

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0012 of 15 February 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	fischer injection system FIS EM
Product family to which the construction product belongs	Bonded anchor for use in concrete
Manufacturer	fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND
Manufacturing plant	fischerwerke
This European Technical Assessment contains	32 pages including 3 annexes
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.
This version replaces	ETA-10/0012 issued on 19 March 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0012 English translation prepared by DIBt

Page 2 of 32 | 15 February 2016

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 32 | 15 February 2016

Specific Part

1 Technical description of the product

The fischer injection system FIS EM is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EM and a steel element according to Annex A2.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See Annex C 1 to C 10
Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See Annex C 11 to C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

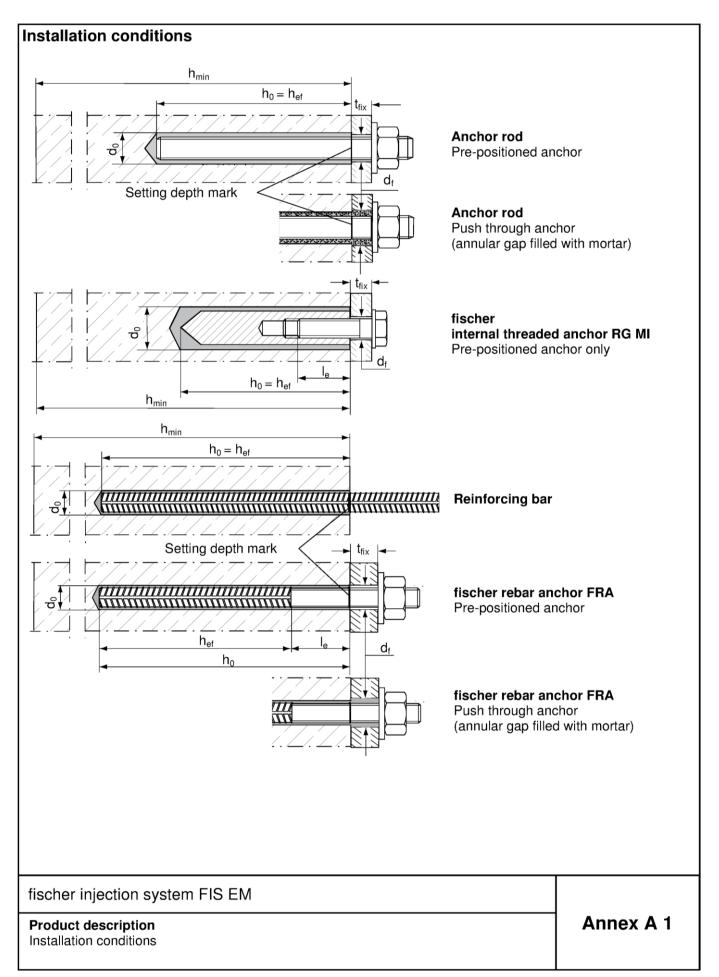
European Technical Assessment ETA-10/0012

Page 4 of 32 | 15 February 2016

English translation prepared by DIBt

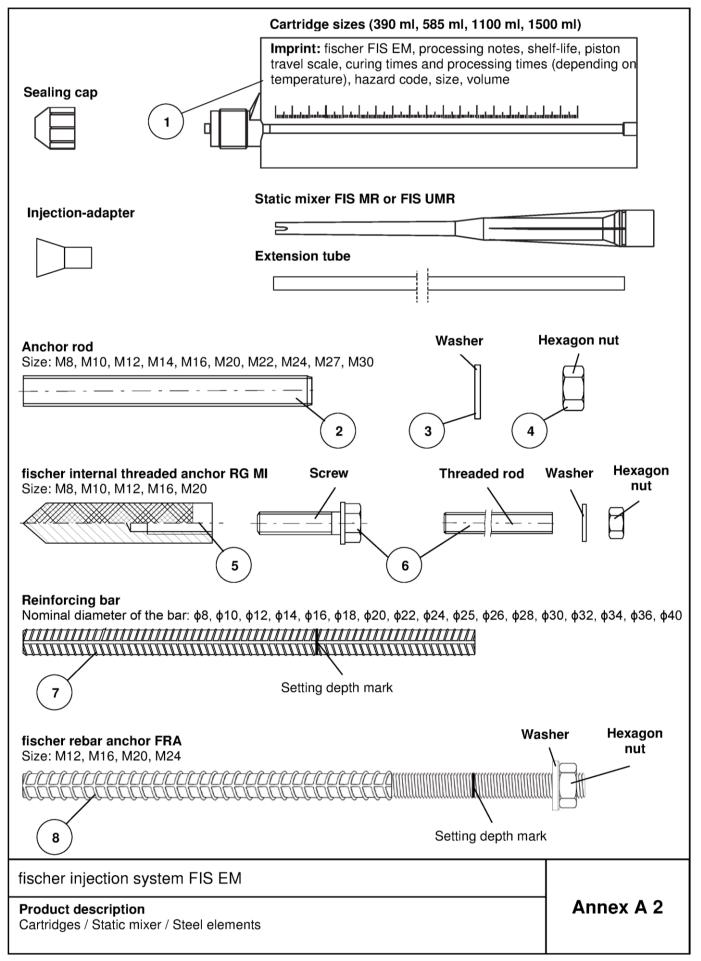
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 15 February 2016 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department *beglaubigt:* Lange

Page 6 of European Technical Assessment ETA-10/0012 of 15 February 2016

Tabl	e A1: Materials				
Part	Designation		Mat	terial	
1	Mortar cartridge		Mortar, ha	rdener, filler	
	Steel grade	Steel, zinc plated		ess steel A4	High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 12 \%$ fracture elongation ¹⁾	$\begin{array}{c} 50, 70\\ \text{EN ISO } 33\\ 1.4401; 1.4\\ 1.4571; 1.4\\ 1.4062, 1.4\\ \text{EN 1008}\\ f_{\text{uk}} \leq 100\\ f_{\text{uk}} \leq 100\\ A_5 > \\ \text{fracture e} \end{array}$	rty class 0 or 80 506-1:2009 404; 1.4578; 439; 1.4362; 662, 1.4462 38-1:2014 00 N/mm ² 12 % elongation ¹⁾	$\begin{array}{c} \mbox{Property class} \\ 50 \mbox{ or } 80 \\ \mbox{EN ISO } 3506\mbox{-}1\mbox{:}2009 \\ \mbox{or property class } 70 \mbox{ with} \\ \mbox{f}_{yk}\mbox{= } 560 \mbox{ N/mm}^2 \\ \mbox{1.4565; } 1\mbox{.4529} \\ \mbox{EN } 10088\mbox{-}1\mbox{:}2014 \\ \mbox{f}_{uk} \leq 1000 \mbox{ N/mm}^2 \\ \mbox{A}_5 > 12 \mbox{\%} \\ \mbox{fracture elongation}^{1)} \end{array}$
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4578;1.4 1.4	; 1.4404; 571; 1.4439; ¦362 38-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	50, 70 EN ISO 3 1.4401; 1.4 1.4571; 1.4	rty class 0 or 80 506-1:2009 404; 1.4578; 1439; 1.4362 38-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	ternal threaded ISO 898-1:2013		rty class 70 506-1:2009 404; 1.4578; 4439; 1.4362 38-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 µm, ISO 4042:1999 A2K	EN ISO 3 1.4401; 1.4 1.4571; 1.4	rty class 70 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$			1+AC:2010
8	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods cla with f_{yk} and k according to N of EN 1992-1-1:2004+AC:2 $f_{uk} = f_{tk} = k \cdot f_{yk}$	t: 5 70 or 80 1:2009 9, 1.4401, 1.4404, 1.4571, 9, 1.4362, 1.4062 014		
in	br applications without reactions without reactions without reactions the range of $A_5 > 8 \%$ in attegory C1 must be noted	quirements for seismic perfo accordance with TR029 Sec)	ormance categ ction 5.2.3.2 (gory C2 the frac Reductions for	cture elongation may be seismic performance
	ner injection system F luct description trials	FIS EM			Annex A 3

Specifications			-	ategories	6							
Anchorages subj	ect to				FIS	EM with						
		Anch	or rod	internal	her hreaded RG MI	Reinfor	cing bar	rebar	her anchor RA			
					-] [
Hammer drilling with standard drill bit	\$*************************************		all sizes									
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD") Diamond drilling												
Diamond drilling					all s	izes						
Static and quasi	uncracked concrete	all sizes	Tables: C1, C5,	all sizes	Tables: C2, C5,	all sizes	Tables: C3, C5,		Tables: C4, C5,			
static load, in	cracked concrete	an 51265	C6, C10	aii 31263	C7, C11	all 31263	C8, C12		C9, C13			
Seismic performance category (only	C1	M10 to M30	Tables: C14, C16, C17			φ10 to φ32	Tables: C15, C16, C13					
hammer drilling with Standard / hollow drill bits)	C2	M12, M16, M20, M24	Tables: C14, C16, C19	-								
	dry or wet concrete				all s	izes						
Use category	flooded hole				all s	izes						
Installation temperature					+5 °C to	o +40 °C						
In-service	Temperature range I	-40 °C to	о +60 °С	(max. long max. shor				d				
temperature	Temperature range II	-40 °C to	o +72 °C	(max. long max. shor		perature + perature +		d				
fischer injection	on system FI	S EM										
Intended Use								Annex	(B1			

