

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0360 of 19 May 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

Bonded Anchor for use in concrete

SIMPSON STRONG -TIE® GmbH Hubert-Vergölst-Straße 6-14 61231 Bad Nauheim DEUTSCHLAND

Simpson Strong-Tie Manufacturing Facilities

22 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors",

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0360

Page 2 of 22 | 19 May 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z18833.16 8.06.01-521/15

European Technical Assessment ETA-11/0360

Page 3 of 22 | 19 May 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Simpson Strong-Tie® - SET-XP Epoxy Adhesive is a bonded anchor consisting of a cartridge with injection mortar SET-XP and a steel element. The steel elements are either

- Threaded rods in the range of M 12 to M 27 or
- Reinforcing bar in the range of φ 12 to φ 25 mm

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply..

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z18833.16 8.06.01-521/15

European Technical Assessment ETA-11/0360

Page 4 of 22 | 19 May 2016

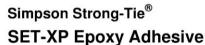
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 19 May 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentLange

Z18833.16 8.06.01-521/15

SET-XP Injection mortar cartridge: 250ml, 650 ml and 1656 ml

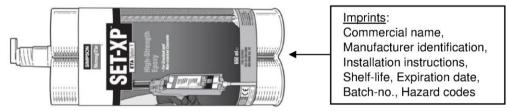
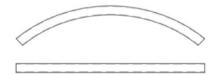
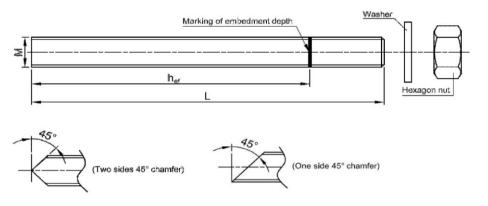


Illustration: 650 ml Injection mortar cartridge (side-by-side)



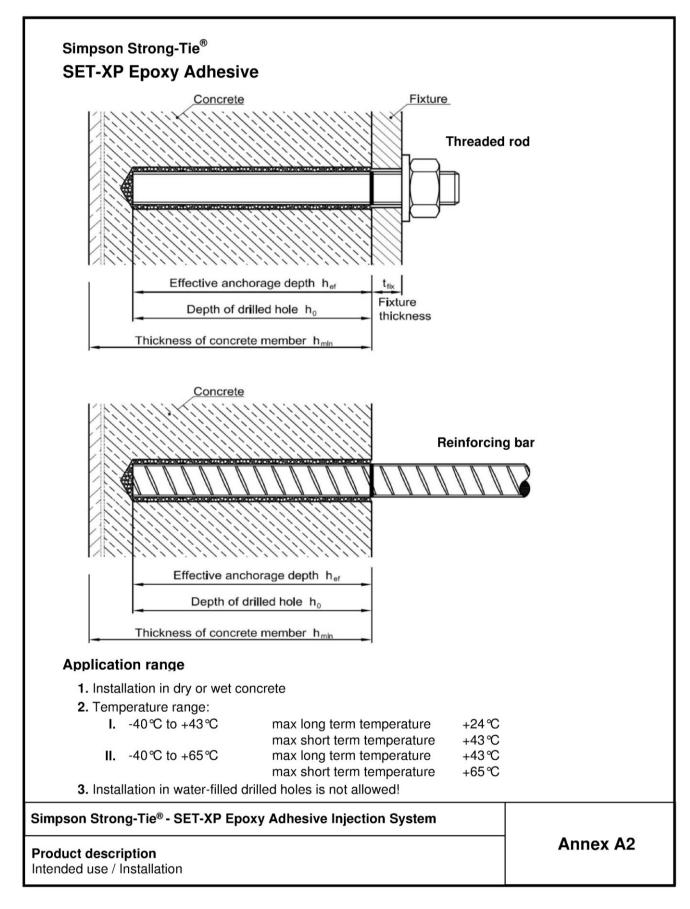

Extension tubes:

