

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0374 of 8 August 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Hilti stud anchor HSA Product family Torque controlled expansion anchor for use in nonto which the construction product belongs cracked concrete Manufacturer Hilti Aktiengesellschaft **Business Unit Anchors** 9494 Schaan FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Werke This European Technical Assessment 16 pages including 3 annexes contains This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque issued in accordance with Regulation (EU) controlled expansion anchors", April 2013, No 305/2011, on the basis of used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011. ETA-11/0374 issued on 28 April 2016 This version replaces

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0374 English translation prepared by DIBt

Page 2 of 16 | 8 August 2016

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 16 | 8 August 2016

Specific Part

1 Technical description of the product

The Hilti stud anchor HSA is a torque controlled expansion anchor made of galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action	See Annex C1 to C2
Displacements	See Annex C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

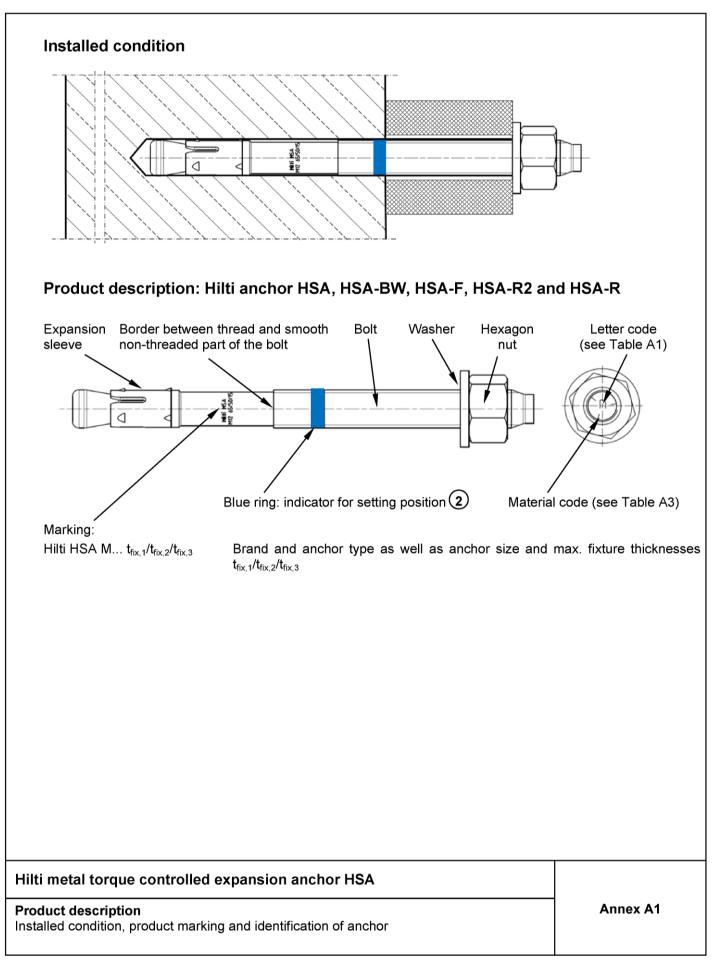
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-11/0374

Page 4 of 16 | 8 August 2016

English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 August 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Lange