Z24675.16

Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- · Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer injection system FIS EM

Intended Use Specifications (part 2) Annex B 2

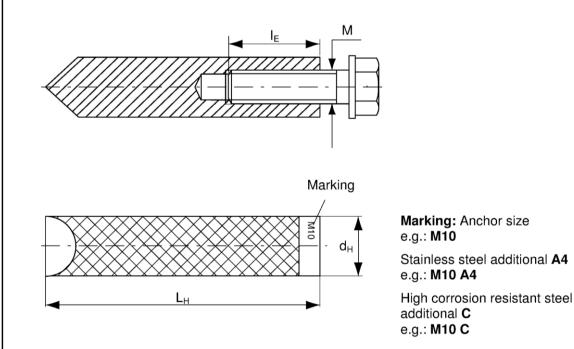

Size				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Width across flats		SW		13	17	19	22	24	30	32	36	41	46
Nominal drill bit diameter		d ₀		12	14	14	16	18	24	25	28	30	35
Drill hole depth		h ₀						h ₀ =	h _{ef}				
Effective		h _{ef,min}		60	60	70	75	80	90	93	96	108	120
anchorage depth Minimum spacing		h _{ef,max}		160	200	240	280	320	400	440	480	540	600
and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Diameter of clearance hole in -	pre- positioned anchorage	d _f		9	12	14	16	18	22	24	26	30	33
the fixture ¹⁾	push through anchorage	d _f		14	16	16	18	20	26	28	30	33	40
Minimum thickness of concrete member		h _{min}			h _{ef} + 30 (≥ 100)				ŕ	n _{ef} + 2d	o		
Maximum installation torque		T _{inst,max}	[Nm]	10	20	40	50	60	120	135	150	200	300
	⊒ \			Settin	lg dept	h mark	, ,	Mar	king				
Marking (on rando Property class 8.8, Stainless steel A4, Or colour coding a Commercial stand requirements are Materials, dime	stainless ste property cla ccording to I dard threade fulfilled: ensions and ifficate 3.1 ac	eel, prop ss 50 au DIN 976 ed rods mechan	perty cla nd high -1 , wash iical pro	ass 80 corros ers an	d hexa	istant I gon n ding A	steel, p i uts m a innex A	oropert ay also 3, Tal	y class be us ble A1	s 50: ••	he fol		
 Inspection cert Setting depth i 													

Table B3: Installation para	meters	for fisc	cher interna	al threaded	anchors R	G MI	
Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d _o		14	18	20	24	32
Drill hole depth	ho				$h_0 = h_{ef}$		
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	$I_{E,max}$		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	T _{inst,max}	[Nm]	10	20	40	80	120

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

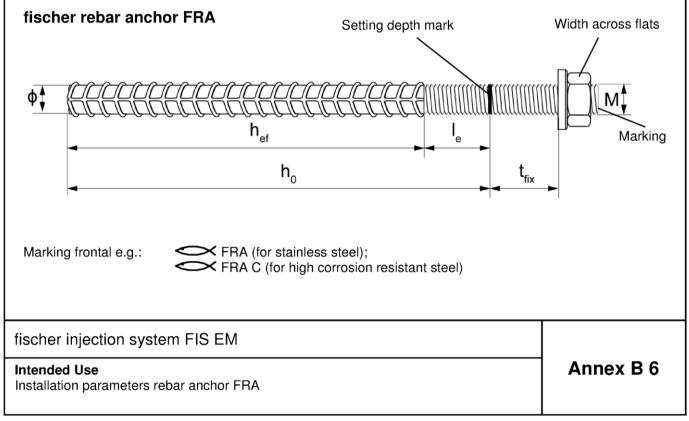
fischer internal threaded anchor RG MI

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

fischer injection system FIS EM
Intended Use

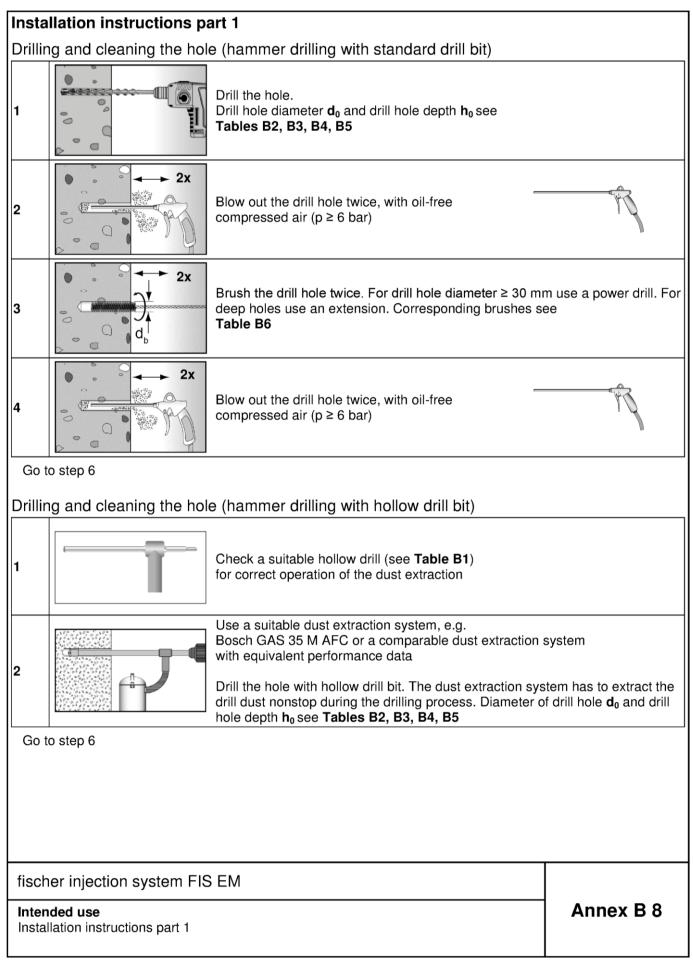
Installation parameters fischer internal threaded anchors RG MI

