

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0006 of 1 February 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti anchor channels (HAC) with channel bolts (HBC)

Anchor channels

Hilti AG
Feldkircherstraße 100
9494 Schaan
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

26 pages including 22 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330008-02-0601

ETA-11/0006 issued on 28 February 2012

European Technical Assessment ETA-11/0006

Page 2 of 26 | 1 February 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0006 English translation prepared by DIBt

Page 3 of 26 | 1 February 2016

Specific Part

1 Technical description of the product

The Hilti anchor channel (HAC) with channel bolts (HBC) is a system consisting of V-shaped channel profile of carbon steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Hilti channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistances under static and quasistatic loads and displacements	See Annex C1 to C6
Characteristic resistances under fatigue cyclic loads	See Annex C8 to C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C7

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

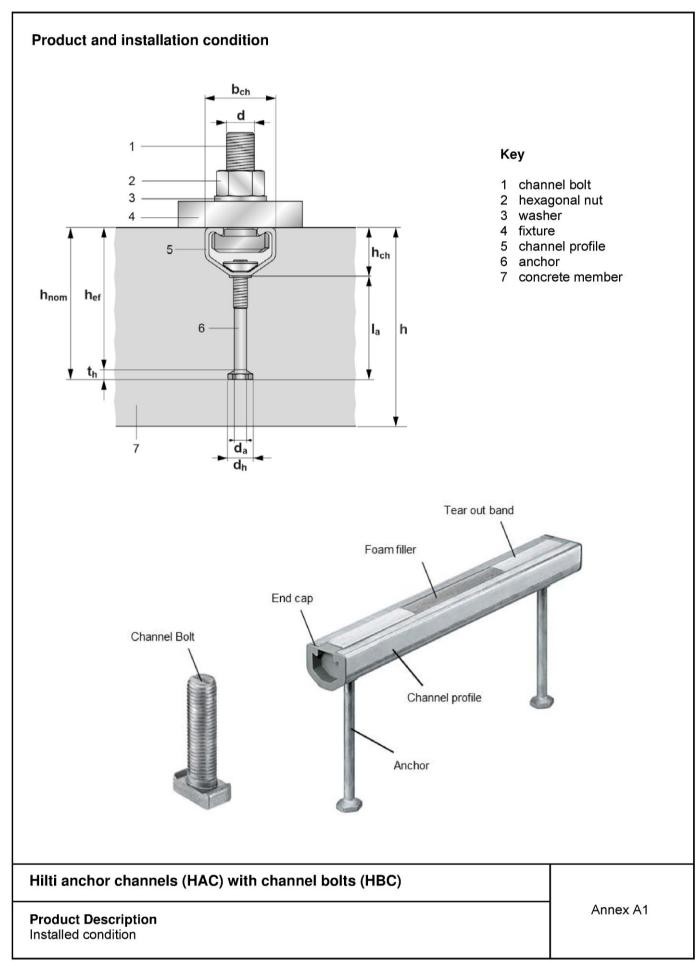
In accordance with EAD No. 330008-02-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

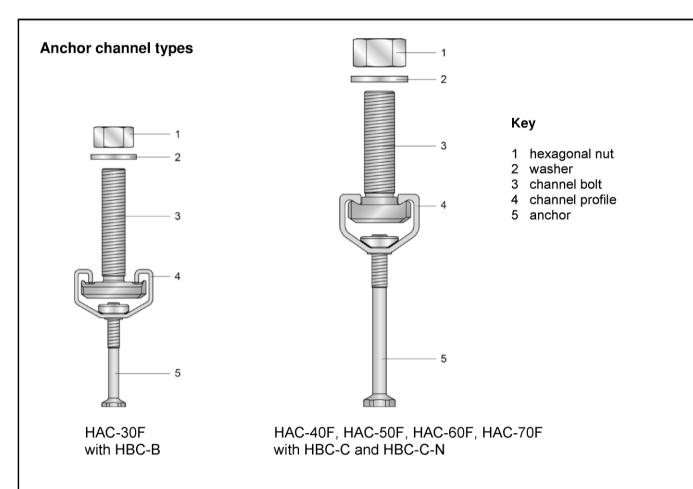
European Technical Assessment ETA-11/0006

Page 4 of 26 | 1 February 2016

English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 1 February 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow beglaubigt:
p. p. Head of Department Müller

Marking of the Hilti anchor channel: HAC-XZ

X Z

HAC = Identifying mark of the manufacturer

(<u>H</u>ilti <u>A</u>nchor <u>C</u>hannel) = Size of the channel = Corrosion class

