

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0288 of 10 September 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

PFEIFER-DB-Anchor-System

Cast-in anchor with internal threaded socket

Pfeifer Seil- und Hebetechnik GmbH Dr.-Karl-Lenz-Str. 66 87700 Memmingen

Pfeifer Seil- und Hebetechnik GmbH Dr.-Karl-Lenz-Str. 66 87700 Memmingen

22 pages including 18 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330012-00-0601

European Technical Assessment ETA-11/0288

Page 2 of 22 | 10 September 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0288

Page 3 of 22 | 10 September 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The PFEIFER-DB-Anchor-System in the size of Rd12, Rd16, Rd20, Rd24 and Rd30 is an anchor consisting of an internal threaded socket pressed on a ribbed reinforcement bar. The socket is made of galvanised steel or stainless steel. The reinforcement bar may be waved (PFEIFER Waved Anchor DB 682) or may be straight with a head pressed on one end (PFEIFER Foot-Mounted Anchor DB 682). The anchor is imbedded surface-flush or sunk in the concrete. The anchorage is characterised by bond of the waved reinforcement bar or mechanical interlock at the head.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance for static and quasi-static loads and displacements	See Annex C1 to C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330012-00-0601, the applicable European legal act is: [96/582/EC].

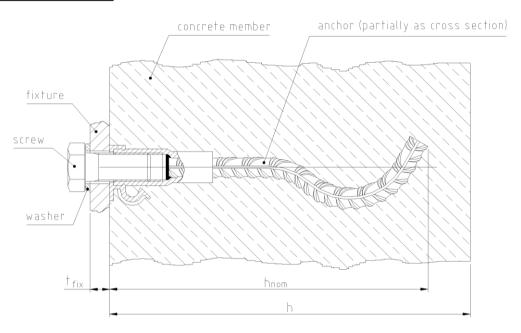
The system to be applied is: 1

European Technical Assessment ETA-11/0288

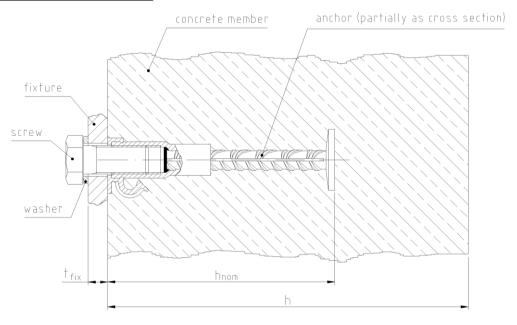
Page 4 of 22 | 10 September 2016

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

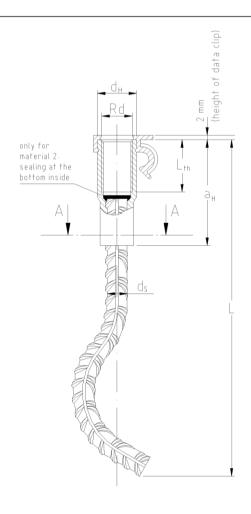

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 10 September 2016 by Deutsches Institut für Bautechnik


Andreas Kummerow beglaubigt:
p. p. Head of Department Müller

PFEIFER Waved Anchor DB 682

PFEIFER Foot-Mounted Anchor DB 682

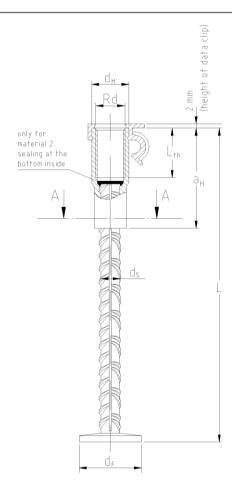


h = thickness of concrete member

 $\begin{array}{lll} t_{\text{fix}} & = & \text{thickness of fixture} \\ h_{\text{nom}} & = & \text{embedment depth} \end{array}$

Product description Installed condition Annex A1

PFEIFER Waved Anchor DB 682 made of two different materials:


Material 1: Socket galvanized steel (thickness ≥ 5 μm) or

Material 2: Socket stainless steel (1.4571)

