

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-10/0012 vom 15. Februar 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS EM

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

32 Seiten, davon 3 Anhänge

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

ETA-10/0012 vom 19. März 2015

Europäische Technische Bewertung ETA-10/0012

Seite 2 von 32 | 15. Februar 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z7874.16 8.06.01-269/15

Europäische Technische Bewertung ETA-10/0012

Seite 3 von 32 | 15. Februar 2016

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS EM ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS EM und einem Stahlteil nach Anhang A2 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung			
Charakteristische Werte unter statischen und quasi- statischen Einwirkungen für Bemessung nach TR 029 oder CEN/TS 1992-4:2009, Verschiebungen	Siehe Anhang C 1 bis C 10			
Charakteristische Werte für die seismischen Leistungskategorien C1 und C2 für die Bemessung nach Technical Report TR 045, Verschiebungen	Siehe Anhang C 11 bis C 14			

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Z7874.16 8.06.01-269/15

Europäische Technische Bewertung ETA-10/0012

Seite 4 von 32 | 15. Februar 2016

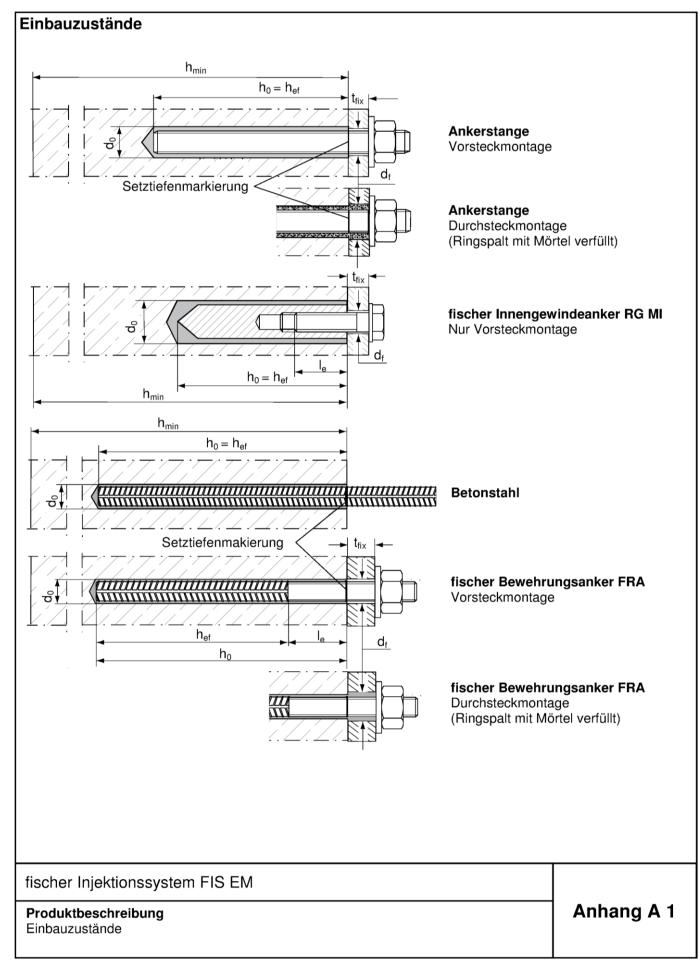
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 001, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

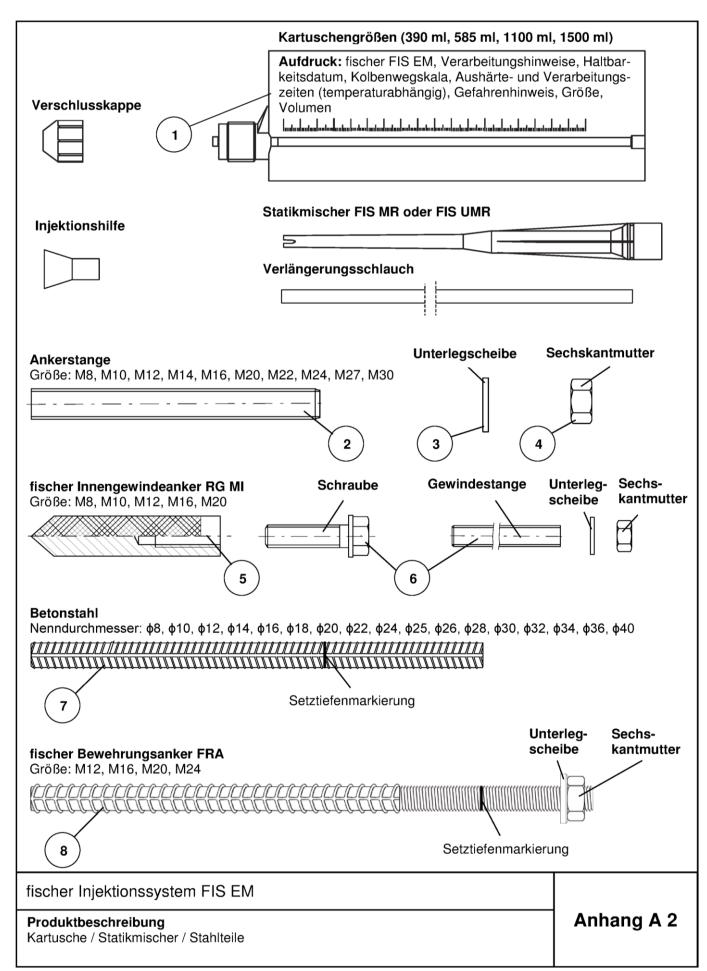
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 15. Februar 2016 vom Deutschen Institut für Bautechnik

Andreas Kummerow i. V. Abteilungsleiter

Beglaubigt


Z7874.16 8.06.01-269/15

Z24671.16

Materialien

Teil	Bezeichnung		Mate	erial			
1	Mörtelkartusche		Mörtel, Härte	er, Füllstoffe			
	Stahlart	Stahl, verzinkt	Nichtroste A		Hochkorrosions- beständiger Stahl C		
2	Ankerstange	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		oder 80 06-1:2009 104; 1.4578; 139; 1.4362; 662, 1.4462 8-1:2014 0 N/mm ² 12 % chnung ¹⁾	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 12$ % Bruchdehnung ¹⁾ 1.4565;1.4529		
3	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004	oder feuerverzinkt 1.4362				
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 verzinkt ≥ 5 μm, ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014		50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362		Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 verzinkt ≥ 5 μm, ISO 4042:1999 A2K	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014		Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
6	Schraube oder Anker- / Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt ≥ 5 μm, ISO 4042:1999 A2K	Festigke 7 EN ISO 35 1.4401; 1.44 1.4571; 1.44 EN 1008	0 06-1:2009 104; 1.4578; 139; 1.4362	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
7	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom f_{yk} und k gemäß NDP oder I $f_{uk} = f_{tk} = k \cdot f_{yk}$			+ AC:2010		
8	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom B oder C mit f _{yk} und k gemä NDP oder NCL der EN 1992-1-1:2004 + AC:20 f _{uk} = f _{tk} = k·f _{yk}	sse 70 oder 80 -1:2009 9, 1.4401, 1.4404, 1.4571 9, 1.4362, 1.4062 2014				
g		inforderungen der seismische 2.3.2 im Bereich $A_5 > 8 \%$ lie chten)					
	her Injektionssystem	,					