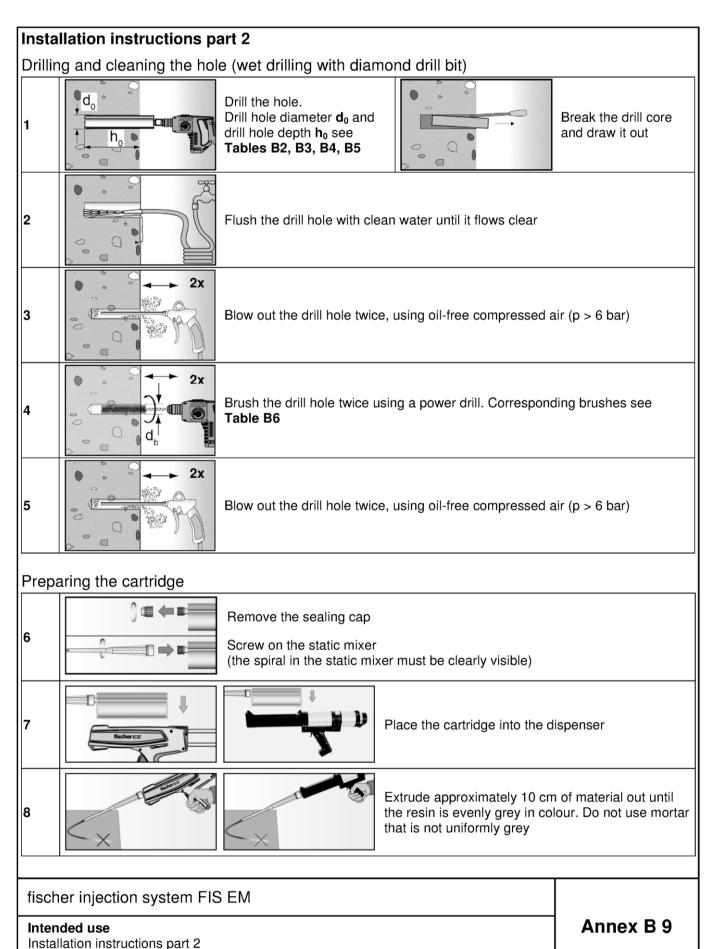
Annex B 4



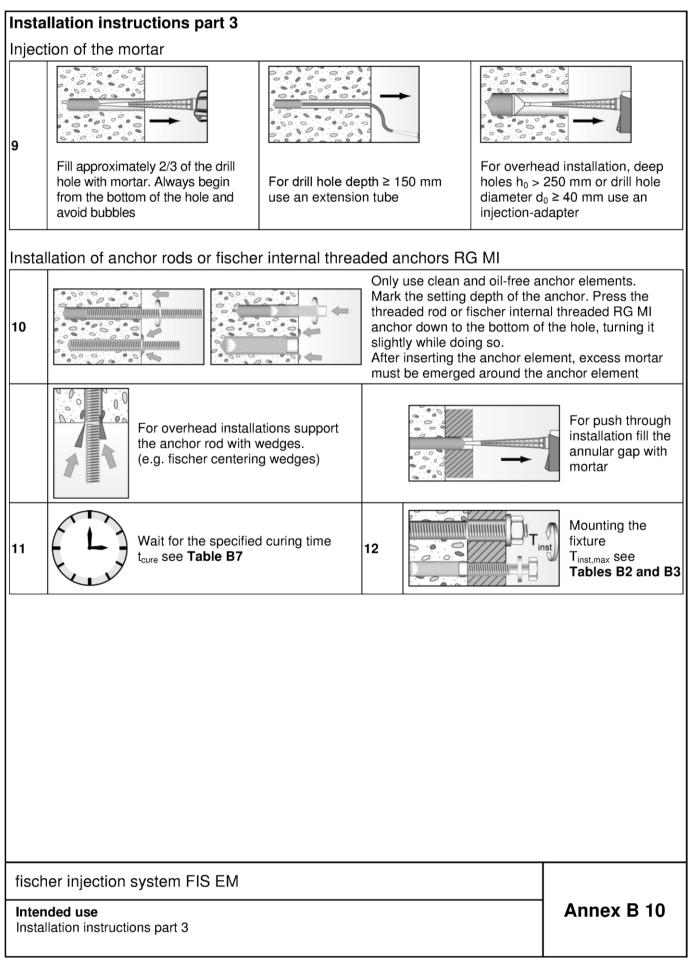
$\begin{array}{c} d_{0} \\ h_{0} \\ h_{ef,min} \\ \hline \\ S_{min} \\ = \\ C_{min} \\ \hline \\ h_{min} \\ \hline \\ d_{0} \\ \hline \\ h_{0} \\ \hline \\ h_{ef,max} \\ \hline \\ S_{min} \\ = \\ C_{min} \\ \hline \end{array}$	[mm]	60 160 40	60 200 45 45 ≥ 100) 26 35 104 520	 14 16 70 240 55 55 28 35 112 560 	75 280 60 30 40	20 $h_0 = h_{ef}$ 80 320 65 32 40 $h_0 = h_{ef}$ 128	85 360 75 h _{ef} + 2 34 40	36 45	30 94 440 95 40 55	30 98 480 105
h _{ef,min} h _{ef,max} S _{min} C _{min} h _{min} d ₀ h _o h _{ef,min} S _{min} =	φ	160 40 25 30 100 500	200 45 ≥ 100) 26 35 104 520	240 55 28 35 112	280 60 30 40	$ \begin{array}{r} 80 \\ 320 \\ 65 \\ \hline 40 \\ h_0 = h_{ef} \\ 128 \\ \end{array} $	85 360 75 h _{ef} + 2 34 40	400 85 2d ₀ 36 45	440 95 40	480 105
Pef,max S _{min} = C _{min} h _{min} d ₀ h ₀ h _{ef,min} S _{min} =	φ	160 40 25 30 100 500	200 45 ≥ 100) 26 35 104 520	240 55 28 35 112	280 60 30 40	320 65 32 40 h ₀ = h _{ef} 128	360 75 h _{ef} + 2 34 40	400 85 2d ₀ 36 45	440 95 40	480 105
S _{min} = C _{min} h _{min} d ₀ h ₀ h _{ef,min} S _{min} =	φ	40 25 30 100 500	45 h _{ef} + 30 ≥ 100) 26 35 104 520	55 28 35 112	60 30 40 120	65 32 40 $h_0 = h_{ef}$ 128	75 h _{ef} + 2 34 40	85 2d ₀ 36 45	95 40	105
= C _{min} h _{min} d ₀ h ₀ h _{ef,min} S _{min} =		25 30 100 500	hef + 30 ≥ 100) 26 35 104 520	28 35 112	30 40 120	32 40 $h_0 = h_{ef}$ 128	h _{ef} + 2 34 40	2d ₀ 36 45	40	
d ₀ h ₀ h _{ef,min} S _{min} =		25 30 100 500	≥ 100) 26 35 104 520	35	40	40 $h_0 = h_{ef}$ 128	34 40	36 45		
h ₀ h _{ef,min} n _{ef,max} S _{min} =		30 100 500	35 104 520	35	40	40 $h_0 = h_{ef}$ 128	40	45		
h ₀ h _{ef,min} n _{ef,max} S _{min} =	[mm]	100 500	104 520	112	120	$h_0 = h_{ef}$ 128			55	
h _{ef,min} h _{ef,max} S _{min} =	[mm]	500	520	_		128	· · · · · · · · · · · · · · · · · · ·			
η _{ef,max} S _{min} =	[mm]	500	520	_			136	4 4 4		
S _{min} =	[mm]			560		0.10		144	160	
=		110	100		600	640	680	720	800	
		110	120	130	140	160	170	180	200	
h _{min}						h _{ef} + 2d	D			
h _{ef}]
0 iin the	range:	0,05 ·	φ ≤ h _{rib} :			ts of				
S EM										
	ed rib o n the le bar EM	h_{ef} ed rib area f_{R} on the range: the bar , $h_{rib} =$	h _{ef} ed rib area $f_{R,min}$ mu on the range: 0,05 · · · he bar , h _{rib} = rib heig EM	h_{ef} ed rib area f _{R,min} must fulfil t on the range: 0,05 · $\phi \le h_{rib} \le$ he bar , $h_{rib} =$ rib height)	h_{ef} ed rib area f _{R,min} must fulfil the require n the range: $0,05 \cdot \phi \le h_{rib} \le 0,07 \cdot he bar$, $h_{rib} = rib height$	h_{ef} ed rib area f _{R,min} must fulfil the requirement on the range: $0,05 \cdot \phi \le h_{rib} \le 0,07 \cdot \phi$ he bar , $h_{rib} = rib$ height) EM	$h_{ef} \qquad \qquad$	h_{ef} Setting defined area $f_{R,min}$ must fulfil the requirements of on the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ the bar , $h_{rib} = rib$ height) EM	$\frac{1}{h_{ef}}$ Setting depth mar Setting depth mar ed rib area f _{R,min} must fulfil the requirements of n the range: $0,05 \cdot \phi \le h_{rib} \le 0,07 \cdot \phi$ the bar , $h_{rib} = rib$ height) EM	$\frac{h_{ef}}{\text{Setting depth mark}}$ $\frac{h_{ef}}{\text{Setting depth mark}}$ $\frac{h_{ef}}{\text{Setting depth mark}}$ $\frac{h_{ef}}{\text{Setting depth mark}}$

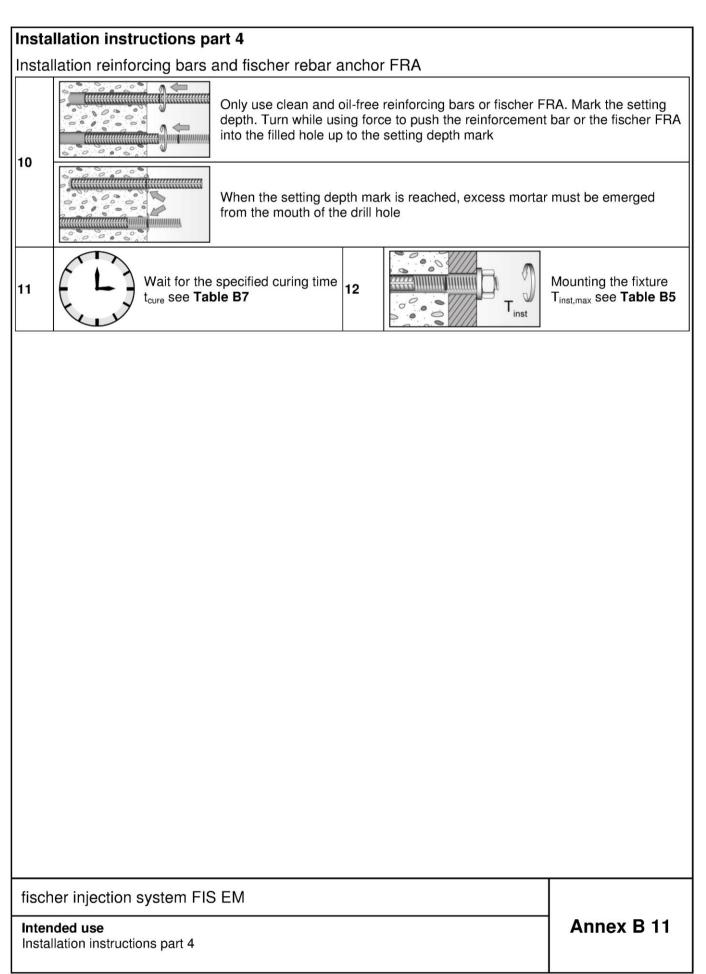
Size				M1	2 ¹⁾	M16	M20	M24		
Nominal diameter of the bar		φ		1	2	16	20	25		
Width across flats		SW		1	9	24	30	36		
Nominal drill bit diameter		d ₀		14	16	20	25	30		
Drill hole depth		h_0				h _{ef}	+ l _e			
Effective		h _{ef,min}		7	0	80	90	96		
anchorage depth		$h_{ef,max}$		14	40	220	300	380		
Distance concrete surface to welded join		l _e	[mm]			100				
Minimum spacing and minimum edge distance		S _{min} = C _{min}		5	5	65	85	105		
Diameter of clearance hole in -	pre- positioned anchorage	≤ d _f		1	4	18	22	26		
the fixture ²⁾	push through anchorage	≤ d _f		18		22	26	32		
Minimum thickness of concrete member		h _{min}			⊦ 30 I 00)		h ₀ + 2d ₀			
Maximum installation torque		T _{inst,max}	[Nm]	4	0	60	120	150		


