
M27	25		32	34	32,5	# 32
M30	28	IG-M20	35	37	35,5	# 35
	32		40	41,5	40,5	# 38

MAC: Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

CAC: Recommended compressed air tool (min 6 bar) Drill bit diameter (d_0): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d_0) : 24 mm to 40 mm

Mungo Injection System MIT600RE for concrete

Intended Use

Cleaning and setting tools

Annex B 3

Installation inst								
	1. Drill with hammer drill a hole into the base material to the size and emberdepth required by the selected anchor (Table B1, B2 or B3). In case of al hole: the drill hole shall be filled with mortar							
	Attention! Standing water in the bore hole must be remove	d before cleaning.						
2x	2x. Starting from the bottom or back of the bore hole, blow the hole compressed air (CAC) (min. 6 bar) or a hand pump (MAC) (Ar of two times. If the bore hole ground is not reached an extension							
or	MAC: The hand-pump ¹⁾ can only be used for anchor sizes in ur either up to bore hole diameter 20mm or embedment depth up CAC: Compressed air (min. 6 bar, oil-free) can be used for all s uncracked concrete.	to 240mm.						
	 2b. Check brush diameter (Table B4) and attach the brush to a drill or a battery screwdriver. Brush the hole with an appropriate size > d_{b,min} (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush esshall be used (Table B4). 	ed wire brush						
or	 Finally blow the hole clean again with compressed air (CAC) (m pump (MAC) (Annex B 3) a minimum of two times. If the bore h reached an extension shall be used. MAC: The hand-pump¹⁾ can <u>only</u> be used for anchor sizes in un either up to bore hole diameter 20mm or embedment depth up CAC: Compressed air (min. 6 bar, oil-free) can be used for all s uncracked concrete. 	ole ground is not ncracked concrete, to 240mm.						
2x	After cleaning, the bore hole has to be protected against re an appropriate way, until dispensing the mortar in the bore the cleaning repeated has to be directly before dispensing In-flowing water must not contaminate the bore hole again. ¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an er 240 mm also in cracked concrete with hand-pump.	hole. If necessary, the mortar.						
	3 Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. For every working interruption longer than the recommended w (Table B5) as well as for new cartridges, a new static-mixer sha	orking time						
ne de la seconda de la contra	4. Prior to inserting the anchor rod into the filled bore hole, the pose embedment depth shall be marked on the anchor rods.	ition of the						
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive compone shows a consistent grey or red colour.							
Mungo Injection S	system MIT600RE for concrete							
Intended Use Installation instructior	ns	Annex B 4						

 Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B5. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5). After full curing, the add-on part can be installed with up to the max, torque 	Installation inst	ructions (continuation)
 ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5). 		approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working
 Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5). 		
 mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5). 		The anchor shall be free of dirt, grease, oil or other foreign material.
Do not move or load the anchor until it is fully cured (attend Table B5).		mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be
10. After full curing, the add-on part can be installed with up to the max, torque	20 0	
(Table B1 or B3) by using a calibrated torque wrench.		 After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench.

Table B5: Minimum curing time

Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete	
120 min	50 h	100 h	
90 min	30 h	60 h	
30 min	10 h	20 h	
20 min	6 h	12 h	
12 min	8 h		
	+5°C to +40°C		
	120 min 90 min 30 min 20 min	120 min 50 h 90 min 30 h 30 min 10 h 20 min 6 h 12 min 4 h	