(e.g. HAC-40F)

40 = Anchor channel size 40 = hot-dip galvanized

Marking of the Hilti channel bolt:

HBC-X-(N) YZ

Х

HBC = Identifying mark of the manufacturer

(Hilti Bolt Channel) = Type of channel bolt

= Steel grade

Z = Corrosion class

(e.g. HBC-C 8.8F)

С = Channel bolt type in combination with

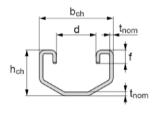
HAC-40 to HAC-70

8.8 = Steel grade

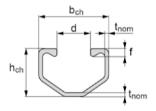
= hot-dip galvanized

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description

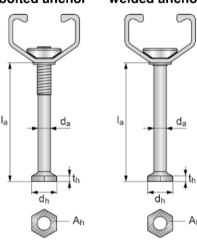

Anchor channel types and marking

Annex A2


Z98091.15

Anchor Channels

HAC-40, HAC-50, HAC-60, HAC-70


Table 1: Dimensions of channel profile

Anchor	b _{ch}	h _{ch}	t _{nom}	d	f	l _y		
channel		[mm]						
HAC-30	41,3	25,6	2,00	22,3	7,5	15349		
HAC-40	40,9	28,0	2,25	19,5	4,5	21463		
HAC-50	41,9	31,0	2,75	19,5	5,3	33125		
HAC-60	43,4	35,5	3,50	19,5	6,3	57930		
HAC-70	45,4	40,0	4,50	19,5	7,4	95457		

Table 2: Dimensions of anchor (welded or bolted to the channel profile)

Anchor	d _a	d _h	t _h	min l _a	Head area A _h
channel		[[mm ²]		
HAC-30	5,35	11,5	2,0	44,4	89
HAC-40	7,19	17,5	3,0	66,0	209
HAC-50	9,03	19,5	3,5	78,5	258
HAC-60	9,03	19,5	4,5	117,0	258
HAC-70	10,86	23,0	5,0	140,0	356

bolted anchor welded anchor

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Anchor channels (HAC) Annex A3

Channel bolts

Table 3: Dimensions of channel bolt

	Channel		Dimer	sions		
Anchor channel	bolt	b ₁	b ₂	k	d	
Chamici	type		[m	m]		
HAC-30	НВС-В	19,0 34,0		0.3	10	
HAC-30	пвс-в			9,2	12	
				10,4	10	
HAC-40	14,0		12			
HAC-50	HBC-C	10.5	33,0	33,0	11,4	16
HAC-60		18,5		13,9	20	
пАС-70	HAC-70		22.0	11,4	16	
	HBC-C-N	18,5	33,0	13,9	20	

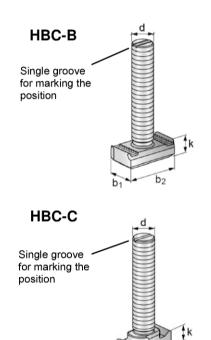
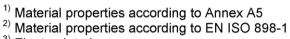
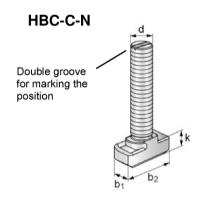




Table 4: Steel grade and corrosion class

Channel Bolt	Carbon	Stainless steel 1)
Steel grade	4.6	A4-50
f _{uk} [N/mm²]	400	500
f _{yk} [N/mm²]	240	210
Corrosion class	G F	R

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Channel bolts (HBC)

Annex A4

³⁾ Electroplated

⁴⁾ Hot-dip galvanized

Table 5: Materials

		Carbon steel		Stainless steel
Component	Material properties	Coa	ting	Material properties
1	2a	2b	2c	3
Channel Profile	Carbon steel according to EN 10025	Hot dip galvanized ≥ 55 µm ¹⁾ Hot dip galvanized ≥ 70 µm ²⁾		-
Rivet	Carbon steel	Hot dip galvan	ized ≥ 45 µm ⁵⁾	-
Anchor	Carbon steel	Hot dip galvanized ≥ 45 µm ⁵⁾		-
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1	Electroplated ≥ 8 µm	Hot-dip galvanized ≥ 45 μm ⁵⁾	Steel grade 50 according to EN ISO 3506-1 1.4401 / 1.4404 / 1.4571 1.4362 / 1.4578 / 1.4439
Plain washer 3) according to EN ISO 7089 and EN ISO 7093-1	Hardness class A ≥ 200 HV	Electroplated ≥ 8 µm	Hot-dip galvanized ≥ 45 μm ⁵⁾	Hardness class A ≥ 200 HV 1.4401 / 1.4404 / 1.4571 1.4362 / 1.4578 / 1.4439
Hexagonal nut according to EN ISO 4032 or DIN 934 4)	Property class 8 according to EN ISO 898-2	Electroplated ≥ 8 µm	Hot-dip galvanized ≥ 45 μm ⁵⁾	Property class 70 according to EN ISO 3506-2 1.4401 / 1.4404 / 1.4571 1.4362 / 1.4578 / 1.4439