Flexible plastic hose: Ø8,0 - Ø8,5 mm


Rigid plastic tube: MNE

Threaded rod M12, M16, M20, M24 or M27

Reinforcing bar Ø12, Ø14, Ø16, Ø20 or Ø25


Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

Product description

Injection mortar / Components / Anchoring parts

Annex A1

Simpson Strong-Tie® SET-XP Epoxy Adhesive

Table A1: Threaded rods

Designation	Material					
Steel, zinc plated ≥ 5µm according EN ISO 4042, (A2), passivated Steel, hot-dip galvanised > 40 µm according EN ISO 10684						
Threaded rod	Carbon steel: Property class 5.8 and 8.8 acc. EN ISO 898-1:2013; A5 ≥ 8% ductile					
Washer	Steel: DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 (EN ISO 7094:2000), DIN 9021:1990-03 (EN ISO 7093-1:2000)					
Hexagon nut	Steel: DIN 934:1987-10 (EN ISO 4032:2012), property class 8 acc. EN ISO 898-2:2012					
Stainless steel						
Threaded rod	Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4578 acc. EN 10088-1:2014 ≤ M24: Property class 70, EN ISO 3506-1;2009; A5 ≥ 8% ductile > M24: Property class 50, EN ISO 3506-1;2009; A5 ≥ 8% ductile					
Washer	DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 (EN ISO 7094:2000), DIN 9021:1990-03 (EN ISO 7093-1:2000) Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4578 acc. EN 10088-1:2014					
Hexagon nut	DIN 934:1987-10 (EN ISO 4032:2012), ≤ M24. Property class 70, EN ISO 3506-2:2009 > M24: Property class 50 or 70, EN ISO 3506-2:2009 Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4578 acc. EN 10088-1:2014					
Stainless steel - H	ligh corrosion resistance steel					
Threaded rod	Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014 ≤ M24: Property class 70,EN ISO 3506-2:2009 ; A5 ≥ 8% ductile > M24: Property class 50, EN ISO 3506-2:2009 ; A5 ≥ 8% ductile					
Washer	DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 (EN ISO 7094:2000), DIN 9021:1990-03 (EN ISO 7093-1:2000) Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014					
Hexagon nut	DIN 934:1987-10 (EN ISO 4032:2012) ≤ M24: Property class 70, EN ISO 3506-2:2009 > M24: Property class 50 or 70, EN ISO 3506-2:2009 Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014					

Commercial threaded rods with:

Inspection certificate 3.1 according to EN 10204:2004

Marking of embedment depth

(This may be done by the manufacturer of the rod or by the worker on jobsite)

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Product description Materials - Threaded rod	Annex A3

Simpson Strong-Tie® SET-XP Epoxy Adhesive

Table A2: Reinforcing bar

Designation	Material
Rebar according EN 1992-1-1:2004 + AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

Product description
Materials - Reinforcement bar

Annex A4

English translation prepared by DIBt

Specication of intended use

Anchorages subject to:

- Static or quasi-static action
- Cracked concrete
- Non-cracked concrete

Base materials:

- Reinforced and unreinforced normal weight concrete according to EN 206: 2013
- Strength classes C20/25 to C50/60 according to EN 206: 2013

Temperature Range:

Installation: ≥ 10 °C

· Use conditions:

Temperatur Range I: -40°C to +43°C (max. long thern temperature +24°C and max.

short therm temperature +43°C)

Temperatur Range II: -40 ° C to +65 ° C (max. long therm temperature +43 ° C and max.

short therm temperature +65°C)

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanenty damp internal condition, if no particular agressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (hight corrosion resitant steel).