	M6	M8	M10	M12	M16	M20
	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix, 1}/t_{fix, 2}/t_{fix, 3}$
	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]
<u>z</u>	5/-/-	5/-/-	5/-/-	5/ -/-	5/-/-	5/-/-
У	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-
X	15/5/-	15/5/-	15/5/-	15/-/-	15/-/-	15/-/-
w	20/10/-	20/10/-	20/10/-	20/5/-	20/5/-	20/-/-
V	25/15/-	25/15/-	25/15	25/10/-	25/10/-	25/-/-
<u>u</u>	30/20/-	30/20/-	30/20/-	30/15/-	30/15/-	30/5/-
t	35/25/5	35/25/-	35/25/-	35/20/-	35/20/-	35/10/-
<u>s</u>	40/30/10	40/30/-	40/30/-	40/25/-	40/25/-	40/15/-
r	45/35/15	45/35/5	45/35/5	45/30/-	45/30/-	45/20/5
đ	50/40/20	50/40/10	50/40/10	50/35/-	50/35/-	50/25/10
p	55/45/25	55/45/15	55/45/15	55/40/5	55/40/-	55/30/15
<u>o</u>	60/50/30	60/50/20	60/50/20	60/45/10	60/45/5	60/35/20
n	65/55/35	65/55/25	65/55/25	65/50/15	65/50/10	65/40/25
m	70/60/40	70/60/30	70/60/30	70/55/20	70/55/15	70/45/30
l	75/65/45	75/65/35	75/65/35	75/60/25	75/60/20	75/50/35
<u>k</u>	80/70/50	80/70/40	80/70/40	80/65/30	80/65/25	80/55/40
i	85/75/55	85/75/45	85/75/45	85/70/35	85/70/30	85/60/45
i	90/80/60	90/80/50	90/80/50	90/75/40	90/75/35	90/65/50
h	95/85/65	95/85/55	95/85/55	95/80/45	95/80/40	95/70/55
g	100/90/70	100/90/60	100/90/60	100/85/50	100/85/45	100/75/60
f	105/95/75	105/95/65	105/95/65	105/90/55	105/90/50	105/80/65
е	110/100/80	110/100/70	110/100/70	110/95/60	110/95/55	110/85/70
d	115/105/85	115/105/75	115/105/75	115/100/65	115/100/60	115/90/75
<u>c</u>	120/110/90	120/110/80	120/110/80	125/110/75	120/105/65	120/95/80
b	125/115/95	125/115/85	125/115/85	135/120/85	125/110/70	125/100/85
а	130/120/100	130/120/90	130/120/90	145/130/95	135/120/80	130/105/90
aa	-	-	-	155/140/105	145/130/90	-
ab	-	-	-	165/150/115	155/140/100	-
ac	-	-	-	175/160/125	165/150/110	-
ad	-	-	-	180/165/130	190/175/135	-
ae	-	-	-	230/215/180	240/225/185	-
af	-	-	-	280/265/230	290/275/235	-

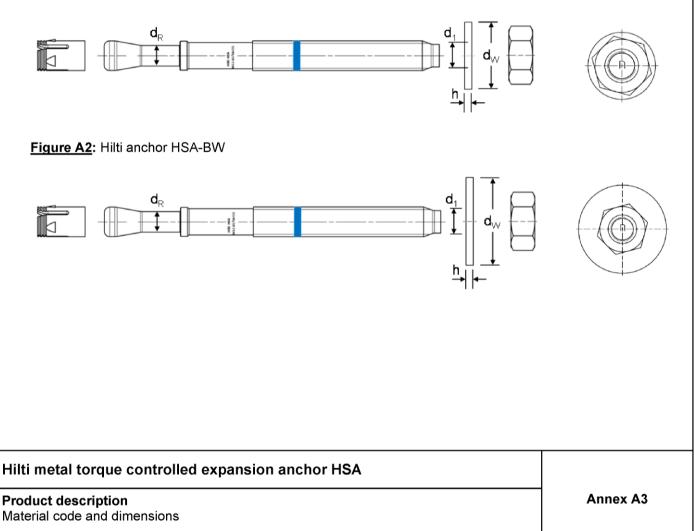
1) . 46:01 . . 4:6: ... £ --.

¹⁾ Anchor length in bold is standard item. For selection of other anchor lengths, check availability of the items.

Hilti metal torque controlled expansion anchor HSA

Product description Letter code

Annex A2



	HSA, HSA-BW, HSA-F	HSA-R2	HSA-R
Material code			
	Letter code without mark	Letter code with two marks	Letter code with three marks

Table A3: Dimensions of Hilti anchor HSA, HSA-BW, HSA-F, HSA-R2 and HSA-R

			M6	M8	M10	M12	M16	M20
Min. inner diameter of washer	d1	[mm]	6,4	8,4	10,5	13	17	21
Min. outer diameter of washer	d_{vv}	[mm]	12	16	20	24	30	37
Min. thickness of washer	h	[mm]	1,6	1,6	2	2,5	3	3

Figure A1: Hilti anchor HSA, HSA-F, HSA-R2, HSA-R

Specifications of intended use

Anchorages subject to:

· Static and quasi static loading.

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete.