Hilti anchor channels (HAC) with channel bolts (HBC) Annex A5 **Product Description** Materials

¹⁾ For HAC-30F, HAC-40F and HAC-50F.
2) For HAC-60F and HAC-70F.
3) Not in scope of delivery.
4) Hexagonal nuts according to DIN 934 for channel bolts made from carbon steel (4.6) and stainless steel.
5) Hot-dip galvanized according to EN ISO 1461.

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel.
- Fatigue cyclic loads.
- Fire exposure: only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206.
- Strength classes C12/15 to C90/105 according to EN 206.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity) (anchor channels and channel bolts according to Annex A5, Table 5, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A5, Table 5, column 2c and 3).
- The stainless steel Hilti channel bolts (HBC), washers and nuts may be used in structures subject to external atmospheric conditions (including industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution e.g. desulphurization plants or road tunnels where de-icing materials are used) exist (channel bolts according to Annex A5, Table 5, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Calculation Method for the Performance of Anchor Channels" or EN 1992-4.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading".
- The characteristic resistances are calculated with the minimum effective embedment depth.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Specifications	Annex B1

English translation prepared by DIBt

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 6 are generated including end spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the manufacturer's specifications given in Annexes B5, B6 and B7
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A5 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6 and B7) rectangular to the channel axis.
- The required installation torques given in Annex B4 must be applied and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Specifications	Annex B2

Z98091.15 8.06.01-336/14

electronic copy of the eta by dibt: eta-11/0006

Table 6: Installation parameters for anchor channel

Anchor channel			HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Minimum effective embedment depth	h _{ef,min}		68	91	106	148	175
Minimum spacing	S _{min}		50 100				
Maximum spacing	S _{max}		250				
End spacing	×	[mm]	25				
Minimum channel length	I _{min}		100 150				
Minimum edge distance	C _{min}		50 75				
Minimum thickness of concrete member	h _{min}		80	105	125	168	196

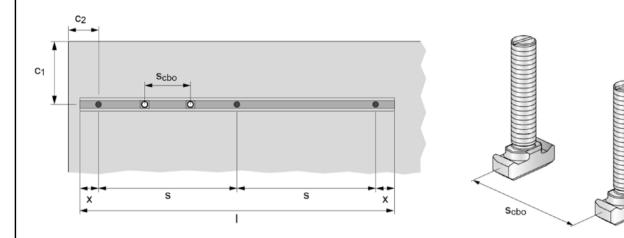


Table 7: Minimum spacing for channel bolts

Channel bolt			M10	M12	M16	M20
Minimum spacing between channel bolts	S _{cbo,min}	[mm]	50	60	80	100

 s_{cbo} = center to center spacing between channel bolts ($s_{cbo,min}$ = 5d)

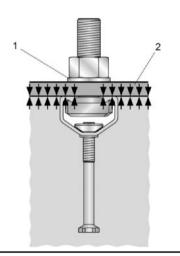
Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Installation parameters for anchor channels (HAC)	Annex B3

Table 8: Required installation torque Tinst for HBC-B

		T _{ins}	t [Nm] ¹⁾
Channel bolt		General	Steel-steel contact
		HAC-30	HAC-30
M10	4.6, A4-50	15	15
M12	4.6, A4-50	25	25

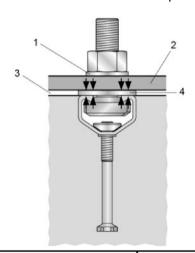
Table 9: Required installation torque Tinst for HBC-C

		T _{inst} [Nm] 1)									
Chan	Channel bolt		General				Steel-steel contact				
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40 HAC-50 HAC-60 HAC					
M10	4.6, A4-50		•	15			•	15			
IVITO	8.8			15		48					
M12	4.6, A4-50		2	25		25					
IVI 12	8.8		2	25		75					
M16	4.6, A4-50		(30		60					
IVITO	8.8		(30		185					
M20	4.6, A4-50	70 105 120				120					
IVIZU	8.8	70	105	1	20		20				