<u>Note</u>: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

electronic copy of the eta by dibt: eta-11/0360

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings prepared are taking account of the loads to be anchored.
 The position of the anchor is indicated on the designed drawings. (e.g. position of the anchor relative to reinforcement or to supports).
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of Bonded Anchors"; Edition September 2010
 - CEN/TS 1992-4:2009, "Design of Fastenings for use in concrete" part 4-1 and part 4-5,

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

Intended use
Specifications

Annex B1

Specication of intended use

Installation

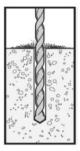
electronic copy of the eta by dibt: eta-11/0360

- Use categorie: Dry or wet concrete (must not be installed in flooded holes).
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the tools.
- Use of the anchor only as supplied by the manufacturer without exchanging the components.
- Reinforcing bars shall comply with specifications given in Annex A4.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor
 is to be placed is in the range given and is not lower than that of the concrete to which the
 characteristic loads apply.
- · Check of concrete being well compacted, e.g. without significant voids.
- Marking and keeping the effective anchorage depth.
- · Edge distance and spacing not less than the specified values without minus tolerances.
- · Positioning of the drill holes without damaging the reinforcement.
- · Drilling by hammer-drilling.
- In case of aborted drill hole: The drill hole shall be filled with high strength non-shrinkage mortar.
- · Cleaning the drill hole and installation in accordance with Annexes B4 to B7.
- · Overhead installation is allowed.

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Intended use Specifications	Annex B2

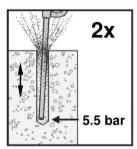
Table B1: Installation data for threaded rods

Simpson Strong-Tie [®]				Threaded rod			
SET-XP Epoxy Adhe	SET-XP Epoxy Adhesive			M16	M20	M24	M27
Nom. thread rod diameter	d	[mm]	12	16	20	24	27
Drill hole diameter	d _o	[mm]	14	18	24	28	30
Embedment depth and drill	h _{ef, min}	[mm]	70	80	90	100	110
hole depth	h _{ef, max}	[[[[]]]	240	320	400	480	540
Diameter of clearance hole in the fixture	d _f ≤	[mm]	14	18	22	26	30
Installation torque	$T_{inst,max}$	[Nm]	40	60	80	100	120
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm	$\Pi_{\alpha} + Z \Pi_{\alpha}$			
Minimum allowable spacing	S _{min}	[mm]	45	60	70	80	90
Minimum allowable edge distance	C _{min}	[mm]	80	100	115	135	155

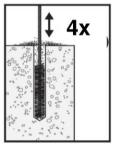

Table B2: Installation data for reinforcing bar

Simpson Strong-Tie [®]			Reinforcing bar				
SET-XP Epoxy Adhesive			Ø12	Ø14	Ø16	Ø20	Ø25
Nom. rebar diameter	d	[mm]	12	14	16	20	25
Drill hole diameter	d _o	[mm]	16	18	20	25	32
Embedment depth and drill	h _{ef, min}	[mm]	70	75	80	90	100
hole depth	h _{ef, max}	[[[]]]	240	280	320	400	500
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm		h _{ef} + 2d ₀		
Minimum allowable spacing	S _{min}	[mm]	45	50	60	70	80
Minimum allowable edge distance	C _{min}	[mm]	80	90	100	115	135

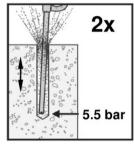
Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Intended use Installation data	Annex B3


HOLE PREPARATION

1.


Drill hole to specified diameter and embedment depth.

2.


Blow dust from hole 2 times with oil-free compressed air (min. 5.5 bar) starting from the bottom of the hole.

3.

Brush 4 times with specified brush diameter (Annex B8).

4.

Blow 2 times with oil-free compressed air (min. 5.5 bar) and verify that the threaded rod and rebar can achieve the required embedment depth.

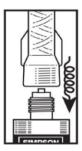
Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

Intended use

Installation instructions

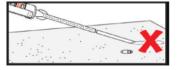
Annex B4

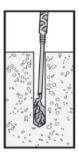
Z33451.16


electronic copy of the eta by dibt: eta-11/0360

CARTRIDGE PREPARATION AND HOLE FILLING

 Check cartridge expiration date. Do not use expired product. Product is usable until end of printed expiration month. Open cartridge per package instructions.