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1: Übersicht Nutzungs- und Leistungskategorien

Beanspruchung of Verankerung	der				FIS	EM mit .				
		Anker	stange	Innengew	her indeanker MI	Beto	nstahl	Bewehru	her ngsanker RA	
					1-					
Hammerbohren mit Standardbohrer	B4440000000	alle Größen								
Hammerbohren mit Hohlbohrer (Heller "Duster Expert" oder Hilti "TE-CD, TE-YD")		Bohrernenndurchmesser (d ₀) 12 mm bis 35 mm								
Diamantbohren					alle G	rößen				
Statische und quasi-statische	ungerissenen Beton	alle	Tabellen: C1, C5,	alle	Tabellen: C2, C5,	alle	Tabellen: C3, C5,	alle	Tabellen: C4, C5,	
Belastung, im	gerissenen Beton	Größen	C6, C10	Größen	C7, C11	Größen	C8, C12	Größen	C9, C13	
Seismische Leistungs- kategorie	C1	M10 bis M30	Tabellen: C14, C16, C17			φ10 bis φ32	Tabellen: C15, C16, C18			
(nur Hammer- bohren mit Standardbohrer / Hohlbohrer)	C2	M12, M16, M20, M24	Tabellen: C14, C16, C19	-				-		
Nutzungs-	Trockener oder nasser Beton				alle G	rößen				
kategorie	Wasser- gefülltes Bohrloch	alle Größen								
Einbau- temperatur		+5 °C bis +40 °C								
Gebrauchs- temperatur-	Temperatur- bereich I							nd		
bereiche	Temperatur- bereich II	-40 °C b	is +72 °C			temperatur +50 °C und emperatur +72 °C)				

fischer Injektionssystem FIS EM

Verwendungszweck

Spezifikationen (Teil 1)

Anhang B 1

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206:2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung wird durchgeführt in Übereinstimmung mit: EOTA Technical Report TR 029 "Bemessung von Verbunddübeln", Fassung September 2010 oder CEN/TS 1992-4:2009
- Verankerungen unter seismischer Einwirkung (gerissener Beton) werden bemessen in Übereinstimmung mit:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B. plastische Gelenke) der Betonkonstruktion anzuordnen
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Injektionssystem FIS EM

Verwendungszweck
Spezifikationen (Teil 2)

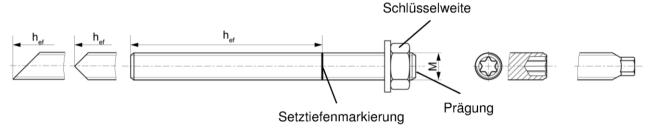

Anhang B 2

Tabelle B2: Mon	ıtagekennw	erte fü	r A nke	rstan	gen								
Größe				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Schlüsselweite		SW		13	17	19	22	24	30	32	36	41	46
Bohrernenn- durchmesser		d ₀		12	14	14	16	18	24	25	28	30	35
Bohrlochtiefe		h ₀	$h_0 = h_{ef}$										
Effektive		h _{ef,min}		60	60	70	75	80	90	93	96	108	120
Verankerungstiefe		h _{ef,max}		160	200	240	280	320	400	440	480	540	600
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Durchmesser des Durchganglochs im	Vorsteck- montage	d _f		9	12	14	16	18	22	24	26	30	33
Anbauteil ¹⁾	Durchsteck- montage	d,		14	16	16	18	20	26	28	30	33	40
Mindestdicke des Betonbauteils		h_{min}		1	h _{ef} + 30 (≥ 100)		h _{ef} + 2d ₀						
Maximales Montage- drehmoment		$T_{inst,max}$	[Nm]	10	20	40	50	60	120	135	150	200	300

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

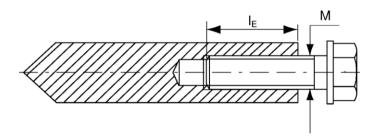
Ankerstange:

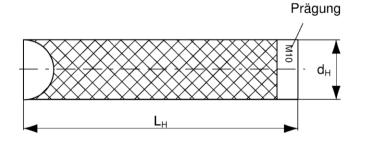
Prägung (an beliebiger Stelle):

Festigkeitsklasse 8.8 oder hochkorrosionsbeständiger Stahl, Festigkeitsklasse 80: • Nichtrostender Stahl A4, Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl, Festigkeitsklasse 50: • • Oder Farbmarkierung nach DIN 976-1

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- · Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 3, Tabelle A1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- · Markierung der Verankerungstiefe


fischer Injektionssystem FIS EM	
Verwendungszweck Montagekennwerte Ankerstange	Anhang B 3



Größe			M8	M10	M12	M16	M20					
Hülsendurchmesser	d _H		12	16	18	22	28					
Bohrernenn- durchmesser	d ₀		14	18	20	24	32					
Bohrlochtiefe	h ₀		$h_0 = h_{ef}$									
Effektive Verankerungstiefe $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200					
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	55	65	75	95	125					
Durchmesser des Durchgang- lochs im Anbauteil ¹⁾	d _f		9	12	14	18	22					
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260					
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45					
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16	20					
Maximales Montagedrehmoment	T _{inst,max}	[Nm]	10	20	40	80	120					

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

fischer Innengewindeanker RG MI

Prägung: Ankergröße

z.B.: **M10**

Nichtrostender Stahl zusätzlich **A4**

z.B.: M10 A4

Hochkorrosionsbeständiger Stahl

zusätzlich C z.B.: M10 C

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 3, Tabelle A1 entsprechen

fischer Injektionssystem FIS EM

Verwendungszweck

Montagekennwerte fischer Innengewindeanker RG MI

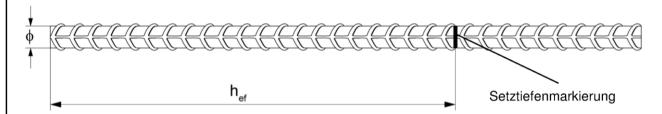
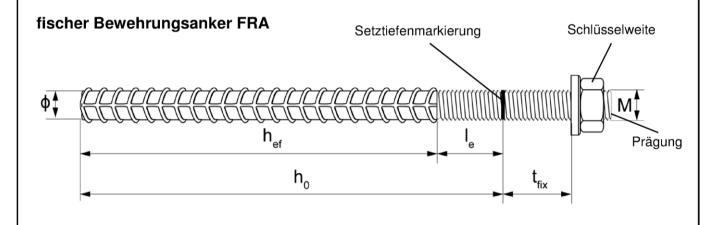

Anhang B 4

Tabelle B4: Montageke	nnwerte f	ür Bet	onst	tah	ıl									
Stabnenndurchmesser		ф	8 ¹⁾)	10 ¹⁾	12	2 ¹⁾	14	16	18	20	22	24	
Bohrernenn- durchmesser	d ₀		10 1	12	12 14	14	16	18	20	25	25	30	30	
Bohrlochtiefe	h ₀		$h_0 = h_{ef}$											
Effektive	$h_{\text{ef,min}}$		60)	60	7	0	75	80	85	90	94	98	
Verankerungstiefe	h _{ef,max}	[mm]	160	0	200	24	40	280	320	360	400	440	480	
Minimaler Achs- und Randabstand	S _{min} = C _{min}		40		45	5	55	60	65	75	85	95	105	
Mindestdicke des Betonbauteils	h _{min}				ef + 30 ≥ 100)			h _{ef} + 2d ₀						
Stabnenndurchmesser		ф	25	;	26	2	8	30	32	34	36	40		
Bohrernenn- durchmesser	d ₀		30		35	3	5	40	40	40	45	55		
Bohrlochtiefe	h ₀								$h_0 = h_{ef}$					
Effektive	$h_{\text{ef,min}}$		100	0	104	1	12	120	128	136	144	160		
Verankerungstiefe	h _{ef,max}	[mm]	500	0	520	56	60	600	640	680	720	800		
Minimaler Achs- und Randabstand	S _{min} = C _{min}		110	0	120	13	30	140	160	170	180	200		
Mindestdicke des Betonbauteils	h _{min}			h _{ef} + 2d ₀										

¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2009 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)


fischer Injektionssystem FIS EM	
Verwendungszweck Montagekennwerte Betonstahl	Anhang B 5

Größe				М1	2 ¹⁾	M16	M20	M24	
Stabnenn- durchmesser		ф		12		16	20	25	
Schlüsselweite		SW		1	9	24	30	36	
Bohrernenn- durchmesser		d_0		14	16	20	25	30	
Bohrlochtiefe		h ₀				h _{ef}	+ l _e		
Effektive		$h_{\text{ef},\text{min}}$		7	0	80	90	96	
Verankerungstiefe		$h_{\text{ef},\text{max}}$		14	40	220	300	380	
Abstand Betonoberfläche zur Schweißstelle		l _e	[mm]	n]		100			
Minimaler Achs- und Randabstand		S _{min} = C _{min}		5	5	65	85	105	
Durchmesser des Durchganglochs im	Vorsteck- montage	≤ d _f		1	4	18	22	26	
Anbauteil ²⁾	Durchsteck- montage	≤ d _f		1	8	22	26	32	
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30 (≥ 100)					
Maximales Montage- drehmoment		T _{inst,max}	[Nm]	40		60	120	150	

¹⁾ Beide Bohrernenndurchmesser sind möglich

²⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Prägung stirnseitig z. B.: FRA (für nichtrostenden Stahl); FRA C (für hochkorrosionsbeständigen Stahl)

fischer Injektionssystem FIS EM

Verwendungszweck
Montagekennwerte fischer Bewehrungsanker FRA

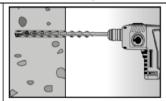
Anhang B 6

Tabelle B6: K	Tabelle B6: Kennwerte der Stahlbürste FIS BS Ø															
Bohrernenn- durchmesser	d ₀	[mm]	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Stahlbürsten- durchmesser	d _b	[mm]	14	16	20		25	26	27	30		40		42	47	58

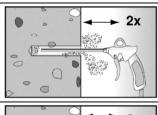
Tabelle B7: Maximal zulässige Verarbeitungszeit des Mörtels und minimale Wartezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

Systemtemperatur	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾			
[°C]	t _{work} [Minuten]	t _{cure} [Stunden]			
+5 bis +10	120	40			
≥ +10 bis +20	30	18			
≥ +20 bis +30	14	10			
≥ +30 bis +40	7	5			

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

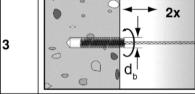

fischer Injektionssystem FIS EM

Verwendungszweck
Reinigungswerkzeug
Verarbeitungs- und Aushärtezeiten

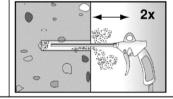

Anhang B 7

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B2**, **B3**, **B4**, **B5**


2

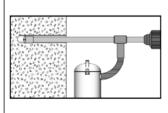
4


2

Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B6**

Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)



Mit Schritt 6 fortfahren

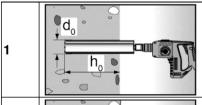
Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

Einen geeigneten Hohlbohrer (siehe **Tabelle B1**) auf Funktion der Staubabsaugung prüfen

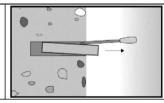
Verwendung eines geeigneten Staubabsaugsystems wie z.B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

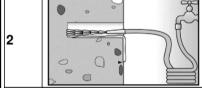
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B2, B3, B4, B5**

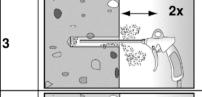
Mit Schritt 6 fortfahren

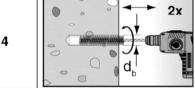

fischer Injektionssystem FIS EM

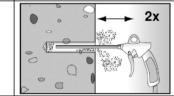
Verwendungszweck
Montageanleitung Teil 1


Anhang B 8

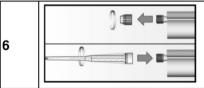

Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)


Bohrloch erstellen. Bohrlochdurchmesser $\mathbf{d_0}$ und Bohrlochtiefe $\mathbf{h_0}$ siehe **Tabellen B2, B3, B4, B5**


Bohrkern brechen und herausziehen


Bohrloch spülen, bis das Wasser klar wird

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)


Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten. Entsprechende Bürsten siehe **Tabelle B6**

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Kartuschenvorbereitung

5

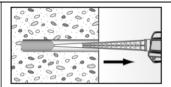
Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

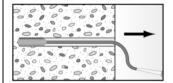
Kartusche in die Auspresspistole legen

Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen

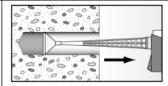
fischer Injektionssystem FIS EM


Verwendungszweck Montageanleitung Teil 2 Anhang B 9

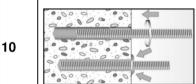
Z24671.16

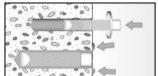

8

Mörtelinjektion


9

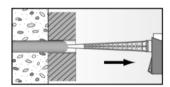
Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden




Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

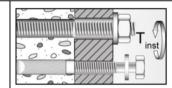
Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

Montage Ankerstange und fischer Innengewindeanker RG MI



Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungselementes muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein

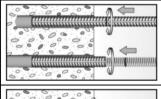
Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer Zentrierkeile) fixieren bis der Mörtel auszuhärten beginnt


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

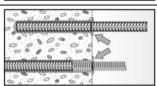
11

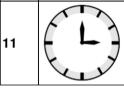
Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7**