¹⁾ Both drill bit diameters can be used ²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1



Drill bit liameter	d_0		12	14	16	18	20	24	25	28	30	32	35	40	45	55
Steel brush liameter	d _b	[mm]	14	16 20		25 26 27		30	40		1	42	47	58		
φ Ψ					<u>Mala</u> Mara				P	~~~	~~	~~	~~~	- 1/		
list	aximum uring the ted minim n tempera	curing num ten	time o	f the r ure)	nortar	the contract	oncret	and i e tem sing ti	peratu	num (ire ma	iy not	fall be	low th	ring tir	ne ¹⁾	
								1					t _{cur}			
	[°C]					[mi	nutes						[hou	rsj		
+	[°C] 5 to +10)				-	nutes _. 120]					100 40	-		
						-]					-	_		
≥ +1 ≥ +2	5 to +10 0 to +20 0 to +30)				-	120 30 14]					40 18 10			
≥ +1 ≥ +2	5 to +10 0 to +20 0 to +30 0 to +40)))	oles th	e curi	ng tim		120 30 14 7		ed				40			
≥ +1 ≥ +2 ≥ +3	5 to +10 0 to +20 0 to +30 0 to +40)))	oles th	le curi	ng tim		120 30 14 7		ed				40 18 10			





Size					M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Bearir	ng capacity under	r tensile loa	id, ste	el fail	ure									
			5.8		19	29	43	58	79	123	152	177	230	281
arinç I _{Rk,s}	Steel zinc plated		8.8		29	47	68	92	126	196	243	282	368	449
ty N	Stainless steel	property	50	[kN]	19	29	43	58	79	123	152	177	230	281
Charact.bearing capacity N _{Rk,s}	A4 and	class	70	[[,,,,]	26	41	59	81	110	172	212	247	322	393
Cha	High corrosion resistant steel C		80		30	47	68	92	126	196	243	282	368	449
Partia	I safety factors ¹⁾													
			5.8						1,	50				
ety "N	Steel zinc plated		8.8						1,	50				
l safety Γ γ _{Ms,N}	Stainless steel	Property	50	[-]					2,	86				
Partial safet factor γ _{Ms,N}	A4 and High corrosion	class	70						1,50 ²⁾	/ 1,87				
ш.	resistant steel C		80						1,	60				
Bearir	ng capacity under	r shear load	l, stee	l failu	re									
witho	ut lever arm													
ß,	Steel zinc plated		5.8		9	15	21	29	39	61	76	89	115	141
arin V _{Rk,s}			8.8		15	23	34	46	63	98	122	141	184	225
st.be	Stainless steel	Property class	50	[kN]	9	15	21	29	39	61	76	89	115	141
naraci	A4 and High corrosion	01235	70		13	20	30	40	55	86	107	124	161	197
ы С	resistant steel C		80		15	23	34	46	63	98	122	141	184	225
with le	ever arm													
D.	Stool zing plated		5.8		19	37	65	104	166	324	447	560	833	1123
. bending nt M ⁰ _{Rk,s}	Steel zinc plated		8.8		30	60	105	167	266	519	716	896	1333	1797
	Stanness steel	Property class	50	[Nm]	19	37	65	104	166	324	447	560	833	1123
Charact. momer	A4 and High corrosion		70		26	52	92	146	232	454	626	784	1167	1573
5 r	resistant steel C		80		30	60	105	167	266	519	716	896	1333	1797
Partia	I safety factors ¹⁾													
	Steel zinc plated		5.8						1,	25				
safety ' Y _{Ms,V}			8.8						1,	25				
al sa or y _h	Oldiniess sleer	Property class	50	[-]					2,	38				
Partial factor	A4 and High corrosion		70						1,25 ²⁾	/ 1,56				
ш	resistant steel C		80						1,	33				
	absence of other n ly admissible for s				and A	₅ > 12 °	% (e.g.	fische	r anch	or rods	s) 			
fisch	er injection sys	tem FIS E	М											
Daufa	ormances										-1	Δnn	ex C	1

Size					M8	M10	M12	M16	M20
Bearing capacity	/ unde	r tensile lo	ad, ste	el fail	ure				
		Property	5.8		19	29	43	79	123
Characteristic	NI	class	8.8	[kN]	29	47	68	108	179
bearing capacity with screw	$N_{Rk,s}$	Property	A4	נגואן	26	41	59	110	172
		class 70	С		26	41	59	110	172
Partial safety fac	tors ¹⁾								
		Property	5.8				1,50		
Partial safety		class	8.8	[-]			1,50		
factor	γMs,N	Property	A4	[-]			1,87		
		class 70	С				1,87		
Bearing capacity	/ unde	r shear loa	d, stee	l failu	ire				
without lever arr	n								
Characteriatia			5.8		9,2	14,5	21,1	39,2	62,0
Characteristic bearing capacity	Ve	class	8.8	.8	14,6	23,2	33,7	54,0	90,0
with screw	▼ Rk,s	Property	A4	[[1]]	12,8	20,3	29,5	54,8	86,0
		class 70	С		12,8	20,3	29,5	54,8	86,0
with lever arm									
Characteristic		Property	5.8		20	39	68	173	337
Characteristic	M ⁰ pu	class	8.8	[Nm]	30	60	105	266	519
Characteristic bending moment with screw	IVI HK,S	Property	A4	[, , , ,]	26	52	92	232	454
		class 70	С		26	52	92	232	454
Partial safety fac	ctors ¹⁾								
		Property	5.8				1,25		_
Partial safety		class	8.8	r 1			1,25		1,25 / 1,50
factor	γ̂Ms,∨	Property	A4	[-]			1,56		
		class 70	С				1,56		

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of fischer internal threaded rods RG MI

Table C3: Characteristic valshear load of reir			•	capacity und	er tensile /	
Nominal diameter of the bar		φ	8 10 12 14	16 18 20 22 2	4 25 26 28 30	0 32 34 36 40
Bearing capacity under tensile	load, ste	el fail	ure			
Characteristic bearing capacity	N _{Rk,s}	[kN]		A _s ·	f _{uk} ¹⁾	
Bearing capacity under shear le	oad, stee	el failu	ire			
without lever arm						
Characteristic bearing capacity	$V_{Rk,s}$	[kN]		0,5 · A	$h_{s} \cdot f_{uk}^{(1)}$	
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]		0	,8	
with lever arm						
Characteristic bending moment	${\sf M}^{\sf O}_{\sf Rk,s}$	[Nm]		1,2 · V	$V_{\rm el} \cdot {\bf f}_{\rm uk}^{1)}$	
Table C4: Characteristic val shear load of fisc			•	capacity und	er tensile /	
Size			M12	M16	M20	M24
Bearing capacity under tensile	load, ste	el fail	ure		•	
Characteristic bearing capacity	$N_{Rk,s}$	[kN]	63	111	173	270
Partial safety factors ¹⁾						
Partial safety factor	γMs,N	[-]		1	,4	
Bearing capacity under shear le	oad, stee	el failu	ire			
without lever arm						
Characteristic bearing capacity	$V_{Rk,s}$	[kN]	30	55	86	124
with lever arm						
Characteristic bearing capacity	$M^0_{Rk,s}$	[Nm]	92	233	454	785
Partial safety factors ¹⁾						
Partial safety factor						
r artial safety lactor	γMs,V	[-]		1,	56	

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of reinforcing bars and fischer rebar anchors FRA