Mungo Injection System MIT600RE for concrete

Intended Use Installation instructions (continuation) Curing time Annex B 5

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension r		[kN]				As	• f _{uk}				
Combined pull-out an	d concrete cone failur	e									
	sistance in non-cracked)/25								
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
		$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Characteristic bond res	sistance in cracked conc	rete C20/25	1 1 1 1 1								
des and wat apparets		$\tau_{\rm Rk,cr}$	[N/mm ²]			7,5	6,5	6,0	5,5	5,5	5,5
Taman analy 11 - 11 - 11	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]			7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I: 40°C/24°C		τ _{Rk,C2}	[N/mm ²]			2,4	2,2 6,0	No Per 5,0		Determined	<u>, , , , , , , , , , , , , , , , , , , </u>
40 0/24 0	flooded hare hala	$\tau_{\rm Rk,cr}$	[N/mm ²] [N/mm ²]			7,5 7,1	6,0 5,8	5,0 4,8	4,5 4,5	4,0	4,0
	flooded bore hole	TRK,C1	[N/mm ²]			2,4	2,1	/		4,0 Determined	/
		$ au_{ m Rk,C2}$ $ au_{ m Rk,cr}$	[N/mm ²]			4,5	4.0	3.5	3,5	3.5	3.5
	dry and wet concrete	τ _{Rk.C1}	[N/mm ²]			4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		τ _{Rk,C2}	[N/mm ²]	No Perf	ormance	1,0	1,4	,	,	Determined	
60°C/43°C		τ _{Rk,cr}	[N/mm ²]	Determined (NPD)		4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	T _{Rk,C1}	[N/mm ²]			4,3	3.8	3.4	3.5	3.5	3.5
		τ _{Rk.C2}	[N/mm ²]			1,4	1,4	No Per	formance I	Determined	d (NPD)
		τ _{Rk,cr}	[N/mm ²]			4,0	3,5	3,0	3,0	3,0	3,0
Temperature range III: 72°C/43°C	dry and wet concrete flooded bore hole	$\tau_{\rm Rk,C1}$	[N/mm ²]			3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\rm Rk,C2}$	[N/mm²]			1,3	1,2	No Per	formance l	Determined	d (NPD)
		$\tau_{\text{Rk,cr}}$	[N/mm ²]			4,0	3,5	3,0	3,0	3,0	3,0
		$\tau_{\text{Rk,C1}}$	[N/mm ²]			3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\text{Rk,C2}}$	[N/mm ²]			1,3	1,2		formance I	Determined	d (NPD)
			5/30				,	02			
Increasing factors for a	oporata		0/37 5/45				<u> </u>				
Increasing factors for c	oncrete		0/50				,				
ψ_{c}			5/55	1,08							
			0/60	1,10							
Factor according to	Non-cracked concrete						10				
CEN/TS 1992-4-5		k ₈	[-]					,			
Section 6.2.2.3	Cracked concrete			7,2							
Concrete cone failure											
Factor according to	Non-cracked concrete	k _{ucr}	[-]				10),1			
CEN/TS 1992-4-5	Cracked concrete	k _{cr}					7	,2			
Section 6.2.3.1	Gracked concrete		[-]								
Edge distance Axial distance		C _{cr,N}	[mm] [mm]				1,5	h _{ef}			
Splitting failure		S _{cr,N}	l fuuni				3,0	ef			
opining failure	h/h _{ef} ≥ 2,0		1				1.0	h.			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$\frac{1,0 \text{ h}_{ef}}{2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right)}$							
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance		S _{cr,sp}	[mm]				,	cr,sp			
Installation safety facto	r		[-]		1	,2			1	,4	
(dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	1 11	1		,—				, ·	

Mungo Injection System MIT600RE for concrete

Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2)

Table C2:	Characteristic seismic action							si-stati	c actio	on and	
Anchor size thread	ed rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without	ıt lever arm		I								
		V _{Rk,s}	[kN]		0,50 • A _s • f _{uk}						
Characteristic shear	resistance	V _{Rk,s,C1}	[kN]	NF	PD	0	,44 • A _s • 1	f _{uk}	0	,40 ∙ A _s ∙ f	uk
		V _{Rk,s,C2}	[kN]	INF	U	0,40 • A _s • f _{uk} No Per			ormance l	Determine	d (NPD)
Steel failure with le	ever arm										
		M ⁰ _{Rk,s}	[Nm]				1.2 · V	V _{el} ∙ f _{uk}			
Characteristic bendi	ng moment	M ⁰ _{Rk,s,C1}	[Nm]			No Perf	ormance	Determine	d (NPD)		
		$M^0_{Rk,s,C2}$	[Nm]						- (/		
Concrete pry-out fa											
Factor k ₃ in equation CEN/TS 1992-4-5 S Factor k in equation Technical Report TF	ection 6.3.3 (5.7) of	k ₍₃₎	[-]	2,0							
Installation safety fa	ctor	$\gamma_2 = \gamma_{inst}$	[-]	1,0							
Concrete edge fail	ıre										
Effective length of a	nchor	lt	[mm]				l _f = min(h	n _{ef} ; 8 d _{nom})			
Outside diameter of	anchor	d _{nom}	[mm]	8 10 12 16 20 24 27 30							30
Installation safety fa	ctor	$\gamma_2 = \gamma_{inst}$	[-]	1,0							