Table A1: Dimensions of PFEIFER Waved Anchor DB 682

	d _H		a _H L _{th} d _s L				
Waved Anchor	Material 1	Material 2	Material 1 and Material 2				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Rd12	15,0	14,8	42,0	22	8	108	
Rd16	21,0	21,6	56,5	27	12	172	
Rd20	27,2	27,2	72,0	35	16	192	
Rd24	31,0	31,0	82,0	43	16	250	
Rd30	39,5	39,5	109,5	56	20	300	

PFEIFER-DB-Anchor-System	
Product description Dimensions Waved Anchor DB 682	Annex A2

PFEIFER Foot-Mounted Anchor DB 682 made of two different materials:

Material 1: Socket galvanized steel (thickness ≥ 5 μm) or

Material 2: Socket stainless steel (1.4571)

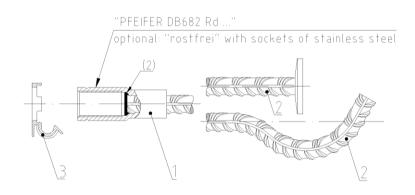

electronic copy of the eta by dibt: eta-11/0288

Table A2: Dimensions of PFEIFER Foot-Mounted Anchor DB 682

	d	н	a _H	L _{th}	d _s	d _F	L
Foot-Mounted Anchor	Material 1	Material 2	Material 1 and Material 2				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Rd12	15,0	14,8	42,0	22	8	20 - 24	78
Rd16	21,0	21,6	56,5	27	12	30 - 36	118
Rd20	27,2	27,2	72,0	35	16	40 - 48	148
Rd24	31,0	31,0	82,0	43	16	40 - 48	178
Rd30	39,5	39,5	109,5	56	20	50 - 60	218

PFEIFER-DB-Anchor-System	
Product description Dimensions Foot-Mounted Anchor DB 682	Annex A3

Marking

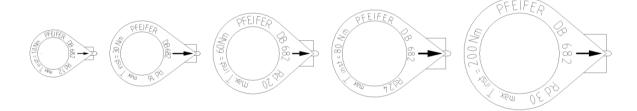
e.g.: PFEIFER DB 682 Rd12

PFEIFER: Identifying mark of the

producer

DB 682: Name of the anchor

Rd12: Size

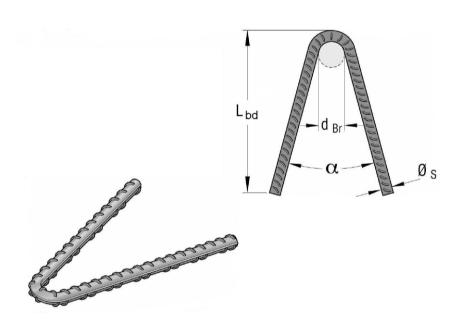

Table A3: Specification and material of the anchor

Item	Component	Material 1 galvanized steel	Material 2 stainless steel		
1	Socket	Steel E 355 +N (1.0580) acc. to EN 10305-1/2 galvanized 1)	stainless steel 1.4571 acc. to EN 10216-5 with BLUE sealing inside the socket ²⁾		
2	Reinforcement Bar	B500A or B500B			
3	Data Clip		talen PPN 1060 RAL 7001 / grey talen PPN 1060 RAL 9010 / white		

Specification and material of appropriate components (not included in anchor) Table A4:

Appr. Component	Material associated with anchor of Material 1	Material associated with anchor of Material 2			
Washer	Steel acc. to EN 10025, galvanized 1)	Stainless steel 1.4571 acc. to EN 10088			
vvasilei	Geometry acc. to EN ISO 7089/7090				
Screw	Steel acc. to EN ISO 898-1, galvanized ¹⁾ , strength class 5.6 or 8.8	Stainless steel acc. to EN ISO 3506-1, strength class A4-50 or A4-70			
Supplementary	B500A or B500B	Reinforcing steel made of stainless steel			
Reinforcement	Geometry acc. to Annex A5 (plane installation) or Annex A6 (front-side installation)				

- 1) Galvanizing with a plate thickness \geq 5 μ m incl. chromate coating (yellow) acc. to EN ISO 4042 2) Front side of reinforcement bar covered/protected against corrosion