Table 10: Required installation torque T_{inst} for HBC-C-N

Channel bolt		T _{inst} [Nm] ¹⁾									
		General				Steel-steel contact					
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40 HAC-50 HAC-60 HA					
M16	8.8					185					
M20	8.8		-				320				

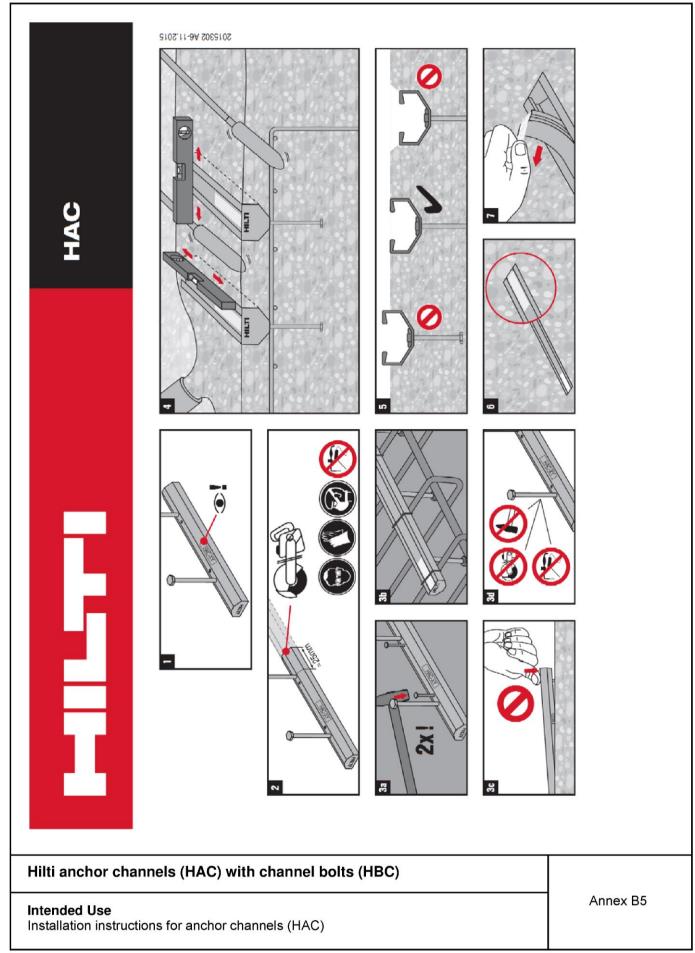
¹⁾ T_{inst} must not be exceeded.


<u>General:</u> The fixture is in contact with the channel profile and the concrete surface.

<u>Steel-steel contact:</u> The fixture is fastened to the anchor channel by suitable steel part (e.g. washer). Fixture is in contact with the channel profile only.

Key

- 1 washer
- 2 fixture
- 3 gap
- 4 suitable steel part

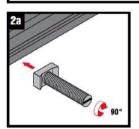

Hilti anchor channels (HAC) with channel bolts (HBC)

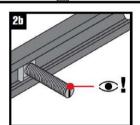
Intended Use

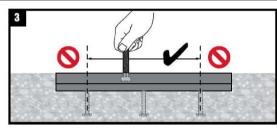
Installation parameters for channel bolts (HBC)

Annex B4

Z98091.15

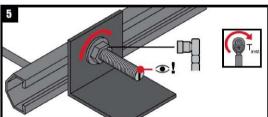

HAC-40 to HAC-70,


HAC-W-RToS, -CRToS, -RFoS, -CRFoS



HBC-C

HBC-C-E



4.6, 8.8, A4-50

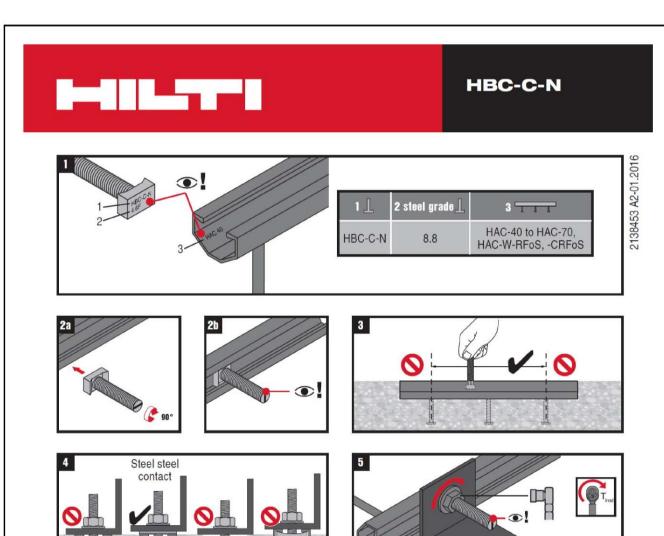
HBC-B

Requir	Required installation torque T _{inst} [Nm] ¹⁾ for HBC-B										
Chan	nel bolt	General	Steel steel contact								
Gilaii	IIICI DUIL	HAC-30	HAC-30								
M10	4.6, A4-50	15	15								
M12	4.6, A4-50	25	25								