Size											All	Siz	es						
Bearing capacity	under tensile lo	ad																	
Factors acc. to CI	EN/TS 1992-4:20	09 Se	ction 6	.2.2	.3														
Uncracked concret	е	k_{ucr}	11									10,1							
Cracked concrete		k _{cr}	[-]									7,2							
Factors for the co	mpressive strei	ngth o	f conc	rete	> (C20/	25												
	C25/30											1,02							
	C30/37											1,04							
Increasing factor	C35/45	Ψ_{c}	[-]									1,06							
for τ _{Bk}	C40/50	т _с	[-]									1,07	,						
	C45/55											1,08							
	C50/60											1,09							
Splitting failure																			
	h / h _{ef} ≥ 2,0											,0 h							
Edge distance,		$\mathbf{C}_{cr,sp}$	[mm]								4,6 h	-		1					
	h / h _{ef} ≤ 1,3		[]									26 r							
Spacing		S _{cr,sp}									2	C _{cr,s}	sp.						
Bearing capacity		d																	
Installation safety	factors																		
		γ2																	
All installation conc	litions	=	[-]									1,0							
Concrete pry-out	failure	γinst																	
Factor k acc. to TR																			
Section 5.2.3.3 res		Ŀ										~ ~							
CEN/TS 1992-4-5:		$k_{(3)}$	[-]									2,0							
Section 6.3.3	-																		
Concrete edge fai																			
The value of h _{ef} (= under shear load	f)		[mm]								min	(h _{ef} ;	8d)						
Calculation diameter	ers															_			
Size				M	8	M1()	M12	M.	14	M16	6 N	Л20	M22	M24	· M	/ 127	M	30
fischer anchor rods standard threaded		d		8		10		12	1	4	16		20	22	24		27	3	80
fischer internal threaded a	nchors RG MI	d	[mm]	12	2	16		18	-		22		28	-	-		-		-
fischer rebar ancho	ors FRA	d		-		-		12	-		16		20	-	25		-		-
Nominal diameter o	of the bar		ф	8	10	12	14	16	18	20) 22	24	25	26 28	30 3	32	34	36	4(
Reinforcing bar		d	[mm]	8	10	12	14	16	18	20) 22	24	25	26 28	30 3	32	34	36	40

fischer injection system FIS EM

Performances

General design factors relating to the characteristic bearing capacity under tensile $\space{-1mu}$ shear load

uncracked or cracked or	concr	-+-			ioles;						
Size		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Combined pullout and concrete cone fa		-									
	[mm]	8	10	12	14	16	20	22	24	27	30
Uncracked concrete											
Characteristic bond resistance in uncra											
Hammer-drilling with standard drill bit or ho		i					10	10	10	10	10
Temperature range ¹⁾ $-$ I $\tau_{Rk,ucr}$ [N/	l/mm²]	15	16 14	15 14	14 13	14 13	13 12	13 12	13 12	12 11	12 11
Hammer-drilling with standard drill bit or ho			flooded	d hole)							
		16	16	15	13	13	11	11	10	10	9
Temperature range ¹⁾ $-$ I $\tau_{Rk,ucr}$ [N/	l/mm^]	15	14	14	13	12	11	10	10	9	9
Diamond-drilling (dry and wet concrete as	well as	floode	ed hole)		I					
		16	15	13	12	12	10	10	10	9	9
Temperature range ¹⁾ $-$ I $\tau_{Rk,ucr}$ [N/	l/mm²]	15	14	12	11	11	10	9	9	8	8
Installation safety factors	•										
Dry and wet concrete	[-]			1,	0				1,	,2	
Flooded hole $\gamma_2 = \gamma_{inst}$	[-]					1,	4				
Cracked concrete											
Characteristic bond resistance in crack	ed con	crete	C20/2	5							
Hammer-drilling with standard drill bit or ho	<u>ollow dr</u>	<u>rill bit a</u>	<u>Ind dia</u>	mond-	drilling	<u>(dry a</u>	nd wet	concr	<u>ete)</u>		
Temperature range ¹⁾ $-$ I $\tau_{Rk,cr}$ [N	J/mm²]	7	7 7	7 7	7	6 6	6	7	7	7	7
Hammer-drilling with standard drill bit or ho					-	-	Ŭ	-	,	,	
		6	7,5	7,5	7	6	6	6	6	6	6
Temperature range ¹⁾ I $\tau_{Rk,cr}$ [N	J/mm²]	6	7	7	7	6	6	6	6	6	6
Installation safety factors											
Dry and wet concrete	[-]			1,	0				1,	,2	
Flooded hole $\gamma_2 = \gamma_{inst}$	[-]			1,2					1,4		
¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see A	Annex E	3 1									
fischer injection system FIS EM Performances									Δnn	ex C	5

Characteristic values for static or quasi-static action under tensile load for fischer anchor rods and standard threaded rods (uncracked or cracked concrete)

Z24675.16

Table C7: Characteristic RG MI in hamr							
Size			M8	M10	M12	M16	M20
Combined pullout and concr	ete cone	e failure				i	
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resistan	ce in un	cracked o	concrete C20	0/25			
Hammer-drilling with standard	drill bit o	<u>r hollow d</u>	<u>rill bit (dry an</u>	d wet concre	te)		
Temperature range ¹⁾ <u>I</u>	7 -1	[N/mm ²]	15	14	14	13	12
II	^ℓ Rk,ucr	[14/1111]	14	13	13	12	11
Hammer-drilling with standard	drill bit o	<u>r hollow d</u>	rill bit (floode	<u>d hole)</u>			
Temperature range ¹⁾ — I	τ	[N/mm ²]	14	12	12	11	10
II	^ℓ Rk,ucr	[14/11111]	13	12	11	10	9
Diamond-drilling (dry and wet o	concrete	as well as	s flooded hole	<u>e)</u>			
Temperature range ¹⁾ — I	-	[N/mm ²]	13	12	11	10	9
II	^c Rk,ucr	[14/11111]	12	11	10	9	8
Installation safety factors							
Dry and wet concrete		[-]		1,0		1,	2
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
Cracked concrete							
Characteristic bond resistan	ce in cra	acked cor	ncrete C20/2	5			
Hammer-drilling with standard	drill bit o	<u>r hollow d</u>	rill bit and dia	mond-drilling	dry and wet	<u>concrete)</u>	
Temperature range ¹⁾ – I	τ	[N/mm ²]	7	6	6	7	7
II	€Rk,cr		7	6	6	7	7
Hammer-drilling with standard	drill bit o	<u>r hollow d</u>	rill bit and dia	mond-drilling	(flooded hole	<u>ə)</u>	
Temperature range ¹⁾ — I	Te	[N/mm ²]	7	6,5	6	6	6
II II	€Rk,cr		7	6	6	6	6
Installation safety factors							
Dry and wet concrete		[-]		1,0		1,	2
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]		1,2		1,	4
¹⁾ I: 35 °C / 60 °C; II: 50 °C / 7	72 °C; se	e Annex I	3 1				

Performances

Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI (uncracked or cracked concrete)

Table C8: Characteristic values of								•										
in hammer or diamono	drilled	hole	es;	un	cra	cke	ed o	or c	rac	cke	d c	on	cre	te				
Nominal diameter of the bar	ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullout and concrete cone	failure																	
Calculation diameter d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracked concrete																		
Characteristic bond resistance in un	cracked o	cond	crete	e Cź	20/2	25												
Hammer-drilling with standard drill bit o																		
Temperature range ¹⁾ $-$ I $\tau_{Rk,ucr}$	[N/mm²]	16 15	16 14	15 14	14 13	14 13	14 13	13 12	13 12	13 12	13 12	13 11	12 11			12 11		
Hammer-drilling with standard drill bit o	r hollow d	rill b	it (fle	ood	ed ł	nole)									I		
T	21	16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	8
Temperature range ¹⁾ $-$ I $\tau_{Rk,ucr}$	[[N/mm ⁻]	15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	8
Diamond-drilling (dry and wet concrete																		
Temperature range ¹⁾ $I = \tau_{Rk,ucr}$	$[N]/mm^2$	16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
$\frac{\tau_{\rm Rk,ucr}}{II}$	[iv/mm_]	15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Installation safety factors																		
Dry and wet concrete	[-]				1,0								1	,2				
Flooded hole $\gamma_2 = \gamma_{inst}$	[-]									1,4								
Cracked concrete																		
Characteristic bond resistance in cra																		
Hammer-drilling with standard drill bit o	1	T 1	it an	nd d					<u>(dry</u>		<u>a we</u>	1	ncr					
Temperature range ¹⁾ $-$ I $\tau_{Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
		1	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Hammer-drilling with standard drill bit o	<u>r hollow d</u>								r <u> </u>									
Temperature range ¹⁾ $-$ I $\tau_{Rk,cr}$	[N/mm ²]	6	7,5 6,5	6,5	6,5	6,5	6	6	6	6	6	6	6	6	5	5	5	5
		6	6,5	6,5	6	6	6	6	6	6	6	6	6	6	5	5	5	5
Installation safety factors																		
Dry and wet concrete $\gamma_2 = \gamma_{inst}$	[-]				1,0									,2				
				1,	2								1,4					
¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; se	e Annex I	B 1																

fischer injection system FIS EM

Performances

Characteristic values for static or quasi-static action under tensile load for reinforcing bars (uncracked or cracked concrete)