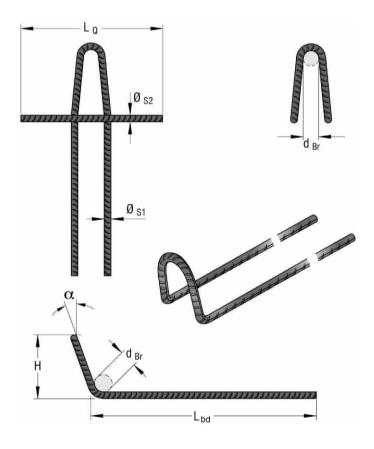

Front view of Data Clip

PFEIFER-DB-Anchor-System	
Product description Marking and materials	Annex A4

Table A5: Dimensions of supplementary reinforcement for plane installation

Waved Anchor / Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
reinforcement bar B500A, B500B or B500NR	Øs	[mm]	6	8	10	12	12
anchorage length	L_bd	[mm]	330	440	550	660	660
mandrel diameter	d_{Br}	[mm]	24	32	40	48	48
spreading angle	α	[°]	30	30	30	30	30

Note


The supplementary reinforcement has to be fixed directly onto the socket by using the data clip. If the anchors are <u>not</u> used under dry conditions (indoor) according to Annex B1, the additional reinforcement has to be made of stainless steel.

PFEIFER-DB-Anchor-System	
Product description Supplementary reinforcement for plane installation with shear load	Annex A5

Table A6: Dimensions of supplementary reinforcement for front-side installation

Waved Anchor / Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
reinforcement bar B500A, B500B or B500NR	Ø _{S1}	[mm]	6	8	10	12	12
crossbar B500A, B500B or B500NR	Ø _{S2}	[mm]	8	12	14	14	16
anchorage length	L_bd	[mm]	270	420	490	520	570
length of crossbar	La	[mm]	280	400	490	550	580
hight	Н	[mm]	40	55	70	80	105
mandrel diamater	d_{Br}	[mm]	24	32	40	48	48
spreading angle	α	[°]	15	15	15	15	15

Note

The supplementary reinforcement has to be fixed directly onto the socket by using the data clip. If the anchors are <u>not</u> used under dry conditions (indoor) according to Annex B1, the additional reinforcement has to be made of stainless steel.

PFEIFER-DB-Anchor-System	
Product description Supplementary reinforcement for front-side installation with shear load	Annex A6

Specifications of intended use

Anchorages subject to

Static and quasi-static loads

Base materials

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2013
- Strength classes C20/25 to C50/60 according to EN 206-1:2013
- · Cracked or uncracked concrete

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions (material 1 acc. Annex A4 only if the inner area of the socket is protected against water during installation)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (material 2 acc. Annex A4)

 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, orientating the data clip)
- Anchorages under static or quasi-static actions are designed in accordance with:
 - CEN/TS 1992-4:2009, part 1 and 2
- The screw is chosen with the corresponding screw-in depth acc. to Annex B3, Table B1 and with the strength class acc. to Annex C1 and C3 subject to the required steel resistance and with the material acc. to Annex A4
- If applicable a supplementary reinforcement is chosen acc. to Annex A5 or A6

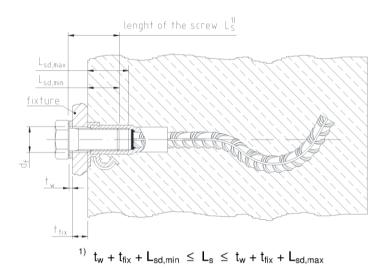
PFEIFER-DB-Anchor-System	
Intended Use Specifications	Annex B1