Use conditions (Environmental conditions):

- HSA, HSA-BW, HSA-F, HSA-R2, HSA-R:
- Structures subject to dry internal conditions.
- HSA-R (stainless steel A4):

Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist. Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi static loading are designed in accordance with: ETAG 001, 04/2013, Annex C, design method A or CEN/TS 1992-4:2009.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.

Hilti metal torque controlled expansion anchor HSA

Intended use Specifications

Size		M6	M8	M10	M12	M16	M20
Hammer drilling (HD)	(CCCCC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD drilling system (HDB)		-	-	-	~	~	~
Diamond core drilling (DD) with diamond coring system DD 30-W and diamond core bit DD-C TS, DD-C TL	£ ♪	-	-	~	~	~	~

Table B2: Drillhole cleaning

Manual cleaning (MC): Hilti hand pump for blowing out drillholes.	
Automatic cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.	

Table B3: Setting alternatives

Size	M6	M8	M10	M12	M16	M20
Hammer setting	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Machine setting (impact screw driver with setting tool)	-	\checkmark	\checkmark	\checkmark	\checkmark	-

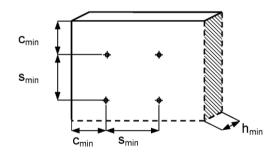
Table B4: Methods for application of torque moment

Size		M6	M8	M10	M12	M16	M20
Torque wrench		\checkmark	\checkmark	~	\checkmark	~	\checkmark
Setting tool S-TB HSA	-	\checkmark	\checkmark	\checkmark	~	-	
Impact screw driver Hilti SIW1)			14-A / 22-A 22T-A				-
Speed	HSA, HSA-BW, HSA-F	-	1	1	3	_2)	
Speed HSA-R2, HSA-R				;	3		-
Setting time	t _{set} [sec.]	-		2	1		-

¹⁾ See Table B5 for battery state of charge depending on the ambient temperature.
 ²⁾ Impact screw driver operates with fixed speed.

Table B5: Battery state of charge of impact screw driver

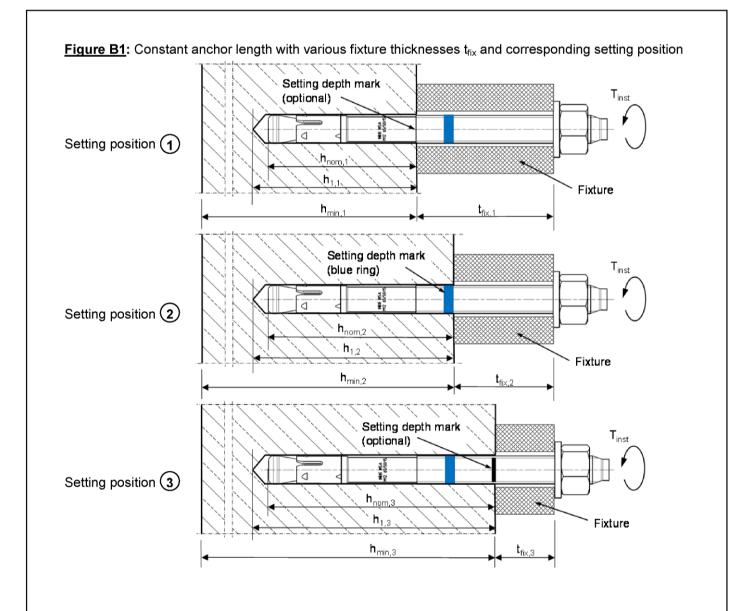
Ambient temperature		≤ +5 °C	+5 to +10 °C	≥ +10 °C
	low	-	-	-
Battery state of charge	middle	-	-	\checkmark
	high	-	\checkmark	\checkmark


