

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0095 of 11 March 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer concrete screw FBS, FBS A4 and FBS C

Concrete screw made of galvanised steel and stainless steel of sizes 8, 10, 12 and 14 for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

14 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 3: "Undercut anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0095

Page 2 of 14 | 11 March 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z13716.16 8.06.01-40/16

European Technical Assessment ETA-11/0095 English translation prepared by DIBt

Page 3 of 14 | 11 March 2016

Specific Part

1 Technical description of the product

The fischer concrete screw FBS is an anchor in size of 8, 10, 12 and 14 made of zinc-plated steel respectively steel with zinc flake coating (FBS) or made of stainless steel (FBS A4, FBS C). The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads as well as bending moments in concrete	See Annex C 1 and C 2
Edge distances and spacing	See Annex C 1 and C 2
Displacements under tension and shear loads	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 4

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z13716.16 8.06.01-40/16

European Technical Assessment ETA-11/0095

Page 4 of 14 | 11 March 2016

English translation prepared by DIBt

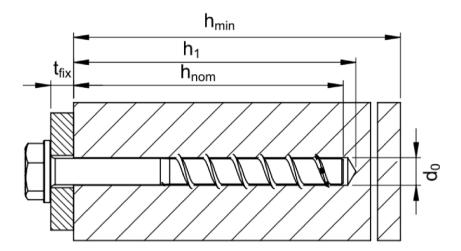
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 March 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentTempel

Z13716.16 8.06.01-40/16



Product and installed condition

fischer concrete screw FBS, FBS A4 and FBS C

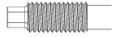
Nominal drill bit diameter d_0 Nominal anchorage depth h_{nom} Depth of the drill hole h_1

Minimum thickness of member h_{min} =

Thickness of fixture $\mathbf{t}_{\mathsf{fix}}$

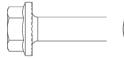
fischer concrete screw FBS, FBS A4 and FBS C

Product description


Installed condition

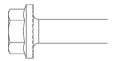
Annex A 1

Table A1: Materials and variants


Part	Name	Material									
1, 2, 3, 4, 5	Screw anchor	FBS A4 FBS C	zinc flake coating acc.	Steel EN 10263-4 galvanized acc. to EN ISO 4042 or zinc flake coating acc. to EN ISO 10683 (≥ 5μm) 1.4401, 1.4404, 1.4571, 1.4578 1.4529 FBS FBS A4 /							
			ristic steel yield strength ristic steel ultimate strength	f _{yk} f _{uk}	[N/mm²] [N/mm²]	600 700	700 800				

 FBS ST - Anchor version with connection thread and hexagon

e.g. FBS 10x120 M 12x20 ST

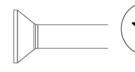


2)

3)

4)

FBS-US - Anchor version with washer, hexagon head and hexalobular internal driving feature (only FBS 8) e.g. FBS 8x100 US



FBS US - Anchor version with washer and hexagon head e.g. FBS 10x100 US

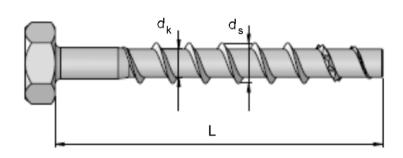
FBS-S - Anchor version with hexagon head e.g. FBS 10x100 S A4

5)

FBS-SK - Anchor version with counter sunk socket head and hexalobular internal driving feature e.g. FBS 10x75 SK

fischer concrete screw FBS, FBS A4 and FBS C

Product description


Material and screw types

Annex A 2

Table A2: Dimensions and markings

Anchor size			FBS 8	FBS 10	FBS 12	FBS 14		
Nominal embedment depth			h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm		
Length of the anchor	L≤	[mm]	300					
Diameter of shaft	d_k	[mm]	6,8	8,8	10,8	12,8		
Diameter of thread	ds	[mm]	10,6	12,6	14,6	16,6		

Marking:

Anchor type: FBS / TSM Anchor size: 10

Length of the anchor in mm: 100

e.g. FBS 10 100

fischer concrete screw FBS, FBS A4 and FBS C

Product descriptions

Dimensions and markings

Annex A3

Intended use

Anchorages subject to:

- Static and quasi static loads,
- Used for anchorages with requirements related to resistance of fire.