Attach proper mixing nozzle supplied by the manufacturer to the cartridge. Do not modify nozzle.

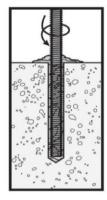

Insert cartridge into the appropriate dispensing tool.

Dispense adhesive to the side until properly mixed, min. 3 strokes (uniform teal color). Discard initial adhesive!

Fill hole approximately 2/3 full, starting from bottom or back of the cleaned drilled hole. Withdraw the nozzle slowly to avoid creating air pockets.

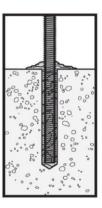
For drilled holes deeper than 150 mm (when $d_0 \le 16$ mm) and drilled holes deeper than 250 mm (when $16 < d_0 \le 30$ mm) an extension tube shall be used. Adhesive retaining caps shall be used in overhead and horizontal installations (Annex B7).

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

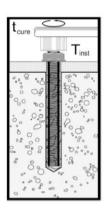

Intended use

Installation instructions

Annex B5


ANCHOR INSTALLATION (vertical downward anchorage)

1.


Insert clean, oil free anchor, turning slowly until the anchor contacts the bottom of the hole. Setting control: Excess mortar flows out of the borehole.

2.

Do not disturb the anchor until fully cured. The curing time $t_{\rm cure}$ is given in table B3.

3.

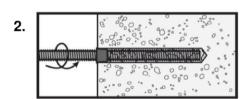
After required curing time $t_{\rm cure}$ anchor can be loaded. Apply the installation torque $T_{\rm inst}$ using calibrated torque-wrench.

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

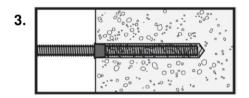
Intended use

Installation instructions

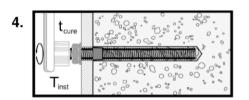
Annex B6


Z33451.16

electronic copy of the eta by dibt: eta-11/0360



ANCHOR INSTALLATION (horizontal and overhead anchorage)


Install adhesive retaining cap.

Insert clean, oil free anchor, turning slowly until the anchor contacts the bottom of the hole.

Do not disturb the anchor until fully cured. The curing time $t_{\rm cure}$ is given in table B3.

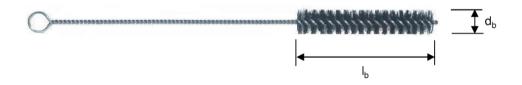
After required curing time $t_{\rm cure}$ anchor can be loaded. Apply the installation torque $T_{\rm inst}$ using calibrated torque-wrench.

Table B3: Maximum working and minimum curing time

Temperature in the anchorage base Tanchorage base	Working time t _{gel}	Curing time ¹⁾ t _{cure}	
T _{anchorage base} ≥ 10°	≤ 60 minutes	≥ 72 hours	
T _{anchorage base} ≥ 21°	≤ 45 minutes	≥ 24 hours	
T _{anchorage base} ≥ 32°	≤ 20 minutes	≥ 24 hours	
T _{anchorage base} ≥ 43 °	≤ 12 minutes	≥ 24 hours	

¹⁾ For installation in wet concrete, the curing times shall be doubled (installation in water-filled drilled holes is not allowed).

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Intended use Installation instructions	Annex B7


Table B4: Cleaning equipment

Simpson Stron		Threaded rod					
SET-XP Epoxy Adhesive			M12	M16	M20	M24	M27
Drill bit	Diameter d ₀	[mm]	14	18	24	28	30
	Diameter d _b	[mm]	19,1	19,1	25,4	31,8	31,8
Cleaning brush	Length I _b	[mm]	100	100	100	100	100
	Part number		ETB6	ETB6	ETB8	ETB10	ETB10