Mungo Injection System MIT600RE for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2) $\,$

Anchor size internally threaded sleeves			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Steel failure				II							
Characteristic tension re		N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class 5.0											
Partial safety factor Characteristic tension resistance.		γMs,N	[-]				,5				
Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial safety factor		γMs,N	[-]			1	,5				
Characteristic tension resistance, Stainless Steel A4 Strength class 70		N _{Rk,s}	[kN]	14	26	41	59	110	172		
Partial safety factor		Ϋ́Ms,N	[-]			1,	87				
Combined pull-out and	l concrete cone failure										
Characteristic bond resi	stance in non-cracked concre	te C20/25									
Temperature range I:	dry and wet concrete	$-\tau_{\rm Rk,ucr}$	[N/m	15	15	14	13	12	12		
40°C/24°C	flooded bore hole	VHK,UCT	m²]	14	13	10	9,5	8,5	7,0		
Temperature range II:	dry and wet concrete	$-\tau_{\rm Rk,ucr}$	[N/m	9,5	9,0	8,5	8,0	7,5	7,5		
60°C/43°C	flooded bore hole	Phk,ucr	m²]	9,5	9,0	8,5	7,5	7,0	6,0		
Temperature range III: 72°C/43°C	dry and wet concrete	$-\tau_{\rm Rk,ucr}$	[N/m	8,5	8,0	7,5	7,0	7,0	6,5		
	flooded bore hole	,	m²]	8,5	8,0	7,5	7,0	6,0	5,5		
	stance in cracked concrete C	20/25			7.5	0.5	0.0				
Temperature range I: 40°C/24°C	dry and wet concrete	$-\tau_{\rm Rk,cr}$	[N/m m²]	-	7,5	6,5 6,0	6,0 5,0	5,5	5,5		
Temperature range II: 60°C/43°C	dry and wet concrete			No	7,5 4,5	4,0	5,0 3,5	4,5 3,5	4,0 3,5		
	flooded bore hole	$-\tau_{\rm Rk,cr}$	[N/m m²]	Performance Determined	4,5	4,0	3,5	3,5	3,5		
Temperature range III:	dry and wet concrete		[N/m	(NPD)	4,0	3,5	3,0	3,0	3,0		
72°C/43°C	flooded bore hole	$- \tau_{\text{Rk,cr}}$	$\tau_{\text{Rk,cr}}$ [N/m] $[\pi^2]$		4,0 3,5 3,0 3,0 3,0 3,0						
		C25/3	0	1,02							
		C30/37		1,04							
Increasing factors for co	ncrete	C35/4	C35/45		1,07						
ψ_c		C40/5	C40/50		1,08						
		C45/5	C45/55		1,09						
		C50/6	C50/60		1,10						
Factor according to	Non-cracked concrete			10,1							
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	— k ₈	[-]	7,2							
Concrete cone failure											
Factor according to	Non-cracked concrete	k _{ucr}	[-]			10	D,1				
CEN/TS 1992-4-5 Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				,2				
	orabited consister		[mm]				5 h _{ef}				
Edge distance Axial distance		C _{cr,N} S _{cr,N}	[mm]) h _{ef}				
Splitting failure		Scr,N	[]			0,0	, ret				
						1.0) h _{ef}				
Edge distance	dge distance $h/h_{ef} \ge 2,0$ $2,0>h/h_{ef} > 1,3$		[mm]	$2 \cdot h_{ef}\left(2,5 - \frac{h}{h_{ef}}\right)$							
	h/h _{ef} ≤ 1,3		1			2,4	l h _{ef}				
Axial distance	1	S _{cr,sp}	[mm]			2 0	cr,sp				
Installation safety factor					1.0		- citab				
(dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]		1,2			1,4			
(dry and wet concrete) Installation safety factor (flooded bore hole)		1	[-]	1,4							