English translation prepared by DIBt

Installation

- Installation of anchors is carried out by appropriately qualified workers under supervision of the person responsible for technical matters on site
- Usage of anchors only as supplied by the manufacturer without any manipulation or exchanging of components
- Installation of anchors in accordance with manufacturer's specifications given in Annex B5 and Annex B6
- Anchors are to be fixed on the formwork so that no movement of the anchors will occur during the time of laying the reinforcement and of placing and compacting the concrete
- Concrete among anchors and especially under the heads of foot-mounted anchors is compacted properly
- Inner area of socket is to be protected against penetration of concrete
- Inner area of socket made of galvanised steel is to be protected against water
- Inner area of socket made of stainless steel is to be protected against oil
- Maximum setting torques and the minimum and maximum screw-in depth given in Annex B3 must not be exceeded
- Anchors may only be loaded in the direction shown by the data clip (arrow) if a supplementary reinforcement is used

PFEIFER-DB-Anchor-System	
Intended Use Specifications	Annex B2


Z54921.16 8.06.01-802/13

electronic copy of the eta by dibt: eta-11/0288

Steel-to-data clip contact

The fixture is braced directly to the anchor, eventually by using a suitable washer.

General application

The fixture is braced directly to the concrete while the anchor is either braced to the surface flush or sunk into to the concrete.

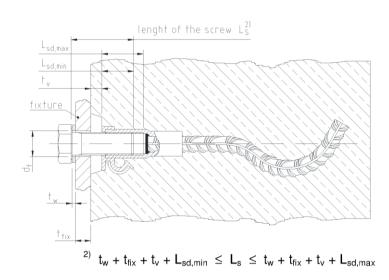
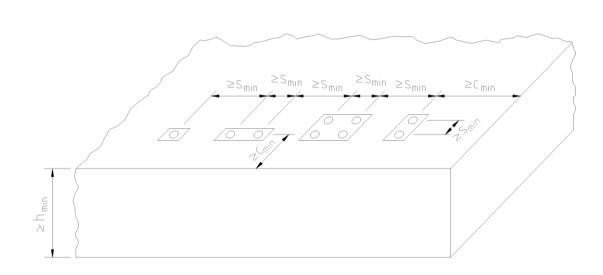



Table B1: Installation parameters

electronic copy of the eta by dibt: eta-11/0288

Waved Anchor / Foot-Mounted Ancho	r		Rd12	Rd16	Rd20	Rd24	Rd30
appropriate size of screw		[mm]	M 12	M 16	M 20	M 24	M 30
maximum setting torque	max. T _{inst}	[Nm]	≤ 10	≤ 30	≤ 60	≤ 80	≤ 200
minimum screw-in depth	$L_{sd,min}$	[mm]	15	20	25	30	35
maximum screw-in depth	$L_{\text{sd,max}}$	[mm]	24	29	37	45	58
diameter of clearance hole in the fixture	d _f	[mm]	14	18	22	26	33

PFEIFER-DB-Anchor-System	
Intended Use Installation parameters	Annex B3

Spacing, edge distance and minimum thickness of concrete member apply also for anchors in front-side installation.

Table B2: Minimum thickness of concrete member, minimum edge distance and minimum spacing

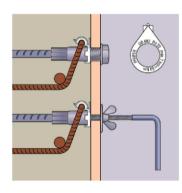
Waved Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
minimum spacing	S _{min}	[mm]	100	120	140	160	200
minimum edge distance	C _{min}	[mm]	50	60	70	80	100
minimum thickness of concrete member 1)	h _{min}	[mm]	130	200	220	290	340

Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
minimum spacing	S _{min}	[mm]	120	150	180	200	240
minimum edge distance	C _{min}	[mm]	60	75	90	100	120
minimum thickness of concrete member 1)	h _{min}	[mm]	100	140	170	210	250

¹⁾ $h \ge h_{nom} + c_{nom}$ c_{nom} acc. to EN 1992-1

electronic copy of the eta by dibt: eta-11/0288

PFEIFER-DB-Anchor-System	
Intended Use Minimum spacings and edge distances, minimum thickness of concrete member	Annex B4


Installation instructions

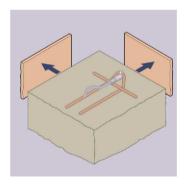
1. Components

- 1. PFEIFER Waved Anchor or PFEIFER Foot-Mounted Anchor DB 682 with pressed on socket made of galvanized steel or stainless steel
- 2. PFEIFER Data Clip for Waved Anchor, colour: grey PFEIFER Data Clip for Foot-Mounted Anchor, colour: white