Size			M12	M16	M20	M24
Combined pullout and cond	rete cone	e failure				
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond resista	nce in un	cracked c	oncrete C20/2	5		
Hammer-drilling with standard	d drill bit o	r hollow dr	ill bit (dry and w	<u>vet concrete)</u>		
Temperature range ¹⁾ <u>I</u>		[N/mm ²]	15	14	13	13
II	⁷ Rk,ucr		14	13	12	12
Hammer-drilling with standard	d drill bit o	<u>r hollow dr</u>	ill bit (flooded h	<u>ole)</u>		_
Temperature range ¹⁾	_ ~	$[N/mm^2]$	14	12	11	10
II	^c Rk,ucr		13	12	11	9
Diamond-drilling (dry and wet	concrete	as well as	flooded hole)		_	
Temperature range ¹⁾ – I		[N/mm ²]	13	12	10	9
II	^c Rk,ucr		12	11	10	9
Installation safety factors						
Dry and wet concrete		[-]		1,0		1,2
Flooded hole	$-\gamma_2 = \gamma_{inst}$	[-]		1	,4	
Cracked concrete						
Characteristic bond resista	nce in cra	acked con	crete C20/25			
Hammer-drilling with standard	d drill bit o	<u>r hollow dr</u>	ill bit and diamo	ond-drilling (dry a	and wet concrete	
Temperature range ¹⁾ – I		[N/mm ²]	7	6	6	7
II	۶Rk,cr	[1,4,,,,,,,,]	7	6	6	7
Hammer-drilling with standard	<u>d drill bit o</u>	<u>r hollow dr</u>	ill bit and diamo	ond-drilling (flood	<u>ded hole)</u>	
Temperature range ¹⁾ – I		[N/mm ²]	7	6	6	6
	∿Rk,cr		7	6	6	6
Installation safety factors						
Dry and wet concrete Flooded hole	$-\gamma_{c}-\gamma_{c}$	[-] -		1,0	1	1,2
Flooded hole	72 — 7inst	[]]	1,	,2	1	,4

fischer injection system FIS EM

Performances

Characteristic values for static or quasi-static action under tensile load for fischer rebar anchors FRA (uncracked or cracked concrete)

Table C	:10: Displac	ements	s for and	chor ro	ds								
Size		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30		
Displace	ement-Factors	for tensi	ile load ¹⁾										
Uncrack	ed or cracked	concrete	e; Tempe	erature ra	ange I, II								
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13		
$\delta_{N^{\infty}\text{-}Factor}$		0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19		
	hisplacement-Factors for shear load ²⁾												
Uncrack	ed or cracked	concrete	e; Tempe	erature ra	ange I, II								
$\delta_{V0\text{-Factor}}$	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05		
$\delta_{V^\infty\text{-}Factor}$		0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07		

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}} \, \cdot \, \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C11: Displacements for fischer internal threaded anchors RG MI

Size		M8	M10	M12	M16	M20						
Displace	ment-Factors	for tensile load ¹⁾										
Uncrack	ed or cracked	concrete; Tempe	erature range I, II									
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,13						
$\delta_{N^{\infty}\text{-}Factor}$		0,13	0,15	0,16	0,17	0,19						
		for shear load ²⁾										
Uncracked or cracked concrete; Temperature range I, II												
$\delta_{V0-Factor}$		0,12	0,09	0,08	0,07	0,05						
$\delta_{V^{\infty}\text{-}Factor}$	[mm/kN]	0,18	0,14	0,12	0,10	0,08						
-		-										

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}} \, \cdot \, \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\mathsf{V}\infty} = \delta_{\mathsf{V}\infty\text{-}\mathsf{Factor}} \, \cdot \, \mathsf{V}_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

	2: Displa							9.00											
Nominal of the bar		Ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Displacen	nent-Facto	rs f	or te	ensile	e load	1 ¹⁾													
Uncracke	d or cracke	ed c	conc	rete;	Tem	perat	ure r	ange	I, II										
δ _{N0-Factor}	mm//Nl/mm	2,1 C	0,07	0,08	0,09	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
δ _{N∞-Factor} [I	[mm/(N/mm ²)]		D,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,22
Displacen	Displacement-Factors for shear load ²⁾																		
Uncracke	d or cracke	ed c	conc	rete;	Tem	perat	ure r	ange	I, II										
δ _{V0-Factor}	[mm/kN]]	C	0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
δ _{V∞-Factor}	[mm/kN]	C	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,05

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$ $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}\mathsf{Factor}}\,\cdot\,V_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C13: Displacements for fischer rebar anchors FRA

Size		M12	M16	M20	M24				
Displacem	ent-Factors for ten	sile load ¹⁾							
Uncracked	l or cracked concre	te; Temperature r	range I, II						
$\delta_{N0 ext{-Factor}}$	[mm/(N/mm ²)]	0,09	0,10	0,11	0,12				
$\delta_{N^{\infty}\text{-}Factor}$		0,13	0,15	0,16	0,18				
Displacem	ent-Factors for she	ar load ²⁾							
Uncracked	l or cracked concre	te; Temperature r	range I, II						
$\delta_{V0-Factor}$	[mm/k]]	0,12	0,09	0,07	0,06				
δ _{V∞-Factor}	[mm/kN]	0,18	0,14	0,11	0,09				
			2) –						
¹⁾ Calcula	tion of effective displ	acement:	²⁾ Calculation of effective displacement:						
$\delta_{\text{NO}} = \delta_{\text{N}}$	N0-Factor [•] τ _{Ed}		$\delta_{V0} = \delta_{V0-Factor} \cdot V_{Ed}$						
$\delta_{N\infty} = \delta_{I}$	N∞-Factor [∙] τ _{Ed}		$\delta_{V\infty} = \delta_{V\infty-Factor} \cdot V_{Ed}$						

(τ_{Ed} : Design value of the applied tensile stress)

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA

	action perfe	ormance c	aleg										
Size					M10	M12	M14	M16	M20	M22	M24	M27	M30
-	capacity under te												
lischer a	nchor rods and s	tandard thre		d rod						150	177	000	001
ing s,c1	Steel zinc plated		5.8 8.8		29 47	43 68	58 92	79 126	123 196	152 243	177 282	230 368	281 449
oeal N _{Rk}	Stainless steel	Property	50		29	43	58	79	123	152	177	230	281
act.I city	A4 and	class		[kN]									
Charact.bearing capacity N _{Rk,s,C1}	High corrosion		70		41	59	81	110	172	212	247	322	393
• •	resistant steel C		80		47	68	92	126	196	243	282	368	449
fischer a	nchor rods and s	tandard thre		d rod		orman 39					177		
ing s,c2	Steel zinc plated		5.8 8.8			61		72 116	108 173		282		
Dear N _{RK,}		Property	50			39		72	108		177		
act.k	Stainless steel A4 and	class		[kN]									
Charact.bearing capacity N _{Rk,s,C2}	High corrosion		70			53		101	152		247		
-	resistant steel C		80			61		116	173		282		
	capacity under sl				witho	ut leve	r arm ¹⁾						
fischer a	nchor rods, perfo	ormance cat	<u> </u>	y C1	15	21	29	39	61	76	89	115	141
ring ,s,c1	Steel zinc plated		5.8 8.8		23	34	29 46	63	98	122	141	184	225
bea V _{Rk}	Stainless steel	Property	50 70		15	21	29	39	61	76	89	115	141
act. Icity	A4 and	class		[[KN]	20	30	40	55	86	107	124	161	197
Charact.bearing capacity V _{Rk,s,c1}	High corrosion resistant steel C												
•			80		23	34	46	63	98	122	141	184	225
	threaded rods, p		5.8	gory	11	15	20	27	43	53	62	81	99
earing 	Steel zinc plated		8.8		16	24	32	44	69	85	99	129	158
~ g	Stainless steel	Property	50		11	15	20	27	43	53	62	81	99
Charact. capacity	A4 and	class	70	[kN]	14	21	28	39	60	75	87	113	138
Char	High corrosion resistant steel C												
		topdayd thy	80		16	24	32	44	69	85	99	129	158
	nchor rods and s		5.8		s, peri	14		27	43		62		
ring s,c2	Steel zinc plated		8.8			22		44	69		99		
bea V _{Rk}	Stainless steel	Property	50			14		27	43		62		
Charact.bearing capacity V _{Rk.s,c2}	A4 and	class	70	[kN]		20		39	60		87		
Char	High corrosion resistant steel C												
-			80			22		44	69		99		
	I safety factors for the factor for steel			gory	C1 or (C2 see	Table (C16, for	fischei	r ancho	r rods I	FIS A /	
fischer Perform	injection syster	n FIS EM									Ann	ex C	11