Mungo Injection System MIT600RE for concrete

Performances

Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action

Table C4: Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action Anchor size for internally threaded sleeves IG-M 6 IG-M 8 IG-M 10 IG-M 12 IG-M 16 IG-M 20 Steel failure without lever arm Characteristic shear resistance, $V_{\mathsf{Rk},\mathsf{s}}$ 5 [kN] 9 15 21 38 61 Steel, strength class 5.8 Partial safety factor [-] 1,25 γMs,V Characteristic shear resistance. $V_{Rk,s}$ [kN] 8 14 23 34 60 98 Steel, strength class 8.8 Partial safety factor 1,25 [-] γMs.V Characteristic shear resistance, Stainless Steel A4 [kN] 7 13 20 30 55 86 V_{Rk.s} Strength class 70 Partial safety factor [-] 1,56 γMs.V Steel failure with lever arm Characteristic bending moment, $M^0_{\rm Rk,s}$ [Nm] 8 19 37 66 167 325 Steel, strength class 5.8 Partial safety factor 1,25 [-] γMs,V Characteristic bending moment, $M^0{}_{\mathsf{Rk},\mathsf{s}}$ [Nm] 12 30 60 105 267 519 Steel, strength class 8.8 1,25 Partial safety factor [-] γMs.V Characteristic bending moment, $M^0{}_{\mathsf{Rk},\mathsf{s}}$ Stainless Steel A4 [Nm] 11 26 52 92 233 454 Strength class 70 Partial safety factor [-] 1,56 γMs,V Concrete pry-out failure Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 2,0 k₍₃₎ [-] Factor k₃ in equation (5.7) of Technical Report TR 029 Installation safety factor [-] 1,0 $\gamma_2 = \gamma_{inst}$ Concrete edge failure Effective length of anchor ŀ $I_f = min(h_{ef}; 8 d_{nom})$ [mm] 12 Outside diameter of anchor [mm] 10 16 20 24 30 d_{nom} Installation safety factor [-] 1,0 $\gamma_2 = \gamma_{inst}$

Mungo Injection System MIT600RE for concrete

Performances

Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

	Characteristic va eismic action (p					ei Sta	auc, q	uasi-	รเสแต		Jii all	u
Anchor size reinforci	ng bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension	resistance	N _{Rk,s}	[kN]					A₅ ∙ f _{uk}				
Combined pull-out an	nd concrete cone failure	, iii,o						0 011				
•	sistance in non-cracked co	porete C20	/25									
	1			14	14	10	10	10	10	44	44	4.4
Temperature range I: 40°C/24°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II: 60°C/43°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:		$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
Characteristic bond res	sistance in cracked concre	te C20/25										
	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]			7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I: 40°C/24°C		$\tau_{\text{Rk,C1}}$	[N/mm ²]			7,1	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]			7,5	6,5	6,0	5,0	4,5	4,0	4,0
		$\tau_{\rm Rk,C1}$	[N/mm ²]			7,1	6,0	5,7	4,8	4,5	4,0	4,0
-	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	No Perf	ormance	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II: 60°C/43°C		τ _{Rk,C1}	[N/mm ²]	Deter	mined	4,3 4,5	3,7 4,0	3,8 4,0	3,3 3,5	3,5 3,5	3,5 3,5	3,5 3,0
00 0/40 0	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	(NI	PD)	4,5	4,0	3,8	3,3	3,5	3,5	3,0
		τ _{Rk,C1}	[N/mm ²]			4,0	3,5	3,5	3,3	3,0	3,0	3,0
Tomporature range III:	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]			3,9	3,2	3,3	2,9	3,0	3,0	3,0
Temperature range III: 72°C/43°C		$\tau_{\text{Rk,C1}}$ $\tau_{\text{Rk,cr}}$	[N/mm ²]			4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	τ _{Rk,C1}	[N/mm ²]			3,9	3,2	3,3	2,9	3,0	3,0	3.0
			25/30			0,0	0,2	1,02	_,0	0,0	0,0	0,0
			30/37					1,04				
Increasing factors for c	oncrete	C	35/45					1,07				
Ψc		C4	40/50					1,08				
		C4	45/55					1,09				
		Ct	50/60					1,10				
Factor according to CEN/TS 1992-4-5	Non-cracked concrete		1 1					10,1				
Section 6.2.2.3	Cracked concrete	K ₈	[-]					7,2				
Concrete cone failure)											
Factor according to	Non-cracked concrete	k _{ucr}	[-]					10,1				
CEN/TS 1992-4-5 Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure				·								
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
		1						(<i>b</i>)			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{a}$	_f 2,5 -	$\left(\frac{h}{h_{ef}}\right)$			
	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
	or (dry and wet concrete)	$\gamma_2 = \gamma_{inst}$	[-]			1,2		1.4		1	,4	
Installation safety facto	or (1100ded bore hole)	$\gamma_2 = \gamma_{inst}$	[-]					1,4				
Mungo Iniectio	on System MIT600	RE for c	oncrete									
Performances	,								-	Anne	ex C 5	5