Base materials:

- Reinforced and unreinforced concrete according to EN 206-1:2000-12,
- Strength classes C20/25 to C50/60 according to EN 206-1:2000-12,
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- The anchor may only be used in dry internal conditions: All screw types
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions if no particular aggressive conditions exist: screw types made of stainless steel with marking A4
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exist: screw types made of stainless steel with marking C

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work,
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.),
- Anchorages under static or quasi-static actions are designed for design Method A designed in accordance with:
 - ETAG 001, Annex C, Edition August 2010 or
 - or CEN/TS 1992-4:2009,
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D (It must be ensured that local spalling of the concrete cover does not occur).

Installation:

- Hammer drilling only,
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site,
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

fischer concrete screw FBS, FBS A4 and FBS C

Intended use
Specifications

Annex B 1

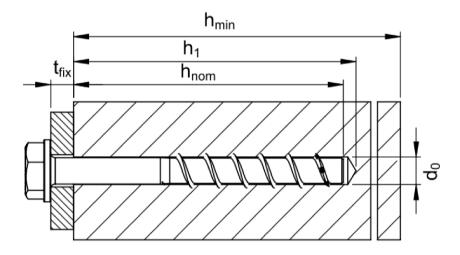
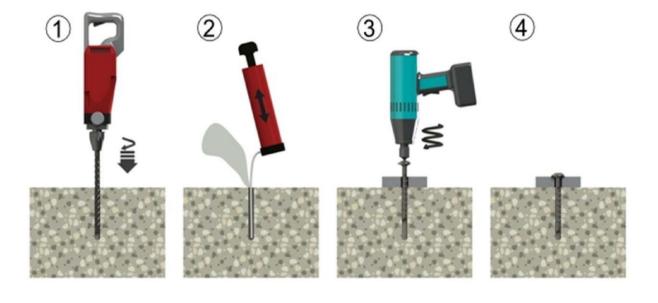


Table B1: Installation parameters

Anchor size	FBS 8	FBS 10	FBS 12	FBS 14			
Nominal embedment depth				h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm
Nominal drill bit diameter	\mathbf{d}_{0}		[mm]	8	10	12	14
Cutting diameter of drill bit	\mathbf{d}_{cut}	≤	[mm]	8,45	10,45	12,50	14,50
Depth of drill hole	h ₁	2	[mm]	75	95	110	135
Nominal embedment depth	h _{nom}	, ≥	[mm]	65	85	100	125
Diameter of clearing hole in the fixture	d_{f}	≤	[mm]	12	14	16	18

<u>Table B2: Minimum thickness of member, minimum edge distance and minimum spacing</u>


Anchor size			FBS 8	FBS 10	FBS 12	FBS 14
Nominal embedmenth depth			h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm
Minimum thickness of member	\mathbf{h}_{min}	[mm]	120	130	150	200
Minimum edge distance	C _{min}	[mm]	50	70	80	100
Minimum spacing	S _{min}	[mm]	50	70	80	100

fischer concrete screw FBS, FBS A4 and FBS C

Intended use
Installation parameters

Annex B 2

fischer concrete screw FBS, FBS A4 and FBS C

Intended use

Installation instructions

Annex B3

electronic copy of the eta by dibt: eta-11/0095

<u>Table C1: Characteristic values for design method A according to ETAG 001, Annex C or CEN/TS 1992-4 for FBS</u>