Hilti metal torque controlled expansion anchor HSA

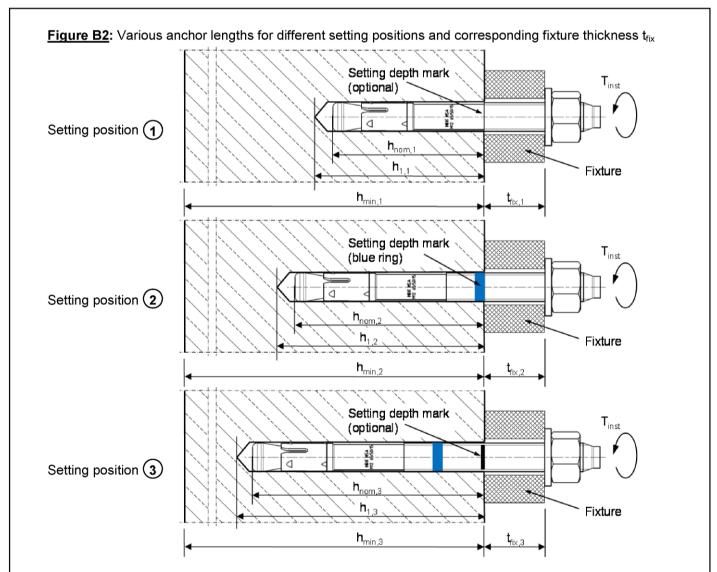
Intended use Installation methods

Deutsches Institut für Bautechnik

Size				M6			M8			M10)		M12		M16				M20	
Nominal diameter of drill bit	d_0	[mm]		6			8		10			12			16			20		
Cutting diameter of drill bit	$\mathbf{d}_{\mathrm{cut}}$	[mm]		6,4			8,45		10,45		12,5		16,5			20,55				
Diameter of clearance hole in the fixture	d _f	[mm]		7			9			12			14			18		22		
Width across flats	Sw	[mm]		10			13		17			19			24		30			
Setting position			Э	0	3	1	2	3	1	2	6	Э	2	େ	Э	2	3	ি	2	(9)
Min. thickness of concrete member	\mathbf{h}_{\min}	[mm]	1(00	120	1(00	120	100			100	140	180	140	160			22	20
Nominal anchorage depth	h _{nom}	[mm]	37	47	67	39	49	79	50	60	90	64	79	114	77	92	132	90	115	13(
Effective anchorage depth	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	11:
Min. drill hole depth (HD, HDB)	h ₁	[mm]	42	52	72	44	54	84	55	65	95	72	87	122	85	100	140	98	123	138
Min. drill hole depth (DD)	h ₁	[mm]		-			-		58	68	98	72	87	122	85	100	140	98	123	13
Standard installation	torq	ue mo	mei	nt		-			-											
Installation torque moment	T _{inst}	[Nm]		5			15 ¹⁾		15 ¹⁾		25 ¹⁾		50 ¹⁾			80 ¹⁾			200	
Min. spacing	s _{min}	[mm]		35			35			50			70			90		195	17	75
Min. edge distance	\mathbf{c}_{\min}	[mm]		35		40	3	5	50	4	0	70	65	55	80	75	70	130	12	20
Max. installation torq	ue m	omen	t																	
Max. installation torque moment	T_{max}	[Nm]		-			20		35		80		150		250					
Min. spacing	s _{min}	[mm]		-			35			40			50		80				120	
Min. edge distance	\mathbf{c}_{\min}	[mm]		-			100			150			190			200			225	