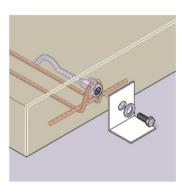
2. Fixing of the anchor at the formwork

- 1. Put PFEIFER Data Clip onto the socket.
- 2. Fix anchor at the formwork by using PFEIFER accessories for shuttering or alternatively by means of a suitable screw.
 - → Keep the correct adjustment of the DB anchor!
 - → Avoid concrete penetration into the socket!
 - → Galvanized socket: Avoid concrete penetration into the socket!
- 3. If required, fix supplementary reinforcement acc. to Annex A5 or A6 at the socket by PFEIFER Data Clip.
 - → Supplementary reinforcement must be fixed close to the socket!

3. Pouring and compacting of concrete


- 1. Fill in concrete carefully, mind the fixed anchors!
- 2. Compact concrete properly, avoid contact between vibrating device and DB anchor resp. supplementary reinforcement.
 - → Anchor must not be moved or damaged!

PFEIFER-DB-Anchor-System Intended Use Installation instructions Annex B5


Installation instructions

4. Removal of shuttering

- 1. Remove accessories for shuttering.
- 2. Remove shuttering.
- 3. Check internal thread of DB Anchor. Clean the thread of the socket properly if concrete has been penetrated into.

5. Assembly of the fixture

- 1. Ensure, that the concrete has reached its designated strength.
- 2. Ensure, that the length of the screw is correct.
 - → Maximum respectively minimum screw-in depth see Annex B3!
- 3. Assemble the fixture.
 - → Use appropriate components acc. to Annex A4, Table A4!
 - → Keep the maximum setting torques given below!
 - → Note all additional information regarding the fixture!

6. Maximum setting torques

Maximum setting torques max. T_{inst} for Waved Anchor / Foot-Mounted Anchor

Rd12	Rd16	Rd20	Rd24	Rd30
≤ 10 Nm	≤ 30 Nm	≤ 60 Nm	≤ 80 Nm	≤ 200 Nm

PFEIFER-DB-Anchor-System Intended Use Installation instructions Annex B6

Table C1: Characteristic resistances under tension load

Waved Anchor / Foot-Mou	nted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
Steel failure with galvanized	sockets and scre	ews (stre	ngth cla	ass 5.6)				
characteristic resistance		N _{Rk,s}	[kN]	31,1	78,5	122,5	110,6	172,8
partial safety factor	γ _{Ms} 1)	[-]	1,66	2	,0	1,	,4	
Steel failure with galvanized	sockets and scre	ews (stre	ngth cla	ass 8.8)				
characteristic resistance		N _{Rk,s}	[kN]	31,1	71,2	130,8	110,6	172,8
partial safety factor		γ _{Ms} 1)	[-]		1,66		1,	,4
Steel failure with sockets and screws made of			s steel	(strength	class A4-5	50)		
characteristic resistance		N _{Rk,s}	[kN]	29,4	78,5	122,5	151,1	259,2
partial safety factor		γ _{Ms} 1)	[-]			2,93		
Steel failure with sockets ar	nd screws made o	f stainles	s steel	(strength	class A4-7	70)		
characteristic resistance		$N_{Rk,s}$	[kN]	29,4	82,6	133,4	151,1	259,2
partial safety factor		$\gamma_{\rm Ms}$ 1)	[-]			2,93		
Pull-out failure								
cracked concrete C20/25	Mayad Anghar	$N_{Rk,p}$	[kN]	12	25	50	50	95
uncracked concrete C20/25	Waved Anchor	$N_{Rk,p}$	[kN]	20	40	60	60	95
cracked concrete C20/25	Foot-Mounted	$N_{Rk,p}$	[kN]	40	75	140	140	200
uncracked concrete C20/25	Anchor	$N_{Rk,p}$	[kN]	50	115	200	200	300
increasing factor for $N_{Rk,p}$ in cracked or uncracked concrete $\frac{C30/37}{C40/50}$		ψc	[-]	1,22				
		ψc	[-]	1,41				
	C50/60	ψc	[-]	1,55				
partial safety factor		γ _{Mp} 1)	[-]			1,50		
Concrete cone failure								
effective anchorage depth	Waved Ancho	r h _{ef}	[mm]	54	95	127	140	194
effective anchorage depth Fo	oot-Mounted Ancho	r h _{ef}	[mm]	78	116	145	175	215
factor to take into account the in	of the	k _{cr}	[-]			7,2		
load transfer mechanism		k _{ucr}	[-]			10,1		
characteristic spacing		S _{cr,N}	[mm]			3,0 · h _{ef}		
characteristic edge distance		C _{cr,N}	[mm]	1,5 · h _{ef}				
partial safety factor		YMc ¹⁾	[-]			1,50		
Splitting								
effective anchorage depth		h _{ef}	[mm]	54	95	127	140	194
characteristic spacing	Waved Anchor	S _{cr,sp}	[mm]	232	354	368	556	706
characteristic edge distance		C _{cr,sp}	[mm]	116	177	184	278	353
effective anchorage depth	Fact Manuals 1	h _{ef}	[mm]	78	116	145	175	215
characteristic spacing	Foot-Mounted Anchor	S _{cr,sp}	[mm]	300	460	480	780	900
characteristic edge distance		C _{cr,sp}	[mm]	150	230	240	390	450
partial safety factor		γ _{Msp} 1)	[-]			1,50		