12

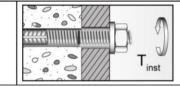

Montage des Anbauteils, T_{inst,max} siehe **Tabellen B2** und **B3**

fischer Injektionssystem FIS EM


Verwendungszweck Montageanleitung Teil 3 Anhang B 10


Einbau Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben



Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein

10

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7**

12

Montage des Anbauteils, T_{inst,max} siehe **Tabelle B5**

fischer Injektionssystem FIS EM

Verwendungszweck Montageanleitung Teil 4 Anhang B 11

Z24671.16

	Gewind	lestangen												
Größe	•				M8	M10	M12	M14	M16	M20	M22	M24	M27	МЗ
Zugtra	agfähigkeit, Stahl	lversagen				T								
- ნ ა	Stahl verzinkt		5.8		19 29	29 47	43 68	58 92	79 126	123 196	152 243	177 282	230 368	28 44
Trag- t N _{Rk,s}	Nichtrostender	Eostiakoita	8.8 50		19	29	43	58	79	123	152	177	230	28
Charakt. ' fähigkeit	Stahl A4 und	Festigkeits- klasse		[kN]										
Char fähiç	Hochkorrosions- beständiger		70		26	41	59	81	110	172	212	247	322	39
	Stahl C		80		30	47	68	92	126	196	243	282	368	44
Teilsio	cherheitsbeiwerte	e ¹⁾												
-s	Stahl verzinkt		5.8							50				
rheit ‱,	Nichtrostender	Faatiakaita	8.8							50				
eilsicherheits beiwert _{YMs,N}	Stahl A4 und	Festigkeits- klasse	50	[-]						86				
Teilsicherheits- beiwert mss,n	Hochkorrosions- beständiger									/ 1,87				
<u> </u>	Stahl C		80						1,	60				
	ertragfähigkeit, Stahlversagen ne Hebelarm													
ohne Hebelarm 5.8 9 15 21 29 39 61 76 89 115 14 8.8 15 23 34 46 63 98 122 141 184 22												1/		
Trag-	Stahl verzinkt		15	23	34	46	63	98	122	141	184	22		
t. Tra	Montrosteriaer	Festigkeits-	50	ri. N II	9	15	21	29	39	61	76	89	115	14
Charakt. 7 fähigkeit '	Stahl A4 und Hochkorrosions-	klasse	70	[kN]	13	20	30	40	55	86	107	124	161	19
S Tail	beständiger Stahl C		80		15	23	34	46	63	98	122	141	184	22
mit He	ebelarm													
			5.8		19	37	65	104	166	324	447	560	833	11
ege- oRk,s	Stahl verzinkt		8.8		30	60	105	167	266	519	716	896	1333	17
t. Bieg nt M ^o ri	Nichtrostender Stahl A4 und	Festigkeits-	50	[Nm]	19	37	65	104	166	324	447	560	833	11
Charakt. moment	Hochkorrosions-	klasse	70		26	52	92	146	232	454	626	784	1167	15
S E	beständiger Stahl C		80		30	60	105	167	266	519	716	896	1333	17
Teilsio	cherheitsbeiwerte	e ¹⁾												
	Stahl verzinkt		5.8						1,	25				
eits _{Ms,V}	Starii verzirikt		8.8] [1,	25				
eilsicherheits beiwert _{YMs,V}	Nichtrostender Stahl A4 und	Festigkeits-	50	[-]					2,	38				
ilsic	Hochkorrosions- 70 1,25 ²⁾ / 1,56													
beständiger Stahl C 80 1,33									33					
¹⁾ Falls keine abweichenden nationalen Regelungen existieren $^{2)}$ Nur zulässig für Stahl C, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12 \%$ (z.B. fischer Ankerstangen)														
fischer Injektionssystem FIS EM														

Tabelle C2:	Charakteristische Werte für die Stahltragfähigkeit unter Zug-/
	Querzugbeanspruchung von fischer Innengewindeankern RG MI

			•	_		•			
Größe					M8	M10	M12	M16	M20
Zugtragfähigkeit,	Stah	lversagen							
		Festigkeits-	5.8		19	29	43	79	123
Charakteristische	N.I.	klasse	8.8	[kN]	29	47	68	108	179
Tragfähigkeit mit Schraube	IN _{Rk,s}	Festigkeits-	A4	[KIN]	26	41	59	110	172
Comado		Klasse 70	С		26	41	59	110	172
Teilsicherheitsbe	iwert	e ¹⁾							
		Festigkeits-	5.8				1,50		
Teilsicherheits-		klasse	8.8	r 1			1,50		
beiwert	YMs,N	Festigkeits-	A4	[-]			1,87		
		Klasse 70	С				1,87		
Quertragfähigkeit	t, Stal	nlversagen							
ohne Hebelarm									
		Festigkeits-	5.8		9,2	14,5	21,1	39,2	62,0
Charakteristische	.,	klasse	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
Tragfähigkeit mit 'Schraube	V Rk,s	Festigkeits-	A4	[KIN]	12,8	20,3	29,5	54,8	86,0
o mad so		Klasse 70	С		12,8	20,3	29,5	54,8	86,0
mit Hebelarm									
		Festigkeits-	5.8		20	39	68	173	337
Charak- teristisches	$M^0_{Rk,s}$	klasse	8.8	[Nm]	30	60	105	266	519
Biegemoment	IVI Rk,s	Festigkeits-	A4	נואוון	26	52	92	232	454
		Klasse 70	С		26	52	92	232	454
Teilsicherheitsbe	iwert	e ¹⁾							
		Festigkeits-	5.8				1,25		
Teilsicherheits-		klasse	8.8	r 1			1,25		1,25 / 1,50 ²⁾
beiwert	YMs,V	Festigkeits-	A4	[-]			1,56		•
		Klasse 70	С				1,56		
1)					•				

¹⁾ Falls keine abweichenden nationalen Regelungen existieren ²⁾ Nur für Stahlversagen ohne Hebelarm

fischer Injektionssystem FIS EM

Leistungen

Charakteristische Stahltragfähigkeiten für fischer Innengewindeanker RG MI

Anhang C 2

	abelle C3: Charakteristische Werte für die Stahltragfähigkeit unter Zug- / Querzugbeanspruchung von Betonstahl																	
					,	_	_	eit	ur	iter								
Zug- / Querzugb	eanspr	uchu	ıng	von E	eto	nst	ahl											
Stabnenndurchmesser		ф	8	10 12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Zugtragfähigkeit, Stahlversagen																		
Charakteristische Tragfähigkeit N _{Rk,s} [kN] A _s · f _{uk} ¹⁾																		
Quertragfähigkeit, Stahlversagen																		
ohne Hebelarm																		
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]						C),5 ·	As ·	f_{uk}^{-1})						
Charakteristische Tragfähigkeit V _{Rk,s} [kN] 0,5 · A _s · f _{uk} ¹⁾ Duktilitätsfaktor gemäß CEN/TS 1992-4-5:2009 Abschnitt 6.3.2.1 k ₂ [-]																		
mit Hebelarm																		
Charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]						1	,2 ·	W _{el}	· f _{uk}	1)						

¹⁾ f_{uk} bzw. f_{yk} ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C4: Charakteristische Werte für die Stahltragfähigkeit unter Zug- / Querzugbeanspruchung von fischer Bewehrungsankern FRA

Größe			M12	M16	M20	M24
Zugtragfähigkeit, Stahlversagen						
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	63	111	173	270
Teilsicherheitsbeiwerte ¹⁾						
Teilsicherheitsbeiwert	$\gamma_{Ms,N}$	[-]		1	,4	
Quertragfähigkeit, Stahlversage	n					
ohne Hebelarm						
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]	30	55	86	124
mit Hebelarm						
Charakteristisches Biegemoment	${\sf M^0}_{\sf Rk,s}$	[Nm]	92	233	454	785
Teilsicherheitsbeiwerte ¹⁾						
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]		1,	56	

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS EM

Leistungen
Charakteristische Stahltragfähigkeiten für Betonstahl und fischer Bewehrungsanker FRA