Table C15: Characteristic values for the steel bearing capacity under tensile / shear load of reinforcing bars (B500B) under seismic action performance category C1																
Nominal diameter of the	bar		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing capacity under to	ensile load	l, steel i	failu	re ¹⁾											-	-
Reinforcing bar B500B a	cc. to DIN 4	488-2:2	009-0)8, pe	erfor	man										
Characteristic bearing capa		Rk,s,C1	[kN]		63	85			173	209	249	270	292	339	389	443
Bearing capacity under s	-															
Reinforcing bar B500B a						-						0.5	100		107	
Characteristic bearing capa		,=,=	[kN]		22	30	39	49	61	74	88	95	102	119	137	155
¹⁾ Partial safety factors for performance category C1 see Table C16 Table C16: Partial safety factors of fischer anchor rods, standard threaded rods and reinforcing bars (B500B) under seismic action performance category C1 or C2																
Size				M10) N	112	M14	M	16	M20	M	22	M24	M2	7	M30
Nominal diameter of the	bar		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing capacity under to	ensile load	l, steel i	failu	re ¹⁾												-
_ Steel zinc		5.8								1,50						
plated		8.8								1,50						
Stainless steel	Property	50								2,86						
Just A4 and	class	70	[-]	1,50 ²⁾ / 1,87												
stainless steel Stainless steel Stainless steel Stainless steel A4 and High corrosion resistant steel C																
	,	80								1,60						
Reinforcing bar		B500B								1,40						
Bearing capacity under s	hear load,	steel fa	ailure) ¹⁾												
Steel zinc		5.8								1,25						
plated	_	8.8								1,25						
te La Stainless steel	Property	50								2,38						
A4 and	class	70	[-]						1,2	5 ²⁾ / 1	,56					
ة ≻ High corrosion High corrosion :	;	80								1,33	,					
ar																
Reinforcing bar		B500B								1,50						
¹⁾ In absence of other nat ²⁾ Only admissible for stee	ional regula el C, with f _{yl}	utions , / f _{uk} ≥ (),8 ar	nd A ₅	> 12	2 % (6	e.g. fi	sche	r and	hor r	ods)					
fischer injection syste Performances	m FIS EM	1											Anr		с 1	2

Characteristic steel bearing capacity of reinforcing bars under seismic action (performance category C1); partial safety factors (performance category C1 or C2)

electronic copy of the eta by dibt: eta-10/0012

category C1		-												
Size		M10		M14	_	16	M20	M2	22	M24	M2	27	M 30	
Characteristic bond resistance, co														
Hammer-drilling with standard drill	bit or ho	1	· · ·	-	_			-	7	6.7		7	0.7	
Temperature range ¹⁾ $-$ I $\tau_{Rk,C1}$	[N/mm ²]	7,0	7,0	6,7 6,7	_	,5 ,7	5,7 5,7	6, 6,		6,7 6,7	6, ⁻		6,7 6,7	
Hammer-drilling with standard drill	hit or ho	,					5,7	0,	/	0,7	0,	/	0,7	
v		75	7,5	6,5	_	,7	5,7	6,	7	5,7	5,	7	5,7	
Temperature range ¹⁾ $-\frac{I}{II}$ $\tau_{Rk,C1}$	[N/mm ²]	6,8	6,8	6,5	_	,7	5,7	5,	_	5,7	5,		<u>5,7</u>	
Installation safety factors			,	,		<u> </u>	,			,			,	
Bearing capacity under tensile load	1													
Dry and wet concrete	Г.1	1,0						1,2						
Flooded hole $\gamma_2 = \gamma_{ins}$	[-]		1,	2						1,4				
Bearing capacity under shear load		1												
All installation conditions $\gamma_2 = \gamma_{inst}$	[-]						1,0							
						ng b	ars i	n ha	ımm	er dr	illed	hole	əs	
under seismic actio	n perfor	manc	e categ	ory (21									
under seismic actio Nominal diameter of the bar	n perfor	manc	e categ 12 14	ory (16	C1 18	20	22	n ha 24	ımm 25	er dr 26	illed 28	hole 30	∋s 32	
Nominal diameter of the bar Characteristic bond resistance, co	n perfor Φ mbined p	manc 10 ullout	e categ 12 14 and con	ory (16 crete	C1 18 con	20 e fail	22 ure	24						
under seismic actio Nominal diameter of the bar Characteristic bond resistance, co Hammer-drilling with standard drill	n perfor Φ mbined p bit or ho	manc 10 ullout Ilow d	e categ 12 14 and con Irill bit (d	ory (16 crete ry an	C1 18 con d we	20 e fail t con	22 ure icrete	24 2)	25	26	28	30	32	
under seismic actio Nominal diameter of the bar Characteristic bond resistance, co	n perfor Φ mbined p	manc 10 ullout Ilow d 7,0	e categ 12 14 and con rill bit (d 7,0 6,7	ory (16 crete ry an 5,7	21 18 con d we 5,7	20 e fail t con 5,7	22 ure crete 6,7	24 •) 6,7	25 6,7	26 6,7	28 6,7	30 6,7	32	
under seismic action Nominal diameter of the bar Characteristic bond resistance, con Hammer-drilling with standard drill Temperature range ¹⁾ $\begin{array}{c} I \\ II \end{array}$ $\tau_{Rk,C1}$	n perform mbined p bit or ho [N/mm ²]	10 ullout llow d 7,0 7,0	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7	ory (16 crete ry an 5,7 5,7	18 con d we 5,7 5,7	20 e fail t con 5,7 5,7	22 ure crete 6,7	24 2)	25	26	28 6,7	30	32	
under seismic action Nominal diameter of the bar Characteristic bond resistance, cont Hammer-drilling with standard drill Temperature range ¹⁾ $\frac{1}{11}$ $\tau_{Rk,C1}$ Hammer-drilling with standard drill	n perform mbined p bit or ho [N/mm ²] bit or ho	manc 10 ullout 10w d 7,0 7,0 10w d	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl	ory (16 crete ry an 5,7 5,7 oode	21 18 con d we 5,7 5,7 d ho	20 e fail t con 5,7 5,7 le)	22 ure 6,7 6,7	24 6,7 6,7	25 6,7 6,7	26 6,7 6,7	28 6,7 6,7	30 6,7	32	
under seismic action Nominal diameter of the bar Characteristic bond resistance, con Hammer-drilling with standard drill Temperature range ¹⁾ $\frac{I}{II}$ $\tau_{Rk,C1}$ Hammer-drilling with standard drill	n perform mbined p bit or ho [N/mm ²]	10 10 10wd 7,0 7,0 110wd 7,5	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7	ory (16 crete ry an 5,7 5,7 oode 5,7	21 18 cone d we 5,7 5,7 d ho 5,7	20 e fail t con 5,7 5,7 le)	22 ure 6,7 6,7 5,7	24 6,7 6,7	25 6,7 6,7 5,7	26 6,7 6,7	28 6,7 6,7 5,7	30 6,7 6,7	32 4,8 4,8 5,7	
under seismic action Nominal diameter of the bar Characteristic bond resistance, cont Hammer-drilling with standard drill Temperature range ¹⁾ $\frac{1}{11}$ $\tau_{Rk,C1}$ Hammer-drilling with standard drill	n perform p mbined p bit or ho [N/mm ²] bit or ho	10 10 10wd 7,0 7,0 110wd 7,5	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl 7,0 6,5	ory (16 crete ry an 5,7 5,7 oode 5,7	21 18 cone d we 5,7 5,7 d ho 5,7	20 e faile t con 5,7 5,7 le) 5,7	22 ure 6,7 6,7 5,7	24 () 6,7 6,7 5,7	25 6,7 6,7 5,7	26 6,7 6,7 5,7	28 6,7 6,7 5,7	30 6,7 6,7 5,7	32 4,8 4,8 5,7	
under seismic actioNominal diameter of the barCharacteristic bond resistance, colHammer-drilling with standard drillTemperature range ¹⁾ IITemperature range ¹⁾ IITemperature range ¹⁾ IITemperature range ¹⁾ II <td colspan<="" td=""><td>n perform pined p bit or ho [N/mm²] bit or ho [N/mm²]</td><td>10 10 10wd 7,0 7,0 110wd 7,5</td><td>e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl 7,0 6,5</td><td>ory (16 crete ry an 5,7 5,7 oode 5,7</td><td>21 18 cone d we 5,7 5,7 d ho 5,7</td><td>20 e faile t con 5,7 5,7 le) 5,7</td><td>22 ure 6,7 6,7 5,7</td><td>24 () 6,7 6,7 5,7</td><td>25 6,7 6,7 5,7</td><td>26 6,7 6,7 5,7</td><td>28 6,7 6,7 5,7</td><td>30 6,7 6,7 5,7</td><td>32 4,8 4,8 5,7</td></td>	<td>n perform pined p bit or ho [N/mm²] bit or ho [N/mm²]</td> <td>10 10 10wd 7,0 7,0 110wd 7,5</td> <td>e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl 7,0 6,5</td> <td>ory (16 crete ry an 5,7 5,7 oode 5,7</td> <td>21 18 cone d we 5,7 5,7 d ho 5,7</td> <td>20 e faile t con 5,7 5,7 le) 5,7</td> <td>22 ure 6,7 6,7 5,7</td> <td>24 () 6,7 6,7 5,7</td> <td>25 6,7 6,7 5,7</td> <td>26 6,7 6,7 5,7</td> <td>28 6,7 6,7 5,7</td> <td>30 6,7 6,7 5,7</td> <td>32 4,8 4,8 5,7</td>	n perform pined p bit or ho [N/mm ²] bit or ho [N/mm ²]	10 10 10wd 7,0 7,0 110wd 7,5	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl 7,0 6,5	ory (16 crete ry an 5,7 5,7 oode 5,7	21 18 cone d we 5,7 5,7 d ho 5,7	20 e faile t con 5,7 5,7 le) 5,7	22 ure 6,7 6,7 5,7	24 () 6,7 6,7 5,7	25 6,7 6,7 5,7	26 6,7 6,7 5,7	28 6,7 6,7 5,7	30 6,7 6,7 5,7	32 4,8 4,8 5,7
under seismic actioNominal diameter of the barCharacteristic bond resistance, conHammer-drilling with standard drillTemperature range ¹⁾ I III $\tau_{Rk,C1}$ Hammer-drilling with standard drillTemperature range ¹⁾ I III $\tau_{Rk,C1}$ Installation safety factorsBearing capacity under tensile loadDry and wet concrete $\gamma_{RR} = \gamma_{RR}$	n perform p bit or ho [N/mm ²] bit or ho [N/mm ²]	10 10 10wd 7,0 7,0 110wd 7,5	e categ 12 14 and con rill bit (d 7,0 6,7 rill bit (f 7,0 6,5 6,8 5,8	ory (16 crete ry an 5,7 5,7 oode 5,7	21 18 cone d we 5,7 5,7 d ho 5,7	20 e faile t con 5,7 5,7 le) 5,7	22 ure 6,7 6,7 5,7	24 () 6,7 6,7 5,7	25 6,7 6,7 5,7	26 6,7 6,7 5,7	28 6,7 6,7 5,7	30 6,7 6,7 5,7	32 4,8 4,8 5,7	
under seismic actioNominal diameter of the barCharacteristic bond resistance, colHammer-drilling with standard drillTemperature range ¹⁾ 1 II $\tau_{Rk,C1}$ Hammer-drilling with standard drillTemperature range ¹⁾ 1 III $\tau_{Rk,C1}$ Installation safety factorsBearing capacity under tensile loadDry and wet concrete $\gamma_2 = \gamma_{inst}$	n perform p bit or ho [N/mm ²] bit or ho [N/mm ²]	10 10 10wd 7,0 7,0 110wd 7,5	e categ 12 14 and con rill bit (d 7,0 6,7 rill bit (f 7,0 6,5 6,8 5,8	ory (16 ry an 5,7 5,7 00de 5,7 5,8	21 18 cone d we 5,7 5,7 d ho 5,7	20 e faile t con 5,7 5,7 le) 5,7	22 ure 6,7 6,7 5,7	24 () 6,7 6,7 5,7	25 6,7 6,7 5,7 5,7	26 6,7 6,7 5,7 5,7	28 6,7 6,7 5,7	30 6,7 6,7 5,7	32 4,8 4,8 5,7	
under seismic actioNominal diameter of the barCharacteristic bond resistance, colHammer-drilling with standard drillTemperature range ¹⁾ I II $\tau_{Rk,C1}$ Hammer-drilling with standard drillTemperature range ¹⁾ I II $\tau_{Rk,C1}$ Installation safety factorsBearing capacity under tensile loadDry and wet concrete $\gamma_2 = \gamma_{inst}$ Flooded hole $\gamma_2 = \gamma_{inst}$	n perform	10 10 10wd 7,0 7,0 110wd 7,5	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl 7,0 6,5 6,8 5,8 1	ory (16 ry an 5,7 5,7 00de 5,7 5,8	21 18 cone d we 5,7 5,7 d ho 5,7	20 e faile t con 5,7 5,7 le) 5,7	22 ure 6,7 6,7 5,7 5,7	24 () 6,7 6,7 5,7	25 6,7 6,7 5,7 5,7	26 6,7 6,7 5,7 5,7 1,2	28 6,7 6,7 5,7	30 6,7 6,7 5,7	32 4,8 4,8 5,7	
under seismic actioNominal diameter of the barCharacteristic bond resistance, conHammer-drilling with standard drillTemperature range ¹⁾ III $\tau_{Rk,C1}$ Hammer-drilling with standard drillTemperature range ¹⁾ ITemperature range ¹⁾ IITemperature range ¹⁾ IIITemperature range ¹⁾ IIITemperature range ¹⁾ IIITemperature range ¹⁾ IIITemperature range ¹⁾ IIIITemperature range ¹⁾ IIIITemperature range ¹⁾ IIIITemperature range ¹⁾ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	n perform p bit or ho [N/mm ²] bit or ho [N/mm ²] f [-]	manc 10 ullout 10w d 7,0 7,0 10w d 7,5 6,8	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl 7,0 6,5 6,8 5,8 1	ory (16 ry an 5,7 5,7 00de 5,7 5,8	21 18 cone d we 5,7 5,7 d ho 5,7	20 e faile t con 5,7 5,7 le) 5,7	22 ure 6,7 6,7 5,7	24 () 6,7 6,7 5,7	25 6,7 6,7 5,7 5,7	26 6,7 6,7 5,7 5,7 1,2	28 6,7 6,7 5,7	30 6,7 6,7 5,7	32 4,8 4,8 5,7	
under seismic actioNominal diameter of the barCharacteristic bond resistance, colHammer-drilling with standard drillTemperature range ¹¹ IT _{Rk,C1} Hammer-drilling with standard drillTemperature range ¹¹ ITemperature range ¹¹ ITemperature range ¹¹ IIII $\tau_{Rk,C1}$ Installation safety factorsBearing capacity under tensile loadDry and wet concreteFlooded hole $\gamma_2 = \gamma_{inst}$ Bearing capacity under shear load	n perform p bit or ho [N/mm ²] bit or ho [N/mm ²] f [-]	manc 10 ullout 10w d 7,0 7,0 10w d 7,5 6,8	e categ 12 14 and con rill bit (d 7,0 6,7 7,0 6,7 rill bit (fl 7,0 6,5 6,8 5,8 1	ory (16 ry an 5,7 5,7 00de 5,7 5,8	21 18 cone d we 5,7 5,7 d ho 5,7	20 e faile t con 5,7 5,7 le) 5,7	22 ure 6,7 6,7 5,7 5,7	24 () 6,7 6,7 5,7	25 6,7 6,7 5,7 5,7	26 6,7 6,7 5,7 5,7 1,2	28 6,7 6,7 5,7	30 6,7 6,7 5,7	32 4,8 4,8 5,7	