¹⁾ In absence of other national regulations

PFEIFER-DB-Anchor-System	
Performances Characteristic resistances under tension load	Annex C1

Table C2: Displacements under tension load

Waved Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
Displacements under tension load (material 1 or material 2)							
tension load in cracked concrete	Ν	[kN]	5,7	11,9	23,8	23,8	45,2
short time displacement	δ_{N0}	[mm]	0,6	1,6	1,4	1,3	1,2
long time displacement	δ_{N_∞}	[mm]	1,0	1,9	1,5	1,2	0,9
tension load in uncracked concrete	Ν	[kN]	9,5	19,1	28,6	28,6	45,2
short time displacement	δ_{N0}	[mm]	0,8	1,7	1,5	1,4	1,2
long time displacement	δ_{N_∞}	[mm]	1,0	1,9	1,5	1,2	0,9

Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
Displacements under tension load (material 1 or material 2)							
tension load in cracked concrete	Ν	[kN]	5,7	11,9	23,8	23,8	45,2
short time displacement	δ_{N0}	[mm]	0,1	0,1	0,2	0,2	0,2
long time displacement	$\delta_{N\infty}$	[mm]	0,2	0,2	0,4	0,4	0,4
tension load in uncracked concrete	Ν	[kN]	9,5	19,1	28,6	28,6	45,2
short time displacement	δ_{N0}	[mm]	0,1	0,2	0,1	0,2	0,2
long time displacement	$\delta_{N\infty}$	[mm]	0,2	0,4	0,2	0,4	0,4

PFEIFER-DB-Anchor-System	
Performances Displacements under tension load	Annex C2

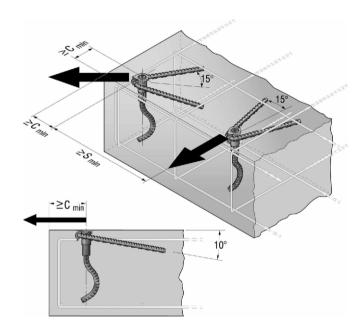
Table C3: Characteristic resistances under shear load