HBC-C

			Required ins	tallation tord	jue T _{inst} (Nm] 1) for HBC-C					
Chan	Ohannal hali		Gen	eral			Steel ste	el contact			
Channel bolt		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40 HAC-50 HAC-60 H/					
M10	4.6, A4-50		1	5			1	5			
WITO	8.8		15				48				
M12	4.6, A4-50		2	5			2	5			
WHZ	8.8		2	5		75					
Mic	4.6, A4-50		6	0			6	0			
MID	M16 8.8 60					185					
M20	4.6, A4-50 70 105			1:	120 120						
WI20	8.8	70	105	13	20		32	20			

1) Tinst is the torque that shall be applied with a torque wrench and must not be exceeded.


Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC-B and HBC-C)

Annex B6

HBC-C-N [Nm]

	Required installation torque T _{inst} [Nm] 1) for HBC-C-N											
Ohann	al ball		Gen	eral		Steel steel contact						
Gnann	iel bolt	HAC-40	HAC-50	HAC-60	HAC-70	HAC-40 HAC-50 HAC-60 HAC						
M16	8.8	,				185						
M20	8.8			11		320						

1) Tinst is the torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC) Intended Use Installation instructions for channel bolts (HBC-C-N) Annex B7

Table 11: Characteristic resistances under tension load – steel failure of anchor channel

Anchor channel				HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure: Failure	of anch	or							
Characteristic resistance	N _{Rk,s,a} [kN]		18,2	33,1	52,5	52,5	76,3		
Partial safety factor		γ _{Ms} 1)				1,8			
Steel failure: Failure of connection between anchor and channel									
Characteristic resistance	N _{Rk,s,c} [kN]		18,2	25,0	35,0	50,1	71,0		
Partial safety factor		γ _{Ms,ca})			1,8			
Steel failure: Local f	ailure by	flexure	of channel	lips					
Characteristic spacing of channel bolts for N _{Rk,s,l}		s _{I,N}	[mm]	83	82	84	87	91	
		нвс-	В	19,9	-	-	-	-	
Characteristic resistance	$N^0_{Rk,s,l}$	HBC-	C [kN]	-	25,0	35,0	50,1	71,0	
. 55.3641100		нвс-с	-N	-	25,0	35,0	50,1	71,0	
Partial safety factor		γ _{Ms,I} 1)	1			1,8			

¹⁾ In absence of other national regulations.

Table 12: Characteristic flexural resistance of channel under tension load

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70				
Steel failure: Failure by flexure of channel									
Characteristic	$M_{Rk,s,flex}$	нвс-в		755	-	-	-	-	
flexural resistance		нвс-с	[Nm]	-	1136	1596	2187	3160	
of channel		HBC-C-N		-	980	1345	2156	3005	
Partial safety factor	γ _{Ms,flex} 1)				1,15				

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels under tension load	Annex C1

Table 13: Characteristic resistances under tension load – concrete failure

Anchor channe	el			HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Pullout failure				•						
Characteristic recracked concret		$N_{Rk,p}$	[kN]	8,0	18,8	23,2	23,2	32,0		
	Characteristic resistance in uncracked concrete C12/15		[kN]	11,2	26,3	32,5	32,5	44,9		
	C16/20					1,33				
	C20/25					1,67				
	C25/30					2,08				
	C30/37					2,50				
Amplification	C35/45			2,92						
factor of N _{Rk,p}	C40/50		Ψс		3,33					
	C45/55				3,75					
	C50/60			4,17						
	C55/67			4,58						
	≥ C60/75			5,00						
Partial safety fac	ctor	γмр	= γ _{Mc} ¹⁾	1,5						
Concrete cone	failure									
Product	cracked cond	rete	$k_{\text{cr},N}$	7,7	8,0	8,2	8,6	8,9		
factor k₁	uncracked co	oncrete	k _{ucr,N}	11,0	11,5	11,7	12,3	12,7		
Partial safety factor			γ _{Mc} 1)	1,5						
Splitting										
Characteristic e	Characteristic edge distance c _{cr,sp}			204	273	318	444	525		
Partial safety fa	ctor	γMsp	= γ _{Mc} ¹⁾			1,5				

¹⁾ In absence of other national regulations.