Table B5: Cleaning equipment

Simpson Stron	Reinforcing bar							
SET-XP Epox	ky Adhesive	/ Adhesive Ø12 Ø14 Ø16 Ø20				Ø20	Ø25	
Drill bit	Diameter d ₀	[mm]	16	18	20	25	32	
	Diameter d _b	[mm]	19,1	19,1	25,4	31,8	41,3	
Cleaning brush	Length I _b	[mm]	100	100	100	100	150	
	Part number		ETB6	ETB6	ETB8	ETB10	ETB12	

Cleaning brush (Nylon):

Compressed air cleaning tool

Air pressure: min. 5,5 bar Orifice opening: min. Ø3,5 mm

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

Intended use

Installation equipment

Annex B8

Table C1: Characteristic values of resistance to tension loads.

Design method TR 029 or CEN/TS 1992-4-5

Simpson Strong-Tie [®]				Threaded rod				
SET-XP Epoxy Adhesive			M12	M16	M20	M24	M27	
Steel failure								
Characteristic resistance, Steel grade 5.8	$N_{Rk,s}$	[kN]	42	79	123	177	230	
Characteristic resistance, Steel grade 8.8	$N_{Rk,s}$	[kN]	67	126	196	282	367	
Partial safety factor	$\gamma_{Ms}^{1)}$	[-]			1,5			
Characteristic resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	$N_{Rk,s}$	[kN]	59	110	172	247	230	
Partial safety factor	$\gamma_{Ms}^{-1)}$	[-]		1,	87		2,86	
Combined pull-out and concrete cone failure								
Nom. thread rod diameter	d	[mm]	12	16	20	24	27	
Characteristic bond resistance in non-cracked co	oncrete C20/	25						
Temperature range I: 43 °C / 24 °C ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	17	10	10	9	7	
Temperature range II: 65 °C / 43 °C ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	16	9,5	9,5	8,5	6,5	
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k_8	[-]	10,1					
Characteristic bond resistance in cracked concre	te C20/25							
Temperature range I: 43 °C / 24 °C ²⁾	$ au_{Rk,cr}$	[N/mm ²]	6	4,5	3	3	3	
Temperature range II: 65 °C / 43 °C 2)	$ au_{Rk,cr}$	[N/mm ²]	5,5	4,5	3	3	3	
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k_8	[-]			7,2			
In an ancient for the standard		C30/37			1,0			
Increasing factor for τ _{Rk,p} in non-cracked and cracked concrete	$\Psi_{ m c}$	C40/50			1,0			
In non-cracked and cracked concrete		C50/60			1,0			
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4			
Concrete cone failure								
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{cr}	[-]			7,2			
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{ucr}	[-]			10,1			
Edge distance	C _{cr,N}	[mm]			1,5x h _e	f		
Center spacing	S _{cr,N}	[mm]	3x h _{ef}					
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,4					
Splitting failure								
Edge distance (splitting)	C _{cr,sp} ³⁾⁴⁾	[mm]	$c_{cr,sp} = hef * \left(\frac{\tau_{k,ucr}}{8}\right)^{0.4} * \left(3.1 - 0.7 \frac{h}{h_{ef}}\right)$					
Center spacing (splitting)	s _{cr,sp} [mm] 2x c _{cr,sp}							
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4			

¹⁾ In absence of other national regulations

$$\tau_{k,ucr} \le \frac{k_{ucr*} \sqrt{h_{ef*} f_{ck}}}{\pi * d}$$

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System
Performances
Characteristic values of resistance to tension loads - Threaded rods Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009
Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009

Annex C1

²⁾ Maximum short and long term temperatures

³⁾ Ratio value $[h/h_{ef}] \le 2,4$

Table C2: Characteristic values of resistance to shear loads.