Waved Anchor / Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
Shear load without lever arm							
groupfactor (CEN/TS 1992-4-2, 6.3.3.1) k ₂		[-]			1,0		
Steel lailure with galvanized sockets and screws	s (stre	ength c	lass 5.6)				
characteristic resistance V _F	Rk,s	[kN]	15,5	39,2	61,3	88,3	140,3
partial safety factor γ_{M}	1) Is	[-]	1,38		1,0	67	
Steel failure with galvanized sockets and screws (strength class 8.8)							
characteristic resistance V _F	Rk,s	[kN]	15,5	35,6	65,3	74,1	127,0
partial safety factor γ_{M}	1) Is	[-]			1,38		
Steel failure with sockets and screws made of s	tainle	ss ste	el (strength	n class A4	-50)		
	Rk,s	[kN]	14,7	39,2	61,3	75,5	129,6
partial safety factor γ_{M}	1) Is	[-]			2,44		
Steel failure with sockets and screws made of s		ss ste	el (strength	n class A4	-70)		
characteristic resistance V _F	Rk,s	[kN]	14,7	41,3	66,7	75,5	129,6
partial safety factor γ_{M}	1) Is	[-]			2,44		
Shear load with lever arm							
Steel failure with galvanized sockets and screws	s (stre	ength c	lass 5.6)				
characteristic resistance M	0 Rk,s	[Nm]	65	166	324	560	1123
partial safety factor γ_{M}	1) Is	[-]			1,67		
Steel failure with galvanized sockets and screws	s (stre	ength c	lass 8.8)				
characteristic resistance M	0 Rk,s	[Nm]	115	266	519	896	1797
partial safety factor γ_{M}	1) Is	[-]	1,38		1,2	25	
Steel failure with sockets and screws made of s	tainle	ss ste	el (strength	class A4	-50)		
characteristic resistance M	0 Rk,s	[Nm]	65	166	324	560	1123
partial safety factor γ_{M}	1) Is	[-]			2,44		
Steel failure with sockets and screws made of s	tainle	ss ste	el (strength	class A4	-70)		
characteristic resistance M	0 Rk,s	[Nm]	108	232	454	1123	2422
partial safety factor γ_{M}	1) Is	[-]	2,44	1,	56	2,	44
Concrete pry-out Failure							
factor k		[-]	1,0		2	,0	
partial safety factor γ _M	1) Icp	[-]			1,50		
Concrete edge failure (without supplementary r		rcemer	nt)				
effective length of anchor		[mm]	42,0	56,5	72,0	82,0	109,5
outside diameter of anchor d _n	om 1) Ice	[mm]	15,0	21,0	25,0	25,0	25,0

¹⁾ In absence of other national regulations

PFEIFER-DB-Anchor-System	
Performances Characteristic resistances under shear load	Annex C3

Table C4: Characteristic resistances under shear load due to failure of supplementary reinforcement for plane installation


Waved Anchor / Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
characteristic resistance of the supplementary reinforcement for plane installation	$V_{Rk,c,re}$	[kN]	13,5	23,9	37,4	53,8	53,8
corresponding partial safety factor	γMs,re ¹⁾	[-]			1,15		

Waved Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
minimum spacing	S _{min}	[mm]	100	120	140	160	200
minimum edge distance 2)	C _{min}	[mm]	50	60	70	80	100

Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
minimum spacing	S _{min}	[mm]	120	150	180	200	240
minimum edge distance 2)	C _{min}	[mm]	60	75	90	100	120

1) In absence of other national regulations

²⁾ The edge distance has to be defined with regard to the concrete cover c_{nom} according to EN 1992-1

<u>Note</u>

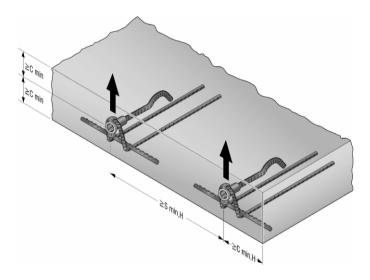
Supplementary reinforcement for plane installation may only be used for forces in direction of the arrows given above. The reinforcement has to be arranged symmetrically to the direction of the force.

The supplementary reinforcement has to be fixed directly onto the socket by using the data clip. If the anchors are <u>not</u> used under dry conditions (indoor) according to Annex B1, the additional reinforcement has to be made of stainless steel.

This information also applies for Foot-Mounted Anchor DB 682.