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1)

Table C6:	Characterist seismic acti						atic, c	luasi-	static	actio	n and	
Anchor size reinfo	rcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without	ut lever arm											
Ohana da da da ak		$V_{Rk,s}$	[kN]				0,	50 • A _s •	f _{uk}			
Characteristic shear	resistance	V _{Rk,s,C1}	[kN]		ormance mined PD)			0,	44 • A _s •	f _{uk}		
Steel failure with le	ever arm											
Characteristic bendi	ing moment	$M^{0}_{_{Rk,s}}$	[Nm]				1.	2∙W _{el} ∙	f _{uk}			
	ngmoment	$M^0_{\rm Rk,s,C1}$	[Nm]			No F	Performa	nce Dete	rmined (N	NPD)		
Concrete pry-out fa	ailure											
Factor k ₃ in equation CEN/TS 1992-4-5 S Factor k in equation Technical Report TF	ection 6.3.3 (5.7) of	k ₍₃₎	[-]					2,0				
Installation safety fa	ctor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Concrete edge fail	ure											
Effective length of a	nchor	lf	[mm]				l _f = n	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of	anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety fa	ctor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				

Mungo Injection System MIT600RE for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Anchor size threa	ded rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked cond	rete C20/25 unde	r static and qua	si-statio	action							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,14	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04	
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04	
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16	
Cracked concrete	C20/25 under sta	tic, quasi-static	and sei	smic C	l action	1					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]			0,032	0,037	0,042	0,048	0,053	0,05	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]			0,210	0,210	0,210	0,210	0,210	0,21	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	No Perf	ormance	0,037	0,043	0,049	210 0,210 0,210 0, 049 0,055 0,061 0, 240 0,240 0,240 0, 049 0,055 0,061 0,	0,06		
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	Determin	ed (NPD)	0,240	0,240	0,240		0,24		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]			0,037	0,043	0,049	0,055	0,061	0,06	
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]			0,240	0,240	0,240	0,240	0,240	0,24	
Cracked concrete	C20/25 under sei	smic C2 action									
Temperature range I:	$\delta_{N,seis(DLS)}$ -factor	[mm/(N/mm ²)]			0,03	0,05					
40°C/24°C	$\delta_{N,seis(ULS)}$ -factor	[mm/(N/mm ²)]	1		0,06	0,09					
Temperature range II:	$\delta_{N,seis(DLS)}$ -factor	[mm/(N/mm ²)]		ormance	0,03	0,05			Determine		
		[mama // N] /mama 2)]		mined	0,06	0,09	No Peri	No Performance Determined (
60°C/43°C	$\delta_{N,seis(ULS)}$ -factor	[mm/(N/mm ²)]	(NI	-D)	0,00	0,09					
Temperature range III:	$\frac{\delta_{N,seis(ULS)}}{\delta_{N,seis(DLS)}} - factor$	[mm/(N/mm²)] [mm/(N/mm²)]	(NI	- D)	0,03	0,05					
	$\begin{array}{c c} \delta_{N,seis(DLS)} \mbox{-factor} \\ \overline{\delta_{N,seis(ULS)}} \mbox{-factor} \\ e \mbox{ displacement} \\ \tau; & \delta_{N,seis} \end{array}$		ctor · τ;	,	0,03 0,06	,	r tension				
Temperature range III: 72°C/43°C ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$\begin{array}{c c} \delta_{N,seis(DLS)} \mbox{-factor} \\ \overline{\delta_{N,seis(ULS)}} \mbox{-factor} \\ e \mbox{ displacement} \\ \tau; & \delta_{N,seis} \end{array}$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $(DLS) = \delta_{N,seis(DLS)}-fa$ $(ULS) = \delta_{N,seis(ULS)}-fa$	ctor τ; ctor τ;	τ: acti	0,03 0,06	0,05 0,09 stress for	r tension				