Design method TR 029 or CEN/TS 1992-4-5

Simpson Strong-Tie [®]				Threaded rod					
SET-XP Epoxy Adhesive	M12	M16	M20	M24	M27				
Steel failure without lever arm ³⁾									
Characteristic shear resistance, Steel grade 5.8	$V_{Rk,s}$	[kN]	21	39	61	88	115		
Characteristic shear resistance, Steel grade 8.8	$V_{Rk,s}$	[kN]	34	63	98	141	184		
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,25				
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	$V_{Rk,s}$	[kN]	30	55	86	124	115		
Partial safety factor $\gamma_{Ms}^{(1)}$ [-]			1,56				2,38		
Steel failure with lever arm ³⁾									
Characteristic bending moment, Steel grade 5.8	$M^0_{Rk,s}$	[Nm]	66	166	325	561	832		
Characteristic bending moment, Steel grade 8.8	M ⁰ _{Rk,s}	[Nm]	105	266	519	898	1332		
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,25				
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	M ⁰ _{Rk,s}	[Nm]	92	233	454	786	832		
Partial safety factor	$\gamma_{Ms}^{1)}$	[-]	1,56 2,3				2,38		
Concrete pry-out failure									
Factor in equation (5.7) of TR 029 or in equation (27) to CEN/TS 1992-4-5	k / k ₃	[-]			2				
Concrete edge failure									
Effective anchor length	I _f	[-]			h _{ef} 2)				
Anchor diameter	$d = d_{nom}$	[-]	12	16	20	24	27		

¹⁾ In absence of other national regulations

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System

Performances
Characteristic values of resistance to shear loads - Threaded rod
Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009

²⁾ CEN/TS 1992-4-5: h_{ef} ≤ 8 d_{nom}

³⁾ Ductility factor according to CEN/TS 1992-4-5: 6.3.2.1: $k_2 = 1,0$

Table C3: Characteristic values of resistance to tension loads.

Design method TR 029 or CEN/TS 1992-4-5

Simpson Strong-Tie [®]				Rein	forcin	g bar	
SET-XP Epoxy Adhesive			Ø12	Ø14	Ø16	Ø20	Ø25
Steel failure							
Characteristic tension resistance B500B acc. DIN 488-2:2009-08 ⁴⁾	$N_{Rk,s}$	[kN]	62	85	111	173	270
Partial safety factor	$\gamma_{Ms}^{1)}$	[-]			1,4		
Combined pull-out and concrete cone failure							
Nom. rebar diameter	d	[mm]	12	14	16	20	25
Characteristic bond resistance in non-cracked co	oncrete C20	/25					
Temperature range I: 43 °C / 24 °C ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	13,5	8	8	7	5,5
Temperature range II: 65 °C / 43 °C ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	12,5	7,5	7,5	6,5	5
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]			10,1		
Characteristic bond resistance in cracked concre	te C20/25	•					
Temperature range I: 43 °C / 24 °C 2)	$ au_{Rk,cr}$	[N/mm ²]	5	3,5	2,5	2,5	2,
Temperature range II: 65 °C / 43 °C ²⁾	$ au_{Rk,cr}$	[N/mm ²]	4,5	3,5	2,5	2,5	2,
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]			7,2		
la conseila esta de la conseila esta esta esta esta esta esta esta est	C30/37		1,0				
Increasing factor for $\tau_{Rk,p}$ in non-cracked and cracked concrete	$\Psi_{\rm c}$	C40/50			1,02		
III Horr-cracked and cracked concrete		C50/60			1,04		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
Concrete cone failure							
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{cr}	[-]			7,2		
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{ucr}	[-]			10,1		
Edge distance (splitting)	C _{cr,sp}	[mm]			1,5x h _{ef}		
Center spacing (splitting)	S _{cr,sp}	[mm]			3x c _{cr,sp}		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
Splitting failure							
Edge distance (splitting)	C _{cr,sp} 3)5)	[mm]	c _{cr,sp} =	$hef * \left(\frac{\tau_1}{\tau_2}\right)$	8)0,4 *	$\left(3,1-0\right)$	$7\frac{h}{h_{ef}}$
Center spacing (splitting)	S _{cr,sp}	[mm]			2x c _{cr,sp}		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		

¹⁾ In absence of other national regulations

2) Maximum short and long term temperatures

3) Ratio value
$$[h/h_{ef}] \le 2,4$$

⁴⁾ For reinforcement bars that do not comply with DIN 488: The characteristic tension resistance N_{Rk,s} shall be determined acc. Technical Report TR 029, equation (5.5) or CEN/TS 1992-4-1, equation (B5).