PFEIFER-DB-Anchor-System	
Performances	Annex C4
Characteristic resistances under shear load	
with supplementary reinforcement and plane installation	

Table C4: Characteristic resistances under shear load due to failure of supplementary reinforcement for front-side installation


Waved Anchor / Foot mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
characteristic resistance of the supplementary reinforcement for front-side installation	$V_{Rk,c,re}$	[kN]	5,7	17,6	27,5	39,6	43,0
partial safety factor	γMs,re ¹⁾	[-]			1,8		

minimum spacing	$s_{\text{min},H}$	[mm]	280	400	490	550	580
min. edge distance parallel to the plane	C _{min,H}	[mm]		=	L _Q / 2 + c _{non}	2) n	

Waved Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
min edge distance perpendicular to the plane	C _{min}	[mm]	50	60	70	80	100

Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
min edge distance perpendicular to the plane	C _{min}	[mm]	60	75	90	100	120

-) In absence of other national regulations
- 2) Dimensions Lo according to Annex A6

<u>Note</u>

Supplementary reinforcement for the front-side installation may only be used for forces in direction of the arrows given above. The reinforcement has to be arranged symmetrically to the direction of the force.

The supplementary reinforcement has to be fixed directly onto the socket by using the data clip. If the anchors are <u>not</u> used under dry conditions (indoor) according to Annex B1, the additional reinforcement has to be made of stainless steel.

This information also applies for Foot-Mounted Anchor DB 682.

Combined tension and shear load

The factor k₇ is for combined tension and shear load acc. to CEN/TS 1992-4-2:2009, section 6.4.1.3:

 $k_7 = 2/3$

PFEIFER-DB-Anchor-System	
Performances	Annex C5
Characteristic resistances under shear load	
with supplementary reinforcement and front-side installation	

Table C6: Displacements under shear load

Waved Anchor / Foot-Mounted Anchor			Rd12	Rd16	Rd20	Rd24	Rd30
Displacement under shear load <u>without</u> s with galvanized sockets and screws (strengt		-	einforcer	nent			
shear load in cracked and uncracked concrete	٧	[kN]	8,1	16,8	26,2	37,7	60,0
short time displacement	δ_{V0}	[mm]	2,0	2,0	3,0	3,0	4,0
long time displacement	$\delta_{V\infty}$	[mm]	3,0	3,0	4,5	4,5	6,0
Displacement under shear load without swith galvanized sockets and screws (strengt		•	einforcer	nent			
shear load in cracked and uncracked concrete	٧	[kN]	8,1	18,4	33,8	38,3	65,8
short time displacement	δ_{V0}	[mm]	2,0	2,0	3,0	3,0	4,0
long time displacement	δ_{V_∞}	[mm]	3,0	3,0	4,5	4,5	6,0
Displacement under shear load without swith sockets and screws made of stainless s							
shear load in cracked and uncracked concrete	V	[kN]	4,3	11,4	17,9	22,1	38,0
short time displacement	δ_{V0}	[mm]	2,0	2,0	3,0	3,0	4,0
long time displacement	δ_{V_∞}	[mm]	3,0	3,0	4,5	4,5	6,0
Displacement under shear load without so with sockets and screws made of stainless s		•					
shear load in cracked and uncracked concrete	٧	[kN]	4,3	12,1	19,5	22,1	38,0
short time displacement	δ_{V0}	[mm]	2,0	2,0	3,0	3,0	4,0
long time displacement	$\delta_{V\infty}$	[mm]	3,0	3,0	4,5	4,5	6,0
Displacement under shear load <u>with</u> supp (plane installation)	lement	tary rein	forcemen	t accordir	ng to Anno	ex A5	
shear load in cracked and uncracked concrete	Vs	[kN]	8,4	14,8	23,2	33,4	33,4
short time displacement	δ_{V0}	[mm]	1,5	1,5	2,0	2,0	2,0
long time displacement	δ_{V_∞}	[mm]	2,0	2,3	2,6	2,7	2,7
Displacement under shear load with supp (front-side installation)	lement	tary rein	forcemen	t accordir	ng to Anno	ex A6	
shear load in cracked and uncracked concrete	VQ	[kN]	2,3	7,0	10,9	15,7	17,1
short time displacement	δ_{V0}	[mm]	1,0	1,4	1,6	1,8	2,0
long time displacement	$\delta_{V_{\infty}}$	[mm]	1,5	2,1	2,4	2,7	3,0

PFEIFER-DB-Anchor-System				
Performances Displacements under shear load	Annex C6			