Temperature range III: 72°C/43°C ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ displacement \\ \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $(DLS) = \delta_{N,seis(DLS)}-fa$ $(ULS) = \delta_{N,seis(ULS)}-fa$	ctor τ; ctor τ;	τ: acti	0,03 0,06	0,05 0,09 stress for	r tension M 20	M24	M 27	M 30	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ displacement \\ \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear I	ctor τ; ctor τ; oad ¹⁾ (1 M 8	τ: action thread M 10	0,03 0,06 on bond ed rod M 12	0,05 0,09 stress for) M 16	M 20		M 27	M 30	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size threat Non-cracked and	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ displacement \\ \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear I	ctor τ; ctor τ; oad ¹⁾ (1 M 8	τ: action thread M 10	0,03 0,06 on bond ed rod M 12	0,05 0,09 stress for) M 16	M 20		M 27		
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS) - fa$ $(ULS) = \delta_{N,seis}(ULS) - fa$ Inder shear I $C20/25 under shear $	ctor τ; ctor τ; oad ¹⁾ (i M 8 tatic, qu	τ: action thread M 10 uasi-stat	0,03 0,06 on bond ed rod M 12 tic and	0,05 0,09 stress for) M 16 seismic	M 20 C1 act	on		0,03	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and a All temperature	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ e \ displacement \\ \cdot \tau; & \delta_{N,seis} \\ \cdot \tau; & \delta_{N,seis} \\ \hline splacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{V\infty} \ -factor \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear I $C20/25 \text{ under s}$ $[mm/(kN)]$ $[mm/(kN)]$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu	τ: activ thread M 10 uasi-stat	0,03 0,06 on bond ed rod M 12 tic and 0,05	0,05 0,09 stress for) M 16 seismic 0,04	M 20 C1 act 0,04	on 0,03	0,03	0,03	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and All temperature ranges Cracked concrete	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ e \ displacement \\ \hline \tau; & \delta_{N,seis} \\ \hline \tau; & \delta_{N,seis} \\ \hline splacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline c20/25 \ under \ seis \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS) - fa$ $(ULS) = \delta_{N,seis}(ULS) - fa$ Inder shear I $C20/25 \text{ under s}$ $[mm/(kN)]$ $[mm/(kN)]$ smic C2 action	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: activ thread M 10 uasi-stat	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04	on 0,03	0,03	M 30 0,03 0,05	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and All temperature ranges Cracked concrete All temperature	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ e \ displacement \\ \hline \tau; & \delta_{N,seis} \\ \hline \tau; & \delta_{N,seis} \\ \hline splacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{V0} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline c20/25 \ under \ seis \\ \hline \delta_{V,seis(DLS)} \ -factor \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear I $C20/25 under shear sh$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09 No Perfi Deter	τ: active thread M 10 uasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	on 0,03 0,05	0,03	0,03	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and All temperature ranges Cracked concrete All temperature	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ e \ displacement \\ \hline \tau; & \delta_{N,seis} \\ \hline \tau; & \delta_{N,seis} \\ \hline splacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline c20/25 \ under \ seis \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS) - fa$ $(ULS) = \delta_{N,seis}(ULS) - fa$ Inder shear I $C20/25 \text{ under s}$ $[mm/(kN)]$ $[mm/(kN)]$ smic C2 action	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09 No Perfi Deter	τ: action thread M 10 uasi-stat 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	on 0,03 0,05	0,03	0,03	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and All temperature ranges Cracked concrete All temperature ranges ¹⁾ Calculation of th $\delta_{V0} = \delta_{V0}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor $\delta_{V,seis(DLS)} = \delta_{V,s}$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \ \tau; & \delta_{N,seis} \\ \hline \cdot \ \tau; & \delta_{N,seis} \\ \hline \ isplacements \ u \\ \hline \ ded \ rod \\ \hline \ cracked \ concrete \\ \hline \hline \delta_{Vo} \ -factor \\ \hline \ \delta_{Vo} \ -factor \\ \hline \ cracked \ concrete \\ \hline \hline \ \delta_{V,seis(DLS)} \ -factor \\ \hline \ \delta_{V,seis(ULS)} \ -factor \\ \hline \ e \ displacement \\ \cdot \ V; \\ \cdot \ V; \\ eis(DLS) \ -factor \ \cdot \ V; \\ eis(DLS) \ -factor \ \cdot \ V; \\ \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear I $C20/25 under shear sh$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09 No Perfi Deter (Ni	τ: active thread M 10 uasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	on 0,03 0,05	0,03	0,03	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and All temperature ranges Cracked concrete All temperature ranges ¹⁾ Calculation of th $\delta_{V0} = \delta_{V0}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor $\delta_{V,seis(DLS)} = \delta_{V,s}$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \ \tau; & \delta_{N,seis} \\ \hline \cdot \ \tau; & \delta_{N,seis} \\ \hline isplacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline cracked \ concrete \\ \hline \delta_{V,o} \ -factor \\ \hline cracked \ concrete \\ \hline \delta_{V,seis(DLS)} \ -factor \\ \hline \delta_{V,seis(ULS)} \ -factor \\ \hline \delta_{V,seis(ULS)} \ -factor \\ \hline \delta_{V,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \ V; \\ \cdot \ V; \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)}-fa$ $(ULS) = \delta_{N,seis(ULS)}-fa$ Inder shear I $C20/25 \text{ under shear I}$ $[mm/(kN)]$ $[mm/(kN)]$ smic C2 action $[mm/kN]$ $[mm/kN]$	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09 No Perfi Deter (Ni	τ: active thread M 10 uasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	on 0,03 0,05	0,03	0,03	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and All temperature ranges Cracked concrete All temperature ranges ¹⁾ Calculation of th $\delta_{V0} = \delta_{V0}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor $\delta_{V,seis(DLS)} = \delta_{V,s}$ $\delta_{V,seis(ULS)} = \delta_{V,s}$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \ \tau; & \delta_{N,seis} \\ \hline \cdot \ \tau; & \delta_{N,seis} \\ \hline \ isplacements \ u \\ \hline \ ded \ rod \\ \hline \ cracked \ concrete \\ \hline \hline \delta_{Vo} \ -factor \\ \hline \ \delta_{Vo} \ -factor \\ \hline \ cracked \ concrete \\ \hline \hline \ \delta_{V,seis(DLS)} \ -factor \\ \hline \ \delta_{V,seis(ULS)} \ -factor \\ \hline \ e \ displacement \\ \cdot \ V; \\ \cdot \ V; \\ eis(DLS) \ -factor \ \cdot \ V; \\ eis(DLS) \ -factor \ \cdot \ V; \\ \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)}-fa$ $(ULS) = \delta_{N,seis(ULS)}-fa$ Inder shear I Inder she	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09 No Perfi Deter (Ni	τ: active thread M 10 uasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	on 0,03 0,05	0,03	0,03	
Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and All temperature ranges Cracked concrete All temperature ranges ¹⁾ Calculation of th $\delta_{V0} = \delta_{V0}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor $\delta_{V,seis(DLS)} = \delta_{V,s}$ $\delta_{V,seis(ULS)} = \delta_{V,s}$	$\begin{array}{c c} & \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \tau; & \delta_{N,seis} \\ \hline \cdot \tau; & \delta_{N,seis} \\ \hline isplacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline \hline cracked \ concrete \\ \hline \delta_{V,o} \ -factor \\ \hline \hline cracked \ concrete \\ \hline \delta_{V,seis(DLS)} \ -factor \\ \hline \hline \delta_{V,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \ V; \\ eis(DLS) \ -factor \ \cdot \ V; \\ eis(ULS) \ -factor \ \cdot \ V; \\ \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)}-fa$ $(ULS) = \delta_{N,seis(ULS)}-fa$ Inder shear I Inder she	ctor τ; ctor τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09 No Perfi Deter (Ni	τ: active thread M 10 uasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	0,03 0,05 ormance I	0,03	0,03	