Table 14: Displacements under tension load

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Tension load	N	[kN]	6,6	11,3	14,3	18,8	26,6
Short time displacement 1)	δ_{N0}	[mm]	1,6	1,7	1,1	1,1	1,0
Long time displacement 1)	δ _{N∞}	[mm]	3,2	3,4	2,2	2,2	2,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and displacements under tension load

Annex C2

Table 15: Characteristic resistances under shear load – steel failure of anchor channel

Anchor channel				HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure: Failure	of anch	or							
Characteristic resistance	$V_{Rk,s}$	i,a	[kN]	23,7	34,9	47,5	72,2	95,8	
Partial safety factor		γ _{Ms} 1)				1,5			
Steel failure: Failure of connection between anchor and channel									
Characteristic resistance	V _{Rk,s,c} [kN]		23,7	34,9	47,5	72,2	95,8		
Partial safety factor		γ _{Ms,ca} 1)				1,8			
Steel failure: Local f	ailure by	flexure of	channel	lips					
Characteristic spacing of channel bolts for V _{Rk,s,l}		$\mathbf{S}_{I,V}$	[mm]	83	82	84	87	91	
		нвс-в		23,7	-	-	-	-	
Characteristic resistance	$V^0_{Rk,s,l}$	нвс-с	[kN]	-	34,9	47,5	72,2	95,8	
. 55.3641100		HBC-C-N		-	34,9	47,5	72,2	95,8	
Partial safety factor		γ _{Ms,I} 1)				1,8			

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels under shear load	Annex C3

Table 16: Characteristic resistances under shear load - concrete failure

Anchor channel			HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Pry out failure								
Product fac	tor	k ₈			2,0			
Partial safe	ty factor	γ _{Mc} 1)	1,5					
Concrete e	edge failure							
Product	cracked concrete	k _{cr,V}	7,5					
factor k ₁₂ uncracked concrete k _{ucr,V}			10,5					
Partial safety factor γ _{Mc} 1)			1,5					

¹⁾ In absence of other national regulations

Table 17: Displacements under shear load

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Shear load	V	[kN]	8,0	13,9	18,9	29,0	38,0
Short time displacement 1)	δ_{N0}	[mm]	1,0		1,5		
Long time displacement 1)	δ _{N∞}	[mm]	1,5		1,5 2,3		

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

Table 18: Characteristic resistances under combined tension and shear load

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Steel failure: Local failure by flexure of channel lips and failure by flexure of channel								
Product factor	k ₁₃	1,0 1)						
Steel failure: Failure of an	Steel failure: Failure of anchor and connection between anchor and channel							
Product factor	k ₁₄	1,0 ²⁾						

 $^{^{1)}}$ k_{13} can be taken as 2,0 if $V_{Rd,s,l}$ is limited to $N_{Rd,s,l}.$

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance	Annex C4
Characteristic resistances of anchor channels and displacements under shear load Characteristic resistances under combined tension and shear load	

 $^{^{2)}}$ k_{14} can be taken as 2,0 if max(V $_{Rd,s,a};$ V $_{Rd,s,c})$ is limited to min(N $_{Rd,s,a};$ N $_{Rd,s,c}).$

Table 19: Characteristic resistances under tension and shear load – steel failure of Hilti channel bolts HBC-B, HBC-C and HBC-C-N

Channel bolt			M10	M12	M16	M20		
Steel failure								
				4.6	23,2	33,7	-	-
			НВС-В	A4-50 1)	29,0	42,2	-	-
Characteristic	N 2)	[IcN]]		4.6	23,2	33,7	62,8	98,0
resistance	N _{Rk,s} ²⁾	[kN]	нвс-с	8.8	46,4	67,4	125,6	174,3
				A4-50 1)	29,0	42,2	78,5	122,5
			HBC-C-N	8.8	-	-	125,6	174,3
			4.6 γ _{Ms} 3) 8.8		2,00			
Partial safety fa	Partial safety factor				1,50			
				A4-50 1)	2,86			
			нвс-в	4.6	13,9	20,2	-	-
				A4-50 1)	17,4	25,3	-	-
Characteristic	2)	[IcN]]		4.6	13,9	20,2	37,7	58,8
resistance	V _{Rk,s} ²⁾	[kN]	нвс-с	8.8	23,2	33,7	62,8	101,7
				A4-50 1)	17,4	25,3	47,1	73,5
			HBC-C-N	8.8	-	-	62,8	101,7
·			·		1,67			
Partial safety fa	ctor	γι	3) Ms	8.8	1,25			
					2,38			