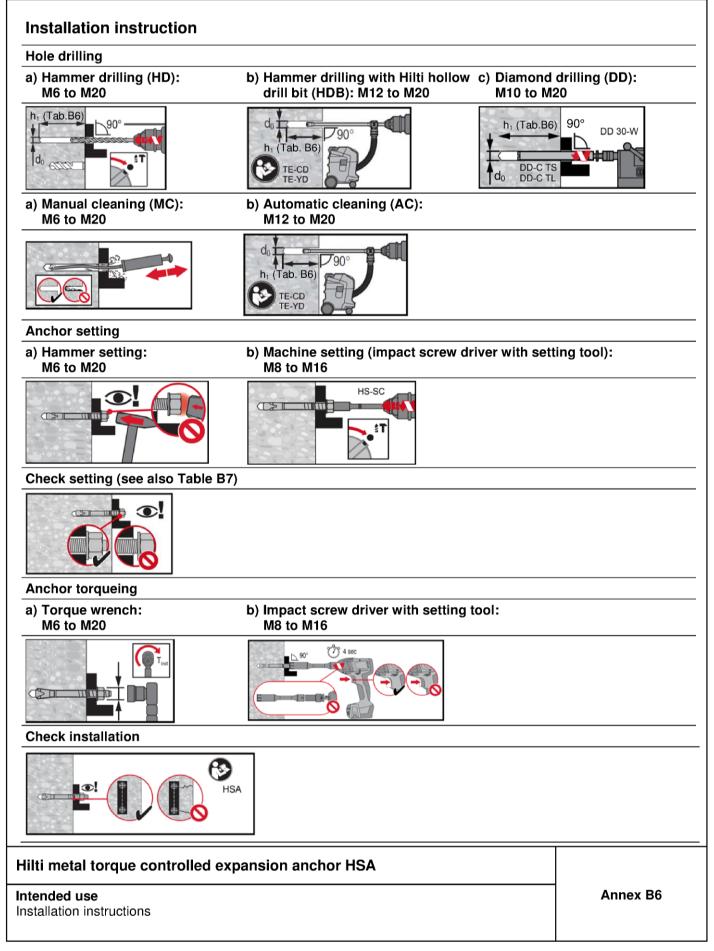

¹⁾ Alternatively, the anchor can be tightened with an impact screw driver in combination with a setting tool with the required setting time (see Annex B2).

Hilti metal torque controlled expansion anchor HSA


Intended use Installation parameters

Hilti metal torque controlled expansion anchor HSA

Intended use Installation parameters


Table B7: Checking setting position

Setting position	Prior insertion method	Push-through insertion method
1	$h_{nom,1}$ is reached when the non-threaded part of the bolt is completely below the concrete surface. For anchor HSA with letter code "aa" to "ag" (see Table A1) $h_{nom,1}$ has to be measured and marked by the installer.	$h_{nom,1}$, $h_{nom,2}$ or $h_{nom,3}$ is reached when the present thickness of the fixture t_{fix} and the maximum thickness of the fixture $t_{fix,1}/t_{fix,2}/t_{fix,3}$ given by the anchor HSA (see Table A1) is identical. If the present thickness of the fixture t_{fix} is
2	h _{nom,2} is reached when the blue ring is completely below the concrete surface.	smaller than the maximum thickness of the fixture $t_{fix,1}/t_{fix,2}/t_{fix,3}$ given by the anchor HSA
3	$h_{\text{nom},3}$ has to be measured and marked by the installer.	 position of washer and hexagon nut has to be adjusted or drill hole depth h₁ has to be increased.

Hilti metal torque controlled expansion anchor HSA

Intended use Installation parameters

Size				M6			M8			M10			M12			M16			M20		
Setting position			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2		
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾			30 ¹⁾			40			50		100	65		120	75			
Steel failure									-			-									
Partial safety factor	γ _{Ms} 2)	[-]	1,4																		
HSA, HSA-BW																					
Characteristic resistance	N _{Rk,s}	[kN]		9,0		16,5			28,0			41,4			82,6				124		
HSA-F																					
Characteristic resistance	N _{Rk,s}	[kN]		9,5		15,9			27,0			40,4			80,1				-		
HSA-R2, HSA-R																					
Characteristic resistance	N _{Rk,s}	[kN]		12,2		18,3			35,6			44,6			90,5			97,6		6	
Pullout failure												-									
Installation safety factor	$\gamma_2 = \gamma$	_{inst} [-]] 1,00																		
Characteristic resistance	N _{Rk,p}	[kN]	6	7,5	9	- ³⁾	- ³⁾	16	_ ³⁾	- ³⁾	25	_ ³⁾	_3)	35	_3)	_3)	50	_3)	_3)	-3)	
	C20/2	25 [-]							-		1,	00									
Increasing factor ψ_{c}	C30/3	37 [-]									1,	22									
increasing factor ψ_c	C40/	50 [-]									1,	41						- 97,6 _ ³⁾ _ ³⁾ .			
	C50/			1,55																	
Concrete cone and	splittir	ng fail	ure																		
Installation safety factor		'inst [-]									1,	00									
Factor	k _{ucr} ⁴⁾	[-]									10),1									
Spacing	S _{cr,N}	[mm]					3 · h _{ef}														
opuoling	S cr,sp	[mm]	100 120 130 130 180 200 190 210 290 200 250 310 230 280 380 260									370	400								
Edge distance	C _{cr,N}	[mm]										· h _{ef}									
Luge distance	C _{cr,sp}	[mm]	50	60	65	65	90	100	95	105	115	100	125	155	115	140	1190	0 <mark>260 370 4</mark> 0130 185 2	200		

¹⁾ Use is restricted to anchoring of statically indeterminate structural components.
 ²⁾ In absence of other national regulations.
 ³⁾ Pull-out failure is not decisive for design.
 ⁴⁾ For design according to CEN/TS 1992-4:2009.

Hilti metal torque controlled expansion anchor HSA

Performance Characteristic resistance under tension load in non-cracked concrete Design according to ETAG 001, 04/2013 or CEN/TS 1992-4:2009

Annex C1

Size		M6		M8			M10			M12			M16			M20			
Setting position			(1)	2	3	1	2	3	1	2	3	1	2	3	1	2		~	23
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾		~	30 ¹⁾		-	<u> </u>	50		<u> </u>							100115
Steel failure withou	arm				-														
Partial safety factor									1,:	25									
HSA, HSA-BW	tor γ _{Ms} ²⁾ [-] 1,25																		
Characteristic resistance	$V_{Rk,s}$	[kN]	6,5			10,6			18,9			29,5			51,0			85,8	
HSA-F																			
Characteristic resistance	$V_{Rk,s}$	[kN]		6,5			10,6		18,9			29,5			51,0			-	
HSA-R2, HSA-R						-													
Characteristic resistance	$V_{Rk,s}$	[kN]		7,2			12,3			22,6		:	29,3			56,5		9	91,9
Steel failure with le	ever arn	n				-						•							
Partial safety factor	[-]	1,25																	
HSA, HSA-BW																			
Characteristic resistance	$M^0_{\rm Rk,s}$	[Nm]		9,9		21,7			48,6			91,7			216			454	
HSA-F						-													
Characteristic resistance	$M^0_{\ Rk,s}$	[Nm]		9,9		21,7			48,6			91,7			216			-	
HSA-R2, HSA-R																			
Characteristic resistance	$M^0_{\ Rk,s}$	[Nm]		9,9		21,0			48,6			76,0			200			406	
Concrete pryout fa	ilure					•													
Factor	$k^{3} = k_{3}$	⁴⁾ [-]	1		2	1	1,5	2		2,4			2			2,9		2	3,5
Concrete edge fail	ure																		
Effective length of anchor	f	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100 115
Effective outside			· · ·																

¹⁾ Use is restricted to anchoring of statically indeterminate structural components.
 ²⁾ In absence of other national regulations.
 ³⁾ For design according to ETAG 001, 04/2013, Annex C, chapter 5.2.3.3, equation (5.6).
 ⁴⁾ For design according to CEN/TS 1992-4:2009, chapter 6.2.2.3, equation (16).

Hilti metal torque controlled expansion anchor HSA

Performance

Characteristic resistance under shear load in non-cracked concrete Design according to ETAG 001, 04/2013 or CEN/TS 1992-4:2009

Annex C2

Size			M6			M8			M10			M12			M16			M20			
Setting position			1	2	3	1	2	3	€	2	3	€	2	େ	Э	2	3	€	2	3	
Effective anchorage depth	h_{ef}	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115	
Displacements unde	er tens	sion lo	bads	;																	
Tension force	Ν	[kN]	2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9	8,5	12,6	16,7	12,6	17,2	23,8	16,6	25,1	30,8	
Corresponding displacement	δ_{N0}	[mm]	0,2	0,6	1,0	0,2	1,2	1,8	0,4	1,1	2,0	0,3	1,4	2,3	0,4	1,3	2,1	0,1	0,8	1,9	
	δ _{N∞}	[mm]	0,6	1,0	1,4	0,6	1,6	2,2	0,8	1,5	2,4	0,7	1,8	2,7	0,8	1,7	2,5	0,5	1,2	2,3	
Displacements unde	er she	ar loa	ds																		
Shear force	V	[kN]		3,7		6,1		10,8			16,7			29,1			49,0				
Corresponding	δ_{N0}	[mm]	1,6		1,9			2,0			2,1			2,2			2,3				
displacement	δ _{N∞}	[mm]		2,4			2,9			3,0			3,2			3,3			3,5		

Hilti metal torque controlled expansion anchor HSA

Performance Displacement under tension and shear loads in non-cracked concrete Annex C3