Table C9: Dis	splacements	under tension	load ¹⁾ (ir	nternally	threade	ed sleeve	e)	
Anchor size intern	ally threaded s	leeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked conc	rete C20/25 und	der static and quas	si-static ac	tion				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029	0,035
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete	C20/25 under s	tatic and quasi-sta	tic action		•			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]		0,032	0,037	0,042	0,048	0,058
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	1	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	No Performance	0,037	0,043	0,049	0,055	0,067
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	Determined (NPD)	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]		0,037	0,043	0,049	0,055	0,067
່72°C/43°Cັ	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	1	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor τ ;

Table C10: Displacements under shear load¹⁾ (internally threaded sleeve)

Anchor size in	ternally threade	ed sleeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked cor	ncrete C20/25 un	der static a	and quasi-s	tatic action	ו		
All temperature	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06
$\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -fa								

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25 under static	and qu	asi-stati	c actior	า					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,17
Cracked concrete	C20/25 ui	nder static, qua	si-stati	c and se	eismic C	1 actio	n				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,06
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]			0,210	0,210	0,210	0,210	0,210	0,210	0,21
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	No Perf	ormance	0,037	0,040	0,043	0,049	0,056	0,063	0,07
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]		ed (NPD)	0,240	0,240	0,240	0,240	0,240	0,240	0,24
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,07
72°C/43°C	8 ([1		0.240	0,240	0,240	0,240	0,240	0,240	0,24
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: D i	τ; τ; isplacen	[mm/(N/mm²)] nent τ: action bond		oad ¹⁾ (r	ebar)						Ø3
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: Di Anchor size reinfo	e displacem · τ; · τ; isplacen prcing bar	nent τ: action bond	hear lo Ø 8	oad ¹⁾ (r ∅10	ebar) Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: Di Anchor size reinfor For concrete C20/	e displacem • τ; • τ; isplacen prcing bar 25 under s	nent under sl	hear lo Ø 8 atic and	oad ¹⁾ (r ∅10 seismio	ebar) Ø 12 c C1 act	Ø 14 ion	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3 2
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: Di Anchor size reinfor For concrete C20/2 Il temperature anges ¹⁾ Calculation of th	e displacem • τ; • τ; isplacem prcing bar 25 under s δ _{V0} -factor δ _{V∞} -factor ue displacem	nent under sl static, quasi-sta [mm/(kN)] [mm/(kN)] nent	ear Ic Ø 8 atic and 0,06 0,09	oad ¹⁾ (r ∅10	ebar) Ø 12	Ø 14					Ø 3 0,03 0,04
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: Di Anchor size reinfor For concrete C20/2 All temperature anges	e displacem $\tau;$ $\tau;$ isplacem prcing bar 25 under s δ_{V0} -factor $\delta_{V\infty}$ -factor te displacem \cdot V;	nent under sl τ: action bond nent under sl static, quasi-sta [mm/(kN)] [mm/(kN)]	ear Ic Ø 8 atic and 0,06 0,09	oad ¹⁾ (r Ø 10 seismic 0,05	ebar) Ø 12 c C1 act 0,05	Ø 14 ion 0,04	Ø 16 0,04	Ø 20 0,04	Ø 25 0,03	Ø 28 0,03	0,0