Sim	oson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Char	ormances acteristic values of resistance to tension loads - Reinforcing bar gn method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009	Annex C3

Table C4: Characteristic values of resistance to shear loads. Design method TR 029 or CEN/TS 1992-4

Simpson Strong-Tie [®]				Rein	forcing	g bar	
SET-XP Epoxy Adhesive			Ø12	Ø14	Ø16	Ø20	Ø25
Steel failure without lever arm ⁵⁾							
Characteristic resistance B500B acc. DIN 488-2:2009-08 3)	V _{Rk,s}	[kN]	31	42	55	86	135
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5				
Steel failure with lever arm ⁵⁾							
Characteristic bending moment B500B acc. DIN 488-2:2009-08 4)	M ⁰ _{Rk,s}	[Nm]	112	178	265	518	1012
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,5		
Concrete pry-out failure							
Factor in equation (5.7) of TR 029 or in equation (27) to CEN/TS 1992-4-5	k / k ₃	[-]			2		
Concrete edge failure							
Effectiv anchor length	I _f	[-]			h _{ef} ²⁾		
Anchor diameter	$d = d_{nom}$	[-]	12	14	16	20	25

¹⁾ In absence of other national regulations

- 2) CEN/TS 1992-4-5: $h_{ef} \le 8 d_{nom}$
- ³⁾ For reinforcing bars that do not comply with DIN 488: The characteristic resistance V_{Rk,s} shall be determined acc. Technical report TR 029, equation (5.5) or CEN/TS 1992-4-1, equation (B8).
- For reinforcing bars that do not comply with DIN 488: The characteristic bending moment M⁰_{Rk,s} shall be determined with: $M^0_{Rk,s}$ = 1,2 x W_{el} x f_{uk} Ductility factor according to CEN/TS 1992-4-5: 6.3.2.1: k_2 = 1,0

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Performances	Annex C4
Characteristic values of resistance to shear loads - Reinforcing bar Design method: FOTA TR 029:09/2010 or CFN/TS 1992-4-5:2009	

Table C5: Displacements under tension loads

Simpson Strong-Tie [®]				The	eaded	rod		
SET-XP Epoxy Adhes	ive		M12	M16	M20	M24	M27	
Non-cracked concrete								
	Tempera	ture range I: 43°	℃ / 24℃	2)				
Factor for displacement 1)	δ_{N0}	[mm/(N/mm²)]	0,020	0,030	0,010	0,010	0,030	
Factor for displacement 1)	δ _{N∞}	[mm/(N/mm²)]	0,024	0,040	0,040	0,044	0,064	
Temperature range II: 65 °C / 43 °C ²⁾								
-	δ_{N0}	[mm/(N/mm²)]	0,020	0,030	0,010	0,012	0,031	
Factor for displacement 1)	$\delta_{N^{\boldsymbol{\infty}}}$	[mm/(N/mm²)]	0,025	0,042	0,042	0,047	0,070	
Cracked concrete								
	Tempera	ture range I: 43°	℃ / 24℃	2)				
Factor for displacement 1)	δ_{N0}	[mm/(N/mm²)]	0,100	0,100	0,230	0,200	0,170	
Factor for displacement 1)	δ _{N∞}	[mm/(N/mm²)]	0,133	0,180	0,270	0,300	0,300	
	Tempera	ture range II: 65	°C / 43 °C	2)				
Factor for displacement 1)	δ_{N0}	[mm/(N/mm²)]	0,100	0,130	0,230	0,200	0,170	
Factor for displacement 1)	δ _{N∞}	[mm/(N/mm²)]	0,145	0,180	0,270	0,300	0,300	