Table C19: Characteristic values of resistance for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

category C.	2								
Size			M12	M16	M20	M24			
Characteristic bond resist	ance, con	nbined p	ullout and conci	rete cone failure	Ð				
Hammer-drilling with stan	dard drill	bit or hol	llow drill bit (dry	/ and wet concr	ete)				
Temperature range ¹⁾ – I		[N/mm ²]	2,2	3,5	1,8	2,4			
II	Rk,C2		2,2	3,5	1,8	2,4			
Hammer-drilling with stan	dard drill	bit or ho	llow drill bit (flo	oded hole)					
Temperature range ¹⁾ I		[N/mm²]	2,3	3,5	1,8	2,1			
I I	Rk,C2		2,3	3,5	1,8	2,1			
Installation safety factors									
Bearing capacity under te	nsile load								
Dry and wet concrete				1,0		1,2			
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]	1	1,	1,4				
Bearing capacity under sh	near load				•				
All installation conditions $\gamma_2 = \gamma_{inst}$ [-]			1,0						
Displacement-Factors for	tensile loa	ad ²⁾							
$\delta_{N,(DLS)}$ -Factor	F	///////////////////////////////////////	0,09	0,10	0,11	0,12			
$\delta_{N,(ULS)}$ -Factor	lmm	/(N/mm²)]	0,15	0,17	0,17	0,18			
Displacement-Factors for	shear loa	d ³⁾							
$\delta_{V,(DLS)}$ -Factor	L.		0,18	0,10	0,07	0,06			
$\delta_{V,(ULS)}$ -Factor	[n	ım/kN]	0,25	0,14	0,11	0,09			
1)	1			1					

¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex B 1

²⁾ Calculation of effective displacement:

 $\delta_{\text{N},(\text{DLS})} = \delta_{\text{N},(\text{DLS})\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{\text{N},(\text{ULS})} = \delta_{\text{N},(\text{ULS})\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

³⁾ Calculation of effective displacement:

 $\delta_{\text{V},(\text{DLS})} = \delta_{\text{V},(\text{DLS})\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V,(ULS)} = \delta_{V,(ULS)\text{-Factor}} \cdot V_{Ed}$ (V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Characteristic values under seismic action (performance category C2) for fischer anchor rods and standard threaded rods