Anhang C 3

Zugtragfähigkei									Alle G	rößen	ı			
	it													
Faktoren gemäß	3 CEN/TS 1992-4:2	2009 A	bschn	itt 6	.2.2	2.3								
Ungerissener Be	ton	k _{ucr}							10),1				
Gerissener Betor	n	k _{cr}	[-]						7,	2				
Faktoren für Be	tondruckfestigkei	ten > (C20/25											
_	C25/30								1,0	02				
_	C30/37								1,0	04				
Erhöhungs	C35/45	Ψ_{c}	[-]						1,0	06				
faktor für $ au_{Rk}$	C40/50	1 C	[[]						1,0	07				
_	C45/55								1,0	08				
	C50/60								1,0	09				
Versagen durch														
_	h / h _{ef} ≥ 2,0								1,0					
Randabstand _	$2.0 > h / h_{ef} > 1.3$	$\mathbf{c}_{cr,sp}$	[mm]						4,6 h _{ef}		1			
	h / h _{ef} ≤ 1,3								2,26					
Achsabstand		S _{cr,sp}							2 c	cr,sp				
Querzugtragfäh														
Montagesicherh	neitsfaktoren													
Alle Einbaubedin	gungen	γ ₂ = γ _{inst}	[-]						1,	0				
Betonausbruch	auf der lastabgev	<i>r</i> andte	n Seit	е										
Faktor k gemäß Abschnitt 5.2.3.3 CEN/TS 1992-4- Abschnitt 6.3.3	3 bzw. k₃ gemäß	k ₍₃₎	[-]						2,	0				
Betonkantenbru	ıch													
Der Wert von h _{ef} unter Querbelast	(= I _f)		[mm]						min (h	_{ef} ; 8d)				
Rechnerische Du	ırchmesser													
				M	3	M10	M12	M14	M16	M20	M22	M24	M27	МЗ
Größe		d		8		10	12	14	16	20	22	24	27	30
fischer Ankerstar			[1			-		l	1
fischer Ankerstar Standard Gewind		d	[mm]	12	2	16	18	-	22	28		-	_	-
Größe fischer Ankerstar Standard Gewind fischer Innengew fischer Bewehrur	destange vindeanker RG MI		[mm]	12	2	16 -	18 12	-	22 16	28 20	-	25	-	-
fischer Ankerstar Standard Gewind fischer Innengew	destange vindeanker RG MI ngsanker FRA	d	[mm]	12 - 8	10	-	12	-		20			- - 2 34	_

	ristische W dard Gewi ; ungerisse	ndesta	ngen	im ha	mme	rgebo					_	
Größe			М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Kombiniertes Versagen	durch Herau	sziehen เ	and Be	etonau	sbruc	h						
Rechnerischer Durchmess	ser d	[mm]	8	10	12	14	16	20	22	24	27	30
Ungerissener Beton												
Charakteristische Verbu	ndtragfähigk	ceit im un	geriss	senen	Beton	C20/2	5					
Hammerbohren mit Standa	ard- oder Hoh	lbohrer (t	rocker	er und	nasse	r Beto	<u>n)</u>					
Temperaturbereich ¹⁾	<u> </u>	[N/mm ²]	16	16	15	14	14	13	13	13	12	12
Temperaturbereich	Rk,ucr	[[14/11111]	15	14	14	13	13	12	12	12	11	11
Hammerbohren mit Stand	<u>ard- oder Hol</u>	nlbohrer (v	vasser	rgefüllt	es Boh	<u>rloch)</u>						
Temperaturbereich ¹⁾	<u> </u>	[N/mm ²]	16	16	15	13	13	11	11	10	10	9
Temperaturbereich	Rk,ucr	[[14/11111]	15	14	14	13	12	11	10	10	9	9
Diamantbohren (trockener	rund nasser l	Beton sov	ie was	sserge	ülltes	<u>Bohrlo</u>	<u>ch)</u>					
Temperaturbereich ¹⁾	l	[N/mm²]	16	15	13	12	12	10	10	10	9	9
Temperaturbereich	I Rk,ucr	[[14/11111]	15	14	12	11	11	10	9	9	8	8
Montagesicherheitsfakto	oren											
Trockener und nasser Bet		[-]			1	,0				1	,2	
Wassergefülltes Bohrloch	$\gamma_2 = \gamma_{\text{inst}}$	[-]					1	,4				
Gerissener Beton												
Charakteristische Verbu	ndtragfähigk	ceit im ge	risser	en Be	ton C2	20/25						
Hammerbohren mit Stand	ard- oder Hol	nlbohrer u	nd Dia	mantb	ohren	(trocke	ner un	d nass	er Bet	on)		
Tomporaturboroich ¹⁾		[N/mm ²]	7	7	7	7	6	6	7	7	7	7
Temperaturbereich ¹⁾	T _{Rk,cr}		7	7	7	7	6	6	7	7	7	7

Hammerbohren mit Standard- oder Hohlbohrer und Diamantbohren (wassergefülltes Bohrloch)

 $[N/mm^2]$

[-]

7,5

7,5

7

1,2

1,0

7

7

6

6

6

6

6

6

6

1,4

1,2

6

6

6

6

1) I: 35 °C / 60 °C: II: 50 °C / 72 °C: siehe Anhang B 1										
1) + 05 00 / 00 00 11 50 00 / 70 00 11 4 1										
										4 \
	4	D	I A - I	00	/ 70	\sim	 00.1	100	25 20	1) .
THE SECTION OF THE SE	1	10 H	MA Annar	VI CLONG	/ / .)	O .	 0,	/ 611	3 h of .	. ,

Temperaturbereich¹⁾ —

Montagesicherheitsfaktoren

Trockener und nasser Beton

Wassergefülltes Bohrloch

fischer Injektionssystem FIS EM

Leistungen
Charakteristische Werte für statische oder quasi-statische Zugbelastung von fischer Ankerstangen und Standard Gewindestangen (ungerissener oder gerissener Beton)

Anhang C 5

Tabelle C7: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton

Combiniertes Versagen durch Herausziehen und Betonausbruch Rechnerischer Durchmesser d [mm] 12 16 18 22 28 Ingerissener Beton Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 Itammerbohren mit Standard- oder Hohlbohrer (trockener und nasser Beton) Temperaturbereich ¹⁾ Tem Tem [N/mm²] 15 14 14 13 12													
Größe		M8	M10	M12	M16	M20							
Kombiniertes Versagen durch He	erausziehen (und Betonaเ	sbruch										
Rechnerischer Durchmesser	d [mm]	12	16	18	22	28							
Ungerissener Beton													
Charakteristische Verbundtragfä	higkeit im ur	ngerissenen	Beton C20/2	5									
Hammerbohren mit Standard- oder	Hohlbohrer (1	trockener und	nasser Beto	<u>n)</u>									
Temperaturbereich ¹⁾	[N/mm ²]	15	14	14	13	12							
II TRI	k,ucr [[14/11111]	14	13	13	12	11							
Hammerbohren mit Standard- oder	Hohlbohrer (wassergefüllt	es Bohrloch)										
Temperaturbereich ¹⁾ — Ι τ _{Rk}	[N/mm ²]	14	12	12	11	10							
II TRI	k,ucr [[14/11111]	13	12	11	10	9							
Diamantbohren (trockener und nas	ser Beton sov	<u>vie wasserge</u>	<u>fülltes Bohrlo</u>	<u>ch)</u>									
Temperaturbereich ¹⁾ — Ι τ _{Rk}	[N/mm ²]	13	12	11	10	9							
II Temperaturbereich	k,ucr [[14/11111]	12	11	10	9	8							
Montagesicherheitsfaktoren													
Trockener und nasser Beton	γ _{inst} [-]		1,0		1	,2							
Wassergefülltes Bohrloch γ ₂ =	Yinst L-J			1,4									
Gerissener Beton													
Charakteristische Verbundtragfä	higkeit im ge	rissenen Be	ton C20/25										
Hammerbohren mit Standard- oder	Hohlbohrer u	ınd Diamantb	ohren (trocke	ener und nass	ser Beton)								
Temperaturbereich ¹⁾ $\frac{I}{II}$ τ_{R}	[N/mm ²]	7	6	6	7	7							
II II	k,cr [[N/IIIII]	7	6	6	7	7							
Hammerbohren mit Standard- oder	Hohlbohrer u	ınd Diamantb	ohren (wasse	ergefülltes Bo	hrloch)								
Temperaturbereich ¹⁾ $\frac{I}{II}$ τ_{R}	k,cr [N/mm²]	7	6,5	6	6	6							
II II	k,cr [[14/111111]	7	6	6	6	6							
Montagesicherheitsfaktoren													
Trockener und nasser Beton	γ _{inst} [-]		1,0		1	,2							
Wassergefülltes Bohrloch γ ₂ =	/inst L-J		1,2		1,	,4							

¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; siehe Anhang B 1

fischer Injektionssystem FIS EM

Leistungen
Charakteristische Werte für statische oder quasi-statische Zugbelastung von fischer Innengewindeankern RG MI (ungerissener oder gerissener Beton)

Anhang C 6

Tabelle C8: Charakteristische W hammergebohrten c	der dia	mar	ntgeb	ohr	_		_			Ве	etor	nsta	ahl	im				
ungerissener oder Stabnenndurchmesser	gerisse •		10 1		4	16	18	20	22	24	25	26	28	30	32	34	36	40
Kombiniertes Versagen durch Herau		-			_		_							00	-	<u> </u>		
Rechnerischer Durchmesser d					_			20	22	24	25	26	28	30	32	34	36	4
Ungerissener Beton	[]		1011	2 1	-	-	101	20			25	20		00	02	J-	-	
Charakteristische Verbundtragfähigk	eit im ur	naer	riesen	en l	Ref	hon	C2	0/25	_									
Hammerbohren mit Standard- oder Hoh																		
										13	13	13	12	12	12	12	12	1
Temperaturbereich ¹⁾ $\frac{I}{II}$ $\tau_{Rk,ucr}$				_	_				12	12	12	11	11	11	11	11	11	1
<u> Hammerbohren mit Standard- oder Hol</u>																		
Temperaturbereich ¹⁾ $\frac{I}{II}$ $\tau_{Rk,ucr}$	[N/mm²]	16 15	16 1 14 1	4 1 3 1	3 2	12 12	12 11	11 11	11 10	10 10	10 9	10 9	10 9	9	9	9	8	8
Diamantbohren (trockener und nasser					_													
•									_	10	9	9	9	9	8	8	8	7
Temperaturbereich ¹⁾ $\frac{I}{II}$ $\tau_{Rk,ucr}$	[N/mm ²]	15	14 1	2 1	1	11	10	10	9	9	9	8	8	8	8	7	7	-
Montagesicherheitsfaktoren	ı					-	-									-		_
Trockener und nasser Beton				1.	0								1	,2				
Wassergefülltes Bohrloch $\gamma_2 = \gamma_{inst}$	[-]									1,4				,				
Gerissener Beton																		
Charakteristische Verbundtragfähigk	ceit im ac	eriss	senen	Bet	tor	C	20/2	5										
Hammerbohren mit Standard- oder Hol									ner i	und	nas	ser	Beto	on)				
Temperaturbereich ¹⁾ $\frac{I}{II}$ $\tau_{Rk,cr}$											7	7	7	7	_	5 5	5	5
Hammerbohren mit Standard- oder Hol				_	_					_					5	5		_
															- E	5	5	5
Temperaturbereich ¹⁾ $\frac{I}{II}$ $\tau_{Rk,cr}$	[N/mm ²]	6	6,5 6	,5 6 ,5	,5 6	6	6	6	6	6	6	6	6	6	5	5	5	- 5
Montagesicherheitsfaktoren																		
Trockener und nasser Beton	f_1			1,	,0								1	,2				
Wassergefülltes Bohrloch $\gamma_2 = \gamma_{inst}$	[-]			1,2									1,4					
1) I: 35 °C / 60 °C; II: 50 °C / 72 °C; sie	ehe Anha	ng E	3 1															
fischer Injektionssystem FIS EM Leistungen Charakteristische Werte für statische o Betonstahl (ungerissener oder gerisse	oder quas		atische	e Zu	gbe	elas	stun	g vo	on				,	٩nl	nar	ng	C 7	7

Tabelle C9: Charakteristische Werte für die **Zugtragfähigkeit** von **fischer Bewehrungsankern FRA** im hammergebohrten oder diamantgebohrten Bohrloch; **ungerissener oder gerissener Beton**

Bonnoch, unge	rissener od	er gerissenei	r beton		
Größe		M12	M16	M20	M24
Kombiniertes Versagen durch l	- Herausziehen	und Betonausb	ruch		
Rechnerischer Durchmesser	d [mm]	12	16	20	25
Ungerissener Beton					
Charakteristische Verbundtragt	fähigkeit im ur	ngerissenen Bet	ton C20/25		
Hammerbohren mit Standard- ode	er Hohlbohrer (1	trockener und na	<u>ısser Beton)</u>		
Temperaturbereich ¹⁾ $\frac{I}{II}$ τ_{I}	[N/mm ²]	15	14	13	13
II	Rk,ucr [[N/IIIII]	14	13	12	12
Hammerbohren mit Standard- ode	er Hohlbohrer (wassergefülltes I	<u>Bohrloch)</u>		
Temperaturbereich ¹⁾ $\frac{I}{II}$ τ_{I}	[NI/mm ²]	14	12	11	10
II	Rk,ucr [[N/IIIII]	13	12	11	9
Diamantbohren (trockener und na	ısser Beton sov	vie wassergefüllt	tes Bohrloch)		
Temperaturbereich ¹⁾ — Ι τ _ι	[N/mm ²]	13	12	10	9
Temperaturbereich II	Rk,ucr [[N/IIIII]	12	11	10	9
Montagesicherheitsfaktoren					
Trockener und nasser Beton	= γ _{inst} [-]		1,0		1,2
Wassergefülltes Bohrloch	= γ _{inst} [-]		1	,4	
Gerissener Beton					
Charakteristische Verbundtragt	fähigkeit im ge	erissenen Beton	n C20/25		
Hammerbohren mit Standard- ode	<u>er Hohlbohrer ι</u>	ınd Diamantbohr	<u>en (trockener ur</u>	<u>id nasser Beton)</u>	
Temperaturbereich ¹⁾ — Ι	[N/mm ²]	7	6	6	7
	Rk,cr	7	6	6	7
Hammerbohren mit Standard- ode	<u>er Hohlbohrer ι</u>	ınd Diamantbohr	en (wassergefül	Ites Bohrloch)	
Temperaturbereich ¹⁾ — Ι	Rk,cr [N/mm²]	7	6	6	6
II	Rk,cr	7	6	6	6
Montagesicherheitsfaktoren					
Trockener und nasser Beton	= γ _{inst} [-]		1,0		1,2
Wassergefülltes Bohrloch	$= \gamma_{\text{inst}}$ [-]	1,	,2	1,	4

¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; siehe Anhang B 1

fischer Injektionssystem FIS EM

Leistungen
Charakteristische Werte für statische oder quasi-statische Zugbelastung von fischer Bewehrungsankern FRA (ungerissener oder gerissener Beton)