¹⁾ Calculation for the displacement for design load: Displacement for short term load = $\delta_{N0} \cdot (\tau_{Ed}/1,4)$ Displacement for long term load = $\delta_{N\infty} \cdot (\tau_{Ed}/1,4)$ [τ_{Ed} = Design bond strength]

Table C6: Displacements under shear loads

Simpson Strong-Tie [®]				Thr	eaded	rod	
SET-XP Epoxy Adhesi	Adhesive			M16	M20	M24	M27
F (!'	δ_{V0}	[mm/kN]	0,022	0,015	0,012	0,005	0,005
Factor for displacement 3)	δ _{V∞}	[mm/kN]	0,033	0,022	0,018	0,010	0,010

Oalculation of the displacement for design load:
Displacement for short term load = $\delta_{V0} \cdot (V_{Ed}/1,4)$ Displacement for long term load = $\delta_{V\infty} \cdot (V_{Ed}/1,4)$ [V_{Ed} = Design shear load]

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Performances Displacements - Threaded rod	Annex C5

Maximum short and long term temperatures

Table C7: Displacements under tension loads

Simpson Strong-Tie [®]				Reir	forcing	j bar			
SET-XP Epoxy Adhes	sive		Ø12	Ø14	Ø16	Ø20	Ø25		
Non-cracked concrete									
	Tempera	nture range I: 43°	C / 24℃ ²	2)					
Factor for displacement 1)	δ_{N0}	[mm/(N/mm²)]	0,015	0,030	0,040	0,043	0,055		
Factor for displacement	δ _{N∞}	[mm/(N/mm²)]	0,033	0,056	0,063	0,071	0,090		
Temperature range II: 65 °C / 43 °C ²)									
5	δ_{N0}	[mm/(N/mm²)]	0,020	0,030	0,040	0,045	0,050		
Factor for displacement 1)	δ _{N∞}	[mm/(N/mm²)]	0,036	0,060	0,066	0,077	0,100		
Cracked concrete									
	Tempera	nture range I: 43°	C / 24℃ ²	2)					
Factor for displacement 1)	δ_{N0}	[mm/(N/mm²)]	0,100	0,170	0,280	0,240	0,200		
Factor for displacement 1)	δ _{N∞}	[mm/(N/mm²)]	0,160	0,220	0,320	0,440	0,440		
	Tempera	ture range II: 65°	C / 43℃	2)					
Factor for displacement 1)	δ_{N0}	[mm/(N/mm²)]	0,110	0,170	0,280	0,240	0,200		
Factor for displacement 1)	δ _{N∞}	[mm/(N/mm²)]	0,178	0,228	0,320	0,440	0,440		

Calculation of the displacement for design load:

Displacement for short term load = $\delta_{N0} \cdot (\tau_{Ed}/1,4)$ Displacement for long term load = $\delta_{N\infty} \cdot (\tau_{Ed}/1,4)$ [τ_{Ed} = Design bond strength]

Table C8: Displacements under shear loads

Simpson Strong-Tie [®]			Reinforcing bar				
SET-XP Epoxy Adhesive			Ø12	Ø14	Ø16	Ø20	Ø25
Factor for displacement 3)	δ_{V0}	[mm/kN]	0,010	0,010	0,013	0,015	0,015
	δ _{ν∞}	[mm/kN]	0,013	0,015	0,019	0,023	0,023

Galculation of the displacement for design load:

Displacement for short term load = $\delta_{V0} \cdot (V_{Ed}/1,4)$ Displacement for long term load = $\delta_{V\infty} \cdot (V_{Ed}/1,4)$ [V_{Ed} = Design shear load]

Simpson Strong-Tie® - SET-XP Epoxy Adhesive Injection System	
Performances Displacements - Reinforcing bar	Annex C6

Maximum short and long term temperatures