Materials according to Table 5, Annex A5.
 In conformity with EN ISO 898-1.
 In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC) Annex C5 **Performance** Characteristic resistances of channel bolts under tension and shear load

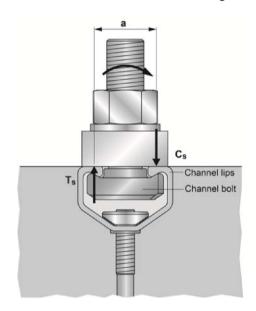


Table 20: Characteristic resistances under shear load with lever arm – steel failure of Hilti channel bolts HBC-B, HBC-C and HBC-C-N

Channel bolt			M10	M12	M16	M20		
Steel failure								
			нвс-в	4.6	29,9	52,4	-	-
Characteristic flexure resistance			пвс-в	A4-50 1)	37,4	65,5	-	-
	M ⁰ _{Rk,s}	[NIm]		4.6	29,9	52,4	133,2	259,6
	3)	[Nm]	нвс-с	8.8	59,8	104,8	266,4	538,7
				A4-50 1)	37,4	65,5	166,5	324,5
			HBC-C-N	8.8	-	-	266,4	538,7
				4.6	1,67			
Partial safety fa	ctor	γ _{Ms} 2)		8.8	1,25			
				A4-50 1)	2,38			
			нвс-в	4.6, A4-50	25	27	-	-
Internal lever arm	а	a [mm]	HBC-C	4.6, 8.8, A4-50	24	26	28	30
			HBC-C-N	8.8	-	-	28	30

¹⁾ Materials according to Table 5, Annex A5.

²⁾ In absence of other national regulations.

³⁾ The characteristic flexure resistance according to Table 20 is limited as follows:

$$M_{Rk,s}^0 \le 0.5 \cdot N_{Rk,s,l} \cdot a$$
 ($N_{Rk,s,l}$ according to Table 11) and

$$M_{Rk,s}^0 \le 0.5 \cdot N_{Rk,s} \cdot a$$
 ($N_{Rk,s}$ according to Table 19)

a = internal lever arm according Table 20

 T_s = tension force acting on the channel lips

C_s = compression force acting on the channel lips

Hilti anchor channels	(HAC)) with channel bolts ((HBC)

Performance

Characteristic flexural resistances of channel bolts under shear load

Annex C6

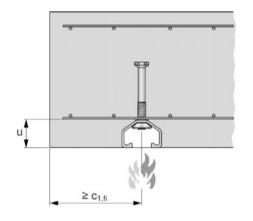


Table 21: Characteristic resistances of anchor channel under fire exposure

Anchor channel				HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure of anchor, connection between anchor and channel, local flexure of channel lip									
Characteristic	R30	$N_{Rk,s,fi}$		2,5	2,8		5,7		
resistance in cracked concrete	R60	=	[kN]	1,8	2,3	4,0			
C20/25	R90	$V_{Rk,s,fi}$		1,1	1,7	2,3			
Partial safety factor		γ _{Ms,fi} 1)	[-]	1,0					
	R30		[mm]	35 50					
Concrete cover	R60	u	[mm]	35		50			
	R90		[mm]	4	5	50			

¹⁾ In absence of other national regulations.

Fire exposure from one side only

Fire exposure from more than one side

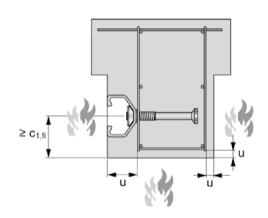


Table 22: Characteristic resistances of channel bolt under fire exposure

Channel bolt	М8	M10	M12	M16	M20				
Steel failure without lever arm									
Characteristic		R30			1,0	1,7	2,5	-	-
	НВС-В	R60	$N_{Rk,s,fi}$ = $V_{Rk,s,fi}$		0,8	1,3	1,8	-	-
		R90		[LNI]	0,6	0,9	1,1	-	-
resistance		R30		[kN]	-	2,5	3,1	5	,7
	нвс-с	R60			-	1,9	2,5	4,	,0
		R90			-	1,3	1,9	2,	,3
Partial safety factor γ _N			γ _{Ms,fi} 1)	[-]	1,0				