Anhang C 8

Tabelle	C10: Versc	hiebun	gen für	Ankers	stanger	1					
Größe		М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Verschie	bungs-Faktor	en für Zı	uglast ¹⁾								
Ungeriss	sener oder ger	issener	Beton; T	emperat	urbereic	h I, II					
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
$\delta_{\text{N}_{\infty}\text{-Faktor}}$	[[[]]]	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Verschie	bungs-Faktor	en für Q	uerlast ²⁾								
Ungeriss	sener oder ger	issener	Beton; T	emperat	urbereic	h I, II					
$\delta_{\text{V0-Faktor}}$	[mm/kN]]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
$\delta_{\text{V}_{\text{N}-\text{Faktor}}}$	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \cdot \text{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C11: Verschiebungen für fischer Innengewindeanker RG MI

Größe		М8	M10	M12	M16	M20								
Verschie	bungs-Faktor	en für Zuglast ¹⁾												
Ungeriss	Ungerissener oder gerissener Beton; Temperaturbereich I, II													
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)] 0,09 0,10 0,10 0,11 0,13													
δ _{N∞-Faktor} [IIIIII/(IN/IIIIII)]		0,13	0,15	0,16	0,17	0,19								
		en für Querlast ²⁾												
Ungeriss	sener oder ge	rissener Beton; T	emperaturbereic	h I, II										
$\delta_{\text{V0-Faktor}}$	[mm/kNI]	0,12	0,09	0,08	0,07	0,05								
$\delta_{V\infty\text{-Faktor}}$	[mm/kN]	0,18	0,14	0,12	0,10	0,08								

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot \, V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \cdot \text{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS EM

Leistungen

Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 9

Stabnen durchme	Ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Verschie	bungs-Fakt	oren f	ür Zuç	glast ¹)													
Ungeris	sener oder g	erisse	ner B	eton	Tem	pera	turbe	reich	I, II									
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²	0,07	0,08	0,09	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
$\delta_{N_{\infty}\text{-}Faktor}$	[[[[]]]]	0,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,22
Verschie	bungs-Fakt	oren f	ür Qu	erlas	2)													
Ungeris	sener oder g	erisse	ner B	eton	Tem	pera	turbe	reich	I, II									
$\delta_{\text{V0-Faktor}}$	[: /I+N I]	0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
δ _{V∞-Faktor}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,05

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \cdot \text{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C13: Verschiebungen für fischer Bewehrungsanker FRA

Größe		M12	M16	M20	M24										
Verschiebun	gs-Faktoren fü	r Zuglast ¹⁾													
Ungerissene	Ungerissener oder gerissener Beton; Temperaturbereich I, II														
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,09	0,10	0,11	0,12										
$\delta_{N\infty\text{-Faktor}}$	[111111/(14/111111)]	0,13	0,15	0,16	0,18										
Verschiebun	gs-Faktoren fü	r Querlast ²⁾													
Ungerissene	r oder gerissen	er Beton; Temperat	urbereich I, II												
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,09	0,07	0,06										
$\delta_{V_{\infty} ext{-Faktor}}$	[IIIII/KIN]	0,18	0,14	0,11	0,09										

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) ²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot \, V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \, \cdot \, \text{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS EM

Leistungen

Verschiebungen Betonstahl und fischer Bewehrungsanker FRA

Anhang C 10

Tabelle C14: Charakteristische Werte für die Stahltragfähigkeit von fischer Ankerstangen und Standard Gewindestangen für die seismische Leistungskategorie C1 oder C2

Größe					M10	M12	M14	M16	M20	M22	M24	M27	M30
	ähigkeit, Stahlver												
fischer A	nkerstangen und	Standard G		dest									
<u> </u>	Stahl verzinkt		5.8		29	43	58	79	123	152	177	230	281
rag Rk,s,			8.8		47	68	92	126	196	243	282	368	449
Charakt. Trag- ähigkeit N _{RK,S,C1}	Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[kN]	29	43	58	79	123	152	177	230	281
hara nigke	Hochkorrosions- beständiger	Niasse	70		41	59	81	110	172	212	247	322	393
ت <u>ة</u> د	Stahl C		80		47	68	92	126	196	243	282	368	449
fischer A	inkerstangen und	Standard G	ewin	dest	angen	, Leistι	ıngska	tegorie					
- 23	Stahl verzinkt		5.8			39		72	108		177		
rag ik,s,C	Starii Verziiikt		8.8			61		116	173		282		
Kt. T	Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[kN]		39		72	108		177		
hara nigke	ਲ ਲੈ Hochkorrosions-		70			53		101	152		247		
Taj C	Stahl C		80			61		116	173		282		
Quertrag	fähigkeit, Stahlve	ersagen ohn	e He	belar	m ¹⁾								
fischer A	nkerstangen, Lei	stungskateg	jorie	C1									
. 5	Stahl verzinkt Nichtrostender Stahl A4 und Hochkorrosions-	Festigkeits- klasse	5.8		15	21	29	39	61	76	89	115	141
rag k,s,C			8.8		23	34	46	63	98	122	141	184	225
kt. T			50	[kN]	15	21	29	39	61	76	89	115	141
Charakt. Trag- ähigkeit V _{RK,S,C1}			70		20	30	40	55	86	107	124	161	197
Taj C	beständiger Stahl C		80		23	34	46	63	98	122	141	184	225
Standard	l Gewindestange	n, Leistungs	kate	gorie	C1								
	Stahl verzinkt		5.8		11	15	20	27	43	53	62	81	99
Trag- V _{RK,s,C1}			8.8		16	24	32	44	69	85	99	129	158
kt. T	Nichtrostender Stahl A4 und	Festigkeits-	50	[kN]	11	15	20	27	43	53	62	81	99
Charakt. Trag- fähigkeit V _{RK,S,C1}	Hochkorrosions-	klasse	70		14	21	28	39	60	75	87	113	138
	beständiger Stahl C		80		16	24	32	44	69	85	99	129	158
fischer A	fischer Ankerstangen und		ewin	dest	angen	, Leistι	ıngska	tegorie	C2				
	Stahl verzinkt		5.8			14		27	43		62		
rag			8.8			22		44	69		99		
kt. T	Nichtrostender Stahl A4 und	Festigkeits-	50	[kN]		14		27	43		62		
Charakt. Trag- fähigkeit V _{Rk,s,C2}	Hochkorrosions-	klasse -	70			20		39	60		87		
Taj C	beständiger Stahl C		80			22		44	69		99		

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C16, für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Injektionssystem FIS EM

Leistungen

Charakteristische Stahltragfähigkeiten für fischer Ankerstangen und Standard Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 oder C2)

Anhang C 11

Tabelle C15: Charakteristische Werte für die Stahltragfähigkeit von Betonstahl (B500B) für die seismische Leistungskategorie C1

Stabnenndurchmesser φ 10 12 14 16 18 20 22 24 25 26 28 30 32

Zugtragfähigkeit, Stahlversagen¹⁾

Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1

Charakteristische Tragfähigkeit N_{Rk,s,C1} [kN] 44 63 85 111 140 173 209 249 270 292 339 389 443

Quertragfähigkeit, Stahlversagen ohne Hebelarm¹⁾

Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1

Charakteristische Tragfähigkeit V_{Rk,s,C1} [kN] 15 22 30 39 49 61 74 88 95 102 119 137 155