Anchor size	FBS 8	FBS 10	FBS 12	FBS 14		
Nominal embedment depth	h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm		
Steel failure for tension- and s	shear load					
Observants visitis I and	$N_{Rk,s}$	[kN]	25,0	42,0	64,0	90,0
Characteristic load	$V_{Rk,s}$	[kN]	18,0	34,0	42,0	64,0
	M ⁰ _{Rk,s}	[Nm]	26,0	56,0	123,0	200,0
Pull-out failure						
Characteristic tension load in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	Pull-out Failure is not decisive	Pull-out Failure is not decisive
Characteristic tension load in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	Pull-out Failure is not decisive	Pull-out Failure is not decisive	Pull-out Failure is not decisive
		C30/37	1,22			
Increasing factor concrete for N _i	$_{Rk,p} \mid \Psi_C$	C40/50	1,41			
		C50/60	1,55			
Concrete cone and splitting fa	ilure					
Effective anchorage depth	h _{ef}	[mm]	51	68	80	100
cracked concrete	k _{cr} ²⁾	[-]	7,2			
uncracked concrete	k _{ucr} ²⁾	[-]	10,1			
Concrete cone spacing	S _{cr,N}	[mm]		3 x	h_{ef}	
failure edge distan	ce c _{cr,N}	[mm]		1,5 x	c h _{ef}	
Splitting failure spacing	S _{cr,sp}	[mm]		3 x	h _{ef}	
edge distan	ce c _{cr,sp}	[mm]		1,5 x	c h _{ef}	
Installation safety factor	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]		1,0	0	
Concrete pry out failure (pry-c	out)					
k-Factor	$k^{1)} = k_3^{2)}$	[-]	1,0		2,0	
Concrete edge failure						
Effective length of anchor	I _f = h _{ef}	[mm]	51	68	80	100

¹⁾ Parameter relevant only for design according to ETAG 001, Annex C

fischer concrete screw FBS, FBS A4 and FBS C	
Performances	Annex C1
Characteristic values for FBS for design method A	

²⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

<u>Table C2: Characteristic values for design method A according to ETAG 001, Annex C</u> <u>or CEN/TS 1992-4 for FBS A4 and FBS C</u>

Anchor size					FBS 10 A4 FBS 10 C	FBS 12 A4 FBS 12 C	FBS 14 A4 FBS 14 C
Nominal embedment depth					h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm
Steel failure for to	ension- and shea	r load					
		$N_{Rk,s}$	[kN]	29,0	48,0	73,0	103,0
Characteristic load	1	$V_{Rk,s}$	[kN]	21,0	40,0	49,0	64,0
		M ⁰ _{Rk,s}	[Nm]	29,0	64,0	141,0	229,0
Pull-out failure							
Characteristic tens		$N_{Rk,p}$	[kN]	9	16	Pull-out Failure is not decisive	Pull-out Failure is not decisive
Characteristic tens uncracked concret		$N_{Rk,p}$	[kN]	12	Pull-out Failure is not decisive	Pull-out Failure is not decisive	Pull-out Failure is not decisive
			C30/37	1,22			
Increasing factor c	concrete for $N_{Rk,p}$	Ψ _C	C40/50	1,41			
			C50/60	1,55			
Concrete cone ar	nd splitting failure	•					
Effective anchorage	ge depth	h _{ef}	[mm]	51	68	80	100
Factor for	cracked concrete	k _{cr} ²⁾	[-]	7,2			
i actor for	uncracked concrete	k _{ucr} ²⁾	[-]	10,1			
Concrete cone	spacing	s _{cr,N}	[mm]		3 x	h _{ef}	
failure	edge distance	C _{cr,N}	[mm]		1,5 >	ι h _{ef}	
Splitting failure	spacing	s _{cr,sp}	[mm]		3 x	h _{ef}	
Splitting failure	edge distance	C _{cr,sp}	[mm]		1,5 >	ι h _{ef}	
Installation safety factor $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$		$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]		1,	0	
Concrete pry out	failure (pry-out)						
k-Factor $k^{-1} = k_3^2$		$k^{1} = k_3^{2}$	[-]	1,0		2,0	
Concrete edge fa	ilure						
Effective length of	anchor	I _f = h _{ef}	[mm]	51	68	80	100
Outside diameter d	of anchor	d _{nom}	[mm]	8	10	12	14

¹⁾ Parameter relevant only for design according to ETAG 001, Annex C

fischer concrete screw FBS, FBS A4 and FBS C	
Performances	Annex C 2
Characteristic values for FBS A4 and FBS C for design method A	

²⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

English translation prepared by DIBt

Table C3: Displacements under tension load for FBS, FBS A4 and FBS C

Anchor size			FBS 8	FBS 10	FBS 12	FBS 14	
			h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm	
Tension load	N	[kN]	4,3	7,6	11,1	15,9	
Disalessand	δ_{N0}	[mm]	0,5				
Displacement	δ_{∞}	[mm]	1,0				

Table C4 : Displacements under shear load for FBS

Anchor size			FBS 8	FBS 10	FBS 12	FBS 14
			h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm
Shear load	V	[kN]	8,6	16,2	20,0	30,5
Displacement -	$\delta_{ m V0}$	[mm]	2,7	2,7	4,0	3,1
	δ_{∞}	[mm]	4,1	4,3	6,0	4,7

Table C5: Displacements under shear load for FBS A4 and FBS C

Anchor size			FBS 8 A4 FBS 8 C	FBS 10 A4 FBS 10 C	FBS 12 A4 FBS 12 C	FBS 14 A4 FBS 14 C
			h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm
Shear load	٧	[kN]	10,0	19,1	23,2	30,5
Displacement	δ_{V0}	[mm]	2,9	3,5	4,1	4,6
	δ_{∞}	[mm]	4,4	5,3	6,2	7,0

fischer concrete screw FBS, FBS A4 and FBS C	Annex C3
Performances	Annex C3
Displacements under tension and shear loads	

Table C6: Characteristic values of resistance to fire exposure for FBS

Anchor size				FBS 8	FBS 10	FBS 12	FBS 14	
Nominal embedment depth			h _{nom} = 65 mm	h _{nom} = 85 mm	h _{nom} = 100 mm	h _{nom} = 125 mm		
Fire resistance class								
R 30	Characteristic resistance	$F_{Rk,fi30}$	[kN]	2,3	4,0	6,3	9,8	
R 60	Characteristic resistance	$F_{Rk,fi60}$	[kN]	1,7	3,3	5,8	8,1	
R 90	Characteristic resistance	F _{Rk,fi90}	[kN]	1,1	2,2	4,2	5,9	
R 120	Characteristic resistance	F _{Rk,fi120}	[kN]	0,8	1,7	3,4	4,8	
R 30	Spacing	s _{min,fi} = s _{cr,fi}		4 h _{ef}				
to R 120	Edge distance	c _{min,fi} = c _{cr,fi}	[]	2 h _{ef}				

Table C7: Characteristic values of resistance to fire exposure for FBS A4 and FBS C

Anchor size				FB	S 8	FBS	S 10	FBS 12	FBS 14
Nominal embedment depth				h _{nom} = 65 h _{nom} = 85 mm		h _{nom} = 100 mm	h _{nom} = 125 mm		
Fire resistance class									
R 30	Characteristic resistance	F _{Rk,fi30}	[kN]	2,3 ¹⁾	2,3 ²⁾	4,0 ¹⁾	4,0 ²⁾	6,3	9,8
R 60	Characteristic resistance	F _{Rk,fi60}	[kN]	1,7 ¹⁾	2,3 ²⁾	3,3 ¹⁾	4,0 ²⁾	5,8	8,1
R 90	Characteristic resistance	F _{Rk,fi90}	[kN]	1,1 ¹⁾	2,3 ²⁾	2,2 ¹⁾	4,0 ²⁾	4,2	5,9
R 120	Characteristic resistance	F _{Rk,fi120}	[kN]	0,81)	1,8 ²⁾	1,7 ¹⁾	3,2 ²⁾	3,4	4,8
R 30	Spacing s _r	$s_{min,fi} = s_{cr,fi}$ [mm]		4 h _{ef}					
to R 120	Edge distance c _r	_{min,fi} = c _{cr,fi}	[[[]]]	2 h _{ef}					

¹⁾ For anchor version with hexagon head and counter sunk socket head

fischer concrete screw FBS, FBS A4 and FBS C	A 0.4
Performances	Annex C 4
Characteristic values of resistance to fire exposure	

²⁾ For anchor version with connection thread