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure

Annex C7

Table 23: Possible combination of anchor channels and channel bolts under fatigue load

Anchor channel	Channel bolt type	Diameter	Steel grade	Corrosion class
HAC-30	НВС-В	M10	4.6	
	пвс-в	M12	4.0	
		M12	4.6	
HAC-40		M16		
		M20	8.8	G 1)
HAC-50		M16	4.6 8.8	
HAC-50	нвс-с	M20		F ²⁾
HAC 60		M16	4.6	
HAC-60		M20	8.8	
HAC-70		Mag	4.6	
		M20	8.8	

Table 24: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload ($N_{Ed} = 0$) (Design method I according to EOTA TR 050)

Anchor channel	Anchor channel		HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure	n	$\Delta N_{Rk,s,0,n}$ [kN]					
Characteristic	≤ 10 ⁶	1,76	1,57	2,66	3,54	6,44	
	≤ 3·10 ⁶	1,60	1,50	2,60	3,50	6,40	
resistances under	≤ 10 ⁷						
fatigue tension load without static	≤ 3·10 ⁷						
preload	≤ 6·10 ⁷						
	> 6·10 ⁷						

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load	Annex C8

¹⁾ Electroplated
2) Hot-dip galvanized

Table 25: Characteristic resistances under fatigue tension load - pullout failure with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR 050)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Pullout failure n				$\Delta N_{Rk,p,0,n}$ [kN]				
Characteristic resistances under fatigue tension load in cracked concrete C12/15 without static preload		≤ 10 ⁶	4,8	11,3	13,9		19,2	
		≤ 3·10 ⁶	4,6	10,7	13,3		18,3	
		≤ 10 ⁷	4,3	10,2	12,6		17,4	
		≤ 3·10 ⁷	4,1	9,7	12,0		16,5	
		≤ 6·10 ⁷	4,0	9,4	11,6		16,0	
		> 6·10 ⁷						
	C16/20	Ψε	1,33					
Amplification factor for $\Delta N_{Rk,p,0,n}$	C20/25		1,67					
	C25/30		2,08					
	C30/37		2,50					
	C35/45		2,92					
	C40/50		3,33					
	C45/55		3,75					
	C50/60		4,17					
	C55/67		4,58					
	≥ C60/75		5,00					
Characteristic resistar under fatigue tension in uncracked concrete without static preload	load	$\Delta N_{Rk,p,0,n}$	$_{,n}$ = $\Delta N_{Rk,p,0,n}$ (cracked concrete) · 1,4			4		

Hilti anchor channels (HAC) with channel bolts (HBC)
Performance Characteristic resistances under fatigue cyclic tension load	Annex C9

Table 26: Reduction factor $\eta_{c,fat}$ with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR 050)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Concrete cone failure	n	η _{c,fat} [-]					
Reduction factor for $\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$ with $N_{Rk,c}$ calculated according to EOTA TR 047 or EN 1992-4	≤ 10 ⁶	0,600					
	≤ 3·10 ⁶	0,571					
	≤ 10 ⁷	0,542					
	≤ 3·10 ⁷	0,516					
	≤ 6·10 ⁷	0.500					
	> 6·10 ⁷	0,500					

Table 27: Characteristic resistances under fatigue tension load with n $\rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Steel failure						
$\Delta N_{Rk,s;0;\infty}$	[kN]	1,6	1,5	2,6	3,5	6,4
Concrete cone and pullout failure						
$\eta_{c,\text{fat}}$	[-]	0,5				

For the reduction of the characteristic resistances given in Tables 24, 25 and 26 in the transition zone from the static resistance to the fatigue limit resistance the partial safety factors are calculated as follows:

$$\gamma_{M,fat,n} = \gamma_{M,fat} + (\gamma_M - \gamma_{M,fat}) \cdot (\Delta N_{Rk,n} - \Delta N_{Rk,\infty}) / (N_{Rk} - \Delta N_{Rk,\infty})$$

In absence of other national regulations the following safety factors γ_{M} and $\gamma_{\text{M,fat}}$ are recommended for design method I according to EOTA TR 050:

$$\gamma_{\rm M}$$
 = 1,8 (steel)

 $\gamma_{\rm M}$ = 1,5 (concrete)

$$\gamma_{M,fat} = 1,35$$

In absence of other national regulations the following safety factor $\gamma_{M,fat}$ is recommended for design method II (Table 27) according to EOTA TR 050:

$$\gamma_{M,fat} = 1,35$$

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load	Annex C10