Tabelle C16: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard Gewindestangen und Betonstahl (B500B) für die seismische Leistungskategorie C1 oder C2

Größe	M10	N	112	M14	М	16	M20	M2	22	M24	M2	7 1	M30				
Stabnenr	ndurchmesser	ф	10	12	14	16	18	20	22	24	25	26	28	30	32		
Zugtragfä	ähigkeit, Stahlver																
	Stahl verzinkt		5.8		1,50												
Si >	——————————————————————————————————————		8.8	[-]	1,50												
rheil Yms,r	Ot - I-I A 4	Festigkeits-	50		2,86												
Teilsicherheits beiwert $\gamma_{\mathrm{Ms,N}}$	Hochkorrosions-	klasse -	70		1,50 ²⁾ / 1,87												
Teils	beständiger Stahl C		80		1,60												
Betonstahl B500B			500B								1,40						
Quertrag	fähigkeit, Stahlve	rsagen ¹⁾	·														
	Stahl verzinkt		5.8			1,25											
-S	Starii verzirikt		8.8			1,25											
rheit 'Yms,\	Nichtrostender Stahl A4 und Hochkorrosions- Stahl C Stahl C										2,38						
siche	Hochkorrosions-	klasse	70	[-]						1,2	5 ²⁾ / 1	,56					
Teils	beständiger Stahl C		80		1,33												
Betonstahl B500B					1,50												

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS EM

Leistungen

Charakteristische Stahltragfähigkeiten für Betonstahl unter seismischer Einwirkung (Leistungskategorie C1) sowie Teilsicherheitsbeiwerte (Leistungskategorie C1 oder C2)

Anhang C 12

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 siehe Tabelle C16

²⁾ Nur zulässig für Stahl C, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12 \%$ (z.B. fischer Ankerstangen)

Tabelle C17: Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen
und Standard Gewindestangen für die seismische Leistungskategorie C1 im
hammergebohrten Bohrloch

Größe			M10	M12	M14	M16	M20	M22	M24	M27	M30		
Charakteristische Verbund	tragfähig	jkeit, kon	nbinier	tes Ver	sagen	durch l	- Heraus:	ziehen	und Be	tonaus	bruch		
Hammerbohren mit Standard- oder Hohlbohrer (trockener und nasser Beton)													
Temperaturbereich ¹⁾	τ	[N/mm²]	7,0 7,0	7,0	6,7	6,5	5,7	6,7	6,7	6,7	6,7		
II	Rk,C1	[[14/11111-]	7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7		
Hammerbohren mit Standa	rd- oder	Hohlboh	rer (wa	sserge	fülltes	Bohrlo	ch)						
Temperaturbereich ¹⁾ II	τ	[N/mm²]	7,5	7,5	6,5	5,7	5,7	6,7	5,7	5,7	5,7		
II	^ℓ Rk,C1	[14/11111-]	6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7		
Montagesicherheitsfaktore	n												
Zugtragfähigkeit													
Trockener und nasser Beton		r 1			1,0				1	,2			
Wassergefülltes Bohrloch	$\gamma_2 = \gamma_{\text{inst}}$	[-]		1	,2				1,4				
Quertragfähigkeit													
Alle Einbaubedingungen	$\gamma_2 = \gamma_{inst}$	[-]					1,0						
4)			•										

¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; siehe Anhang B 1

Tabelle C18: Charakteristische Werte für die **Zugtragfähigkeit** von **Betonstahl** für die seismische Leistungskategorie **C1** im hammergebohrten Bohrloch

Stabnenndurchmesser		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Charakteristische Verbur	Charakteristische Verbundtragfähigkeit, Kombiniertes Versagen durch Herausziehen und Betonausbruch														
Hammerbohren mit Stand			<u> </u>												
Temperaturbereich ¹⁾ II		[N/mm2]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Temperaturbereich II	Rk,C1	[[4/]]]]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)															
Temperaturbereich ¹⁾ II		[N]/mm2]	7,5	7,0	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7
II	₹Rk,C1	[[14/111111-]	6,8	6,8	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Montagesicherheitsfakto	ren														
Zugtragfähigkeit															
Trockener und nasser Beto					1	,0						1,2			
Wassergefülltes Bohrloch	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,2						1	,4			
Quertragfähigkeit															
Alle Einbaubedingungen	$\gamma_2 = \gamma_{inst}$	[-]							1,0						

¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; siehe Anhang B 1

fischer Injektionssystem FIS EM

Leistungen

Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C1) für fischer Ankerstangen, Standard Gewindestangen und Betonstahl

Anhang C 13

Tabelle C19: Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard Gewindestangen für die seismische Leistungskategorie C2 im hammergebohrten Bohrloch

Größe		M12	M16	M20	M24							
Charakteristische Verbundtrag	ıfähigkeit, kom	nbiniertes Versa	igen durch Hera	usziehen und B	etonausbruch							
Hammerbohren mit Standard-	oder Hohlbohr	er (trockener u	nd nasser Betoi	n)								
Temperaturbereich ¹⁾ $\frac{I}{II}$ τ	Bk.C2 [N/mm²]	2,2	3,5	1,8	2,4							
II	Rk,C2	2,2	3,5	1,8	2,4							
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)												
Temperaturbereich ¹⁾ $\frac{I}{II}$ $\tau_{Rk,C2}$ $[N/mm^2]$ $\frac{2,3}{2,3}$ $\frac{3,5}{3,5}$ $\frac{1,8}{1,8}$ $\frac{2,1}{2,1}$												
II	Rk,C2	2,3	3,5	1,8	2,1							
Montagesicherheitsfaktoren												
Zugtragfähigkeit												
Trockener und nasser Beton			1,0		1,2							
Wassergefülltes Bohrloch ^{γ2}	$=\gamma_{\text{inst}}$ [-]	1,2										
Quertragfähigkeit												
Alle Einbaubedingungen γ ₂	$=\gamma_{inst}$ [-]		1	,0								
Verschiebungen unter Zuglast	2)											
$\delta_{N,(DLS) ext{-}Faktor}$	[mm/(N/mm²)]	0,09	0,10	0,11	0,12							
δ _{N,(ULS)-Faktor}	[[mm/(14/mm)]	0,15	0,17	0,17	0,18							
Verschiebungen unter Querlast ³⁾												
$\delta_{V,(DLS) ext{-}Faktor}$	[mm/kN]]	0,18	0,10	0,07	0,06							
$\delta_{V,(ULS) ext{-}Faktor}$	[mm/kN]	0,25	0,14	0,11	0,09							

¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; siehe Anhang B 1

 $\delta_{\text{N,(DLS)}} = \delta_{\text{N,(DLS)-Faktor}} \cdot \tau_{\text{Ed}}$

$$\begin{split} \delta_{N,(ULS)} &= \delta_{N,(ULS)\text{-Faktor}} \cdot \tau_{Ed} \\ (\tau_{Ed}\text{: Bemessungswert der} \\ einwirkenden Zugspannung) \end{split}$$

³⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V,(DLS)} = \delta_{V,(DLS)\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{\text{V,(ULS)}} = \delta_{\text{V,(ULS)-Faktor}} \cdot \, V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS EM

Leistungen

Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard Gewindestangen

Anhang C 14

²⁾ Berechnung der effektiven Verschiebung: