

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0160 of 21 April 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system fischer Powerbond

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

15 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0160

Page 2 of 15 | 21 April 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z3180.16 8.06.01-13/16

European Technical Assessment ETA-12/0160

Page 3 of 15 | 21 April 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system fischer Powerbond is a bonded anchor consisting of a cartridge with injection mortar fischer FIS PM or FIS HB, an anchor rod and the corresponding fischer Power Sleeve FIS PS.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z3180.16 8.06.01-13/16

European Technical Assessment ETA-12/0160

Page 4 of 15 | 21 April 2016

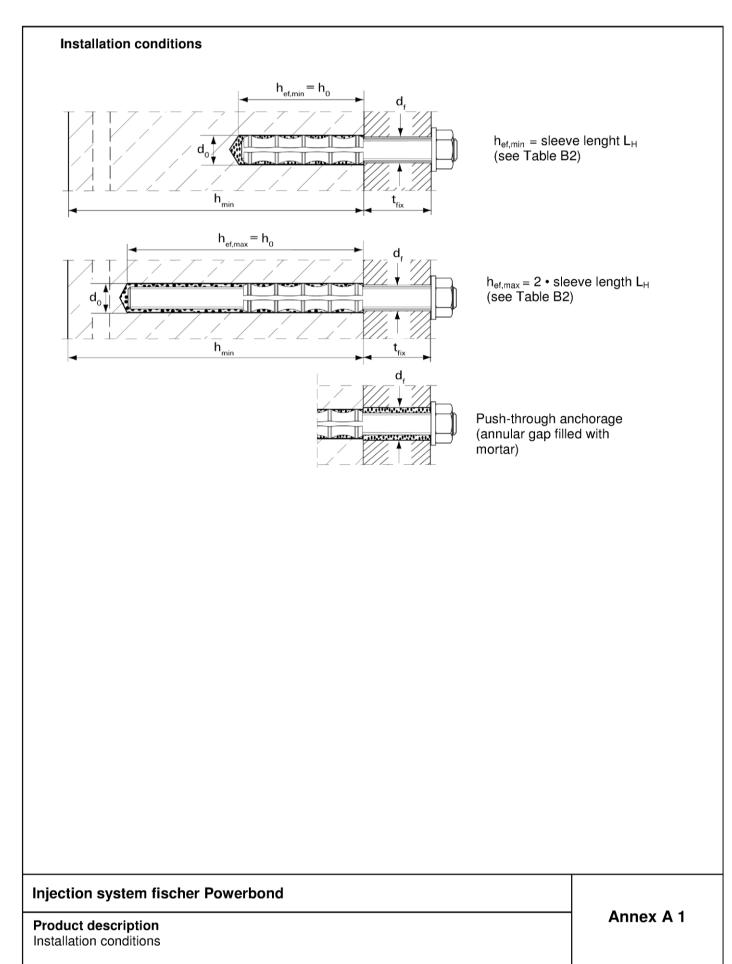
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

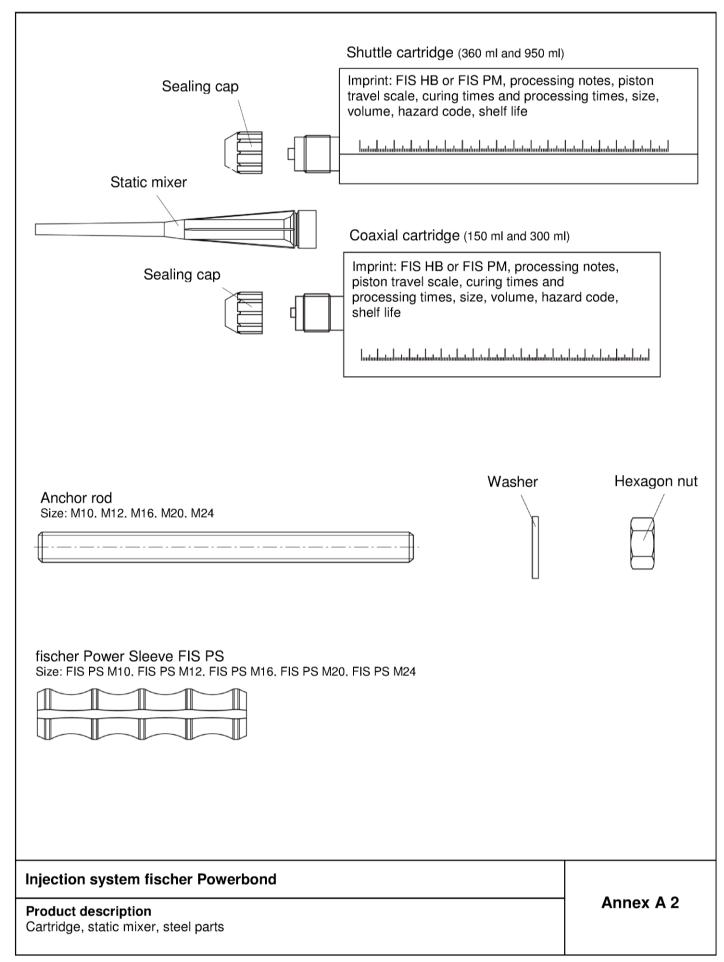
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 21 April 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentLange


Z3180.16 8.06.01-13/16

English translation prepared by DIBt

Table A1: Materials

Part	Description	Material						
1	Mortar cartridge	Mortar, hardener, fillers						
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C				
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662; 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture}$ elongation	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation				
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4666 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4666 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Power Sleeve	Stainless st	eel A2 or A4	1.4565; 1.4529				

Injection system fischer Powerbond	
Product description Materials	Annex A 3

Specifications of intended use:

Table B1: Overview use categories and performance categories

Anchorages sub	ject to			FIS HB (or FIS PM	with
				Anchor rod	with	Power Sleeve
Hammer drilling					all sizes	
Diamond drilling				Size N	И10, М12,	M16
Static and	uncracked concrete		all	sizes		Tables
quasi static - load, in		icked crete	all sizes		B2, C1; C2; C3; C4	
Use Dry	or wet con	crete			all sizes	
category	Flooded	l hole			all sizes	
Installation temperature			-5℃ bis +40℃			
Service tempera	iture	-4	40 °C to +80 °C (max. long term temperature +50 °C and max. short temperature +80 °C)			

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · In case of aborted hole: The hole shall be filled with mortar
- Marking and keeping the effective anchorage depth
- Overhead installation is allowed

Injection system fischer Powerbond	,
Intended Use Specifications	Annex B 1

 $h_{ef} + 2d_0$

60

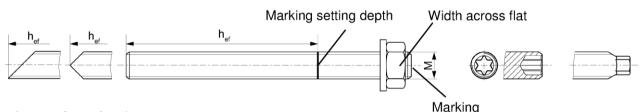
100

120

Table B2: Installation p	arameters							
Size (anchor rod)			M10	M12	M16	M20	M24	
Width across flat	SW	[mm]	17	19	24	30	36	
Nominal drill bit diamete	ər	d ₀	[mm]	14	16	20	25	28
Depth of drill hole		h _o	[mm]			$h_0 = h_{ef}$		
Corresponding Power S	Sleeve	FIS	[-]	PS M10	PS M12	PS M16	PS M20	PS M24
Length of sleeve Diameter of sleeve		L _H	[mm]	60	72	96	120	144
		d _H	[mm]	14	16	20	25	28
Effective anchorage de	pth ¹⁾	h _{ef,min}	[mm]	60	72	96	120	144
6 • d to 12 • d		h _{ef,max}		120	144	192	240	288
Minimum edge distan	ce and minimum			ո≤ h _{ef} ≤ h _{ef}	,max			
Cracked concrete		$S_{min} = C_{min}$	[mm]	50	55	60	80	100
Uncracked concrete		S _{min} = C _{min}	[mm]	55	55	65	80	100
Diameter of clearance	Pre positioned anchorage	d _f	[mm]	12	14	18	22	26
hole in the fixture ²⁾	Push through	d _f	[mm]	15	17	21	26	30

[mm]

[Nm]


Minimum thickness of concrete member

 h_{min}

 $\mathsf{T}_{\mathsf{inst},\mathsf{max}}$

fischer anchor rods

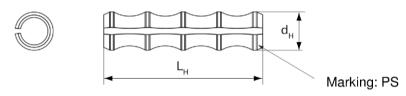
Max. torque moment

 $h_{ef} + 30$

 (≥ 100)

20

40


Marking (on random place):

Property class 8.8, stainless steel, property class 80 or high corrosion-resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel, property class 50: ••

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Marking of embedment depth

fischer Power Sleeve

anchorage

Injection system fischer Powerbond	
Intended Use Installation parameters	Annex B 2

 $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible

²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

TableB3: Parameters of steel brush FIS BS Ø

Drill bit diameters	[mm]	14	16	20	25	28
Steel brush diameters d _b	[mm]	16	20	25	27	30

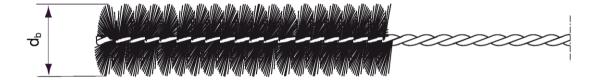
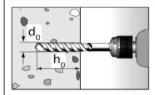


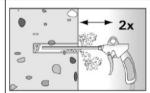
Table B4: Maximum processing times of the mortar and minimum curing times


	oncre perati		Minimum curing time ¹⁾ t _{cure} [Minutes]	Maximum processing time ²⁾ t _{work} [Minutes]
tom	[°]		FIS HB / FIS PM	FIS HB / FIS PM
-5	to	±0	360	
>±0	to	+5	180	
>+5	to	+10	90	15
>+10	to	+20	35	6
>+20	to	+30	20	4
>+30	to	+40	12	2

Injection system fischer Powerbond	
Intended Use	Annex B 3
Cleaning tools	
Processing times and curing times	

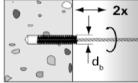
Installation instructions part1 Drilling and cleaning the hole (hammer drill)

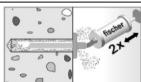
1



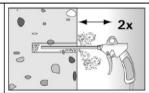
Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Table $\mathbf{B2}$

2

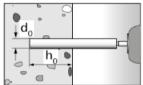

Size M10, M12, M16 Blow out the drill hole two times with manual pump

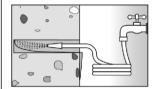

All sizes Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).

3


4

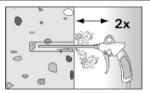
Brush the drill hole two times with corresponding steel brush, beginning from the bottom of the hole. If needed with extension. The brush must produce natural resistance while entering the bore hole. If not, the brush is too small and must be replaced with a proper brush. Diameters of brushes d_b see Table **B3**.


Size M10, M12, M16 Blow out the drill hole two times with manual pump

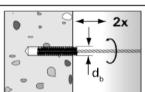

All sizes Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).

Drilling and cleaning the hole (drilling with diamond drill bit)

1

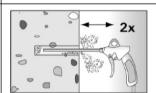

Drill the hole.
Drill hole diameter **d**₀
and drill hole depth **h**₀
see Table **B2**

Break the drill core and draw it out.
Flush the drill hole until


the water comes clear.

2

Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).


3

Brush the drill hole two times with corresponding steel brush, beginning from the bottom of the hole. If needed with extension. The brush must produce natural resistance while entering the bore hole. If not, the brush is too small and must be replaced with a proper brush.

Diameters of brushes d_b see Table B3.

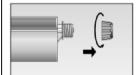
4

Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).

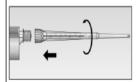
Injection system fischer Powerbond

Intended use

Installation instructions part 1


Annex B 4

Z27765.16

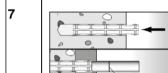


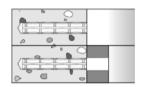
Installation instructions part 2; Preparing the cartridge

Twist off the sealing cap

Twist on the static mixer (the spiral in the static mixer must be clearly visible).

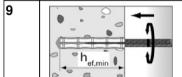
6


Place the cartridge into the dispenser.


Press approximately 10 cm of material out until the resin is evenly grey in colour. Don't use mortar that is not uniformly grey.

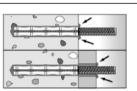
Installation Power Sleeve and anchor rod

Markierung


Insert the Power Sleeve into the clean drill hole. For push through anchorage use a suitable tool with marking for setting depth.

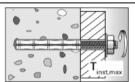
The Power Sleeve must be flush with the surface of the concrete.

8


Fill approx. 2/3 of the hole through the Power Sleeve with injection mortar FIS HB or FIS PM beginning from the back of the hole, slowly withdrawing the mixer with each trigger pull. If necessary use an extension.

Press the anchor rod down ti the bottom of the hole, turning it slightly while doing so. $h_{\text{ef,min}}$ and $h_{\text{ef,max}}$ see Table **B2**

10



For correct installation excess mortar must emerge from the drill hole after reaching the setting depth mark. Otherwise remove the anchor rod immediately and re-inject additional amount of FIS PM mortar. For push-through installation the annular gap has to be filled with mortar.

Wait for the specified curing time tcure see Table **B4**

11

Mounting the fixture $T_{inst,max}$ see Table **B2**

Injection system fischer Powerbond

Intended use

Installation instructions part 2

Annex B 5

Z27765.16

Table C1: Characteristic values under tension load

Size					M10	M12	M16	M20	M24	
Steel failure					IVITO	IVIIZ	IVITO	IVIZU	IVIZ	
		Proper	rty 5.8	[kN]	29	43	79	123	177	
Steel zind	c plated	cla		[kN]	47	68	126	196	282	
s, —			50	[kN]	29	43	79	123	177	
া টু 🗲 Stainless	Stainless steel		$-ty - \frac{30}{70}$	[kN]	41	- 43 59	110	172	247	
Characteristic resistance N _{Rks} A4 High courses and Cartesiance C		cla	$ss = \frac{70}{80}$	[kN]	47	68	126	196	282	
High corr	rocion		50	[kN]	29	43	79	123	177	
l raisistanc		Proper	$rty = \frac{70^{2}}{70^{2}}$	[kN]	41	43 59	110	172	247	
등 Steel C	0	cla	ss 70 80	[kN]	47	68	126	196	282	
Sieei C		Proper		[-]	4/	00	1,50	190	202	
Steel zind	c plated	cla	,	[-]			1,50			
		Cla	50	[-]			2,86			
≳ Stainless	steel	Proper	rty 70	[-]			1,87			
A4		cla	$ss = \frac{70}{80}$	[-]			1,50			
s ≥ High corr	rosion		50	[-]	2,86					
Partial safety factor 7 _{Ms,N} Tactor 1 _{Ns} Tactor		Prope	$-ty - \frac{70^{2}}{70^{2}}$	[-]			1,50			
steel C		cla	ss 70	[-]			1,60			
Pullout and cor		e C20/25		1,00						
Diameter for calc		ianale i	d	[mm]	10	12	16	20	24	
Characteristic re			$ au_{Rk,p}$	[N/mm ²]	10	10	10	10	8	
Factor acc. CEN		2009								
Section 6.2.2.3	, 10 1002-4.2	-505	k_{cr}	[-]	7,2					
Pullout and cor	crete cone	failure i	n uncrac	ked conc	rete C20/2	5				
Characteristic re			$ au_{Rk,p}$	[N/mm ²]	13	13	13(12) ³⁾	11,5	11	
Factor acc. CEN		2009					, ,	,-		
Section 6.2.2.3			k_{ucr}	[-]			10,1			
			C25/30	[-]			1,06			
		_	C30/37	[-]			1,12			
Increasing factor	for	_	C35/45	[-]			1,19			
$ au_{Rk,p}$		ψ _c —	C40/50	[-]			1,23			
, n,p		_	C45/55	[-]			1,27			
		_	C50/60	[-]			1,30			
Edma distance	h _{ef} / d ≤	≤ 8	C _{cr,sp}	[mm]	1,75 • h _{ef}	1,85 • h _{ef}	1,95 • h _{ef}	2 • h _{ef}	2 • h _{ef}	
Edge distance $\frac{h_{ef}/d \ge 6}{h_{ef}/d > 8}$		C _{cr,sp}	[mm]	, =	,	1,5 • h _{ef}				
Spacing	01		S _{cr,sp}	[mm]			2 • C _{cr,sp}			
Installation safe	ety factors		- 01,001				- 01,00			
Dry and wet con				[-]			1,0			
Flooded hole		— · ν	$\gamma_2 = \gamma_{\rm inst}$	[-]			1,2			

 $^{^{1)}}$ In absence of other national regulations $^{2)}\,f_{uk}=700\ N/mm^2;\ f_{yk}=560\ N/mm^2$ $^{3)}\,h_{ef}>9d$

Injection system fischer Powerbond	
Performances Characteristic values under tension load	Annex C 1

Tahla C2.	Characteristic	values under	· ehoar l	had
I able Cz.	Cital acteristic	values ulluei	Sileai	vau

Steel zinc plated Class 8.8 [kN] 23 34 63 98 14	Size					M10	M12	M16	M20	M24	
Steel Zinc plated Property 50 [kN] 15 21 39 61 88 14	Steel	failure without lever	arm			•					
Steel Zinc plated Property 50 [kN] 15 21 39 61 88 14		Otaal =:na mlatad	Property	5.8	[kN]	15	21	39	61	89	
Addition	·				23	34	63	98	141		
Addition	S S,	Otoinless steel	Duanantu	50	[kN]	15	21	39	61	89	
Steel failure with lever arm Steel zinc plated Property S.8 [Nm] 37 65 167 324 56 519 85 50 50 50 50 50 50 50	isti V	Stainless steel		70	[kN]	20	30	55	86	124	
Steel Zero Steel Steel Cass Steel	ig ge	A4	ciass-	80	[kN]	23	34	63	98	141	
Steel failure with lever arm Steel zinc plated Property S.8 [Nm] 37 65 167 324 56 519 85 50 50 50 50 50 50 50	rac star	High corrosion	Duanantu		[kN]	15	21	39	61	89	
Steel zinc plated Property 5.8 [Nm] 37 65 167 324 56 519 85 50 519 85 50 519 85 50 519 50 519 50 50 519 50 50 519 50 50 519 50 50 519 519	hal ssis			70 ²⁾	[kN]	20	30	55	86	124	
Steel zinc plated Property class Steel zin	ပ မ	steel C	ciass-	80	[kN]	23	34	63	98	141	
Steel zinc plated Class 8.8 [Nm] 60 105 266 519 85	Steel	failure with lever arr	n			•					
Stainless steel A4 Property Class 8.8 Nm 50 105 266 324 56		Stool zine plated	Property	5.8	[Nm]	37	65	167	324	561	
Steel zinc plated Property 5.8 [-] 1,25 1,25 1,25	Ħ	Steel zinc plated	class	8.8	[Nm]	60	105	266	519	898	
Steel zinc plated Property class Stainless steel Property class Stainless s	ie Je	Ctainless steel	Droporti	50	[Nm]	37	65	166	324	561	
Steel zinc plated	A4 Stainless steel		70	[Nm]	52	92	233	454	785		
Steel zinc plated		Class-	80	[Nm]	60	105	266	519	898		
Steel zinc plated Property class Stainless steel Property class Stainless s	g i	g High corrosion	Droport	50	[Nm]	37	65	166	324	561	
Steel zinc plated Property class Steel zinc plated Property class Stainless steel Property class Stainless	ু টু ু ল resistance		70 ²⁾	[Nm]	52	92	233	454	785		
Steel zinc plated	ဝဋ̃ ≥ _{steel} C		ciass-	80	[Nm]	60	105	266	519	898	
Steel 2Inc plated class 8.8 [-] 1,25 Stainless steel A4 Property 70 [-] 1,56 High corrosion resistance steel C class 80 [-] 2,38 Concrete pryout failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors	Partia	l safety factor steel	failure								
Stainless steel Property Class 8.8 [-] 2,38 Stainless steel Property Class 80 [-] 1,56 High corrosion resistance steel C Class 80 [-] 1,25 Steel C Property Class 70 [-] 2,38 Concrete pryout failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors		Stool zine plated	Property_	5.8	[-]	1,25					
Stainless steel A4		Sieer zinc piated	class					1,25			
A4		Stainless staal	Proporty-		[-]	2,38					
High corrosion resistance steel C	1)	ΔA			[-]			1,56			
resistance steel C class 70 ²⁾ [-] 1,25 steel C 1,33 Concrete pryout failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors	YMs,V	A4	Class-	80	[-]			1,25			
Concrete pryout failure Class 70		High corrosion	Proporty-		[-]	2,38					
The steel C				70 ²⁾	[-]	1,25					
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors		steel C	Class	80 [-] 1,33							
Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors											
All the Heat Control of the Control	Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009										
All installation conditions $\gamma_2 = \gamma_{inst}$ [-] 1,0											
	All ins	allation conditions	$\gamma_2 = r$	Yinst	[-]			1,0			

 $^{^{1)}}$ In absence of other national regulations $^{2)}\,f_{uk}=700\ N/mm^2;\ f_{yk}=560\ N/mm^2$

Injection system fischer Powerbond	
Performances Characteristic values under shear load	Annex C 2

Table C3.1: Displacements under tension load in uncracked concrete

Displacement-Factors for tension ¹⁾						
Size		M10	M12	M16	M20	M24
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ²)]	0,03	0,04	0,05	0,07	0,09
$\delta_{N_{\infty} ext{-}Factor}$	[mm/(N/mm ²)]	0,05	0,06	0,08	0,10	0,13

Table C3.2: Displacements under tension load in cracked concrete

Displacement-Factors for tension ¹⁾							
Size		M10	M12	M16	M20	M24	
$\delta_{\text{NO-Factor}}$	[mm/(N/mm ²)]	0,07	0,09	0,11	0,14	0,18	
$\delta_{N\infty ext{-Factor}}$	[mm/(N/mm ²)]	0,10	0,13	0,17	0,21	0,27	

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{\text{N}^{\infty}} = \delta_{\text{N}^{\infty}\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}:$ Design value of the applied tensile stress)

Table C4: Displacements under shear load

Displacement-Factors for shear load ¹⁾							
Size		M10	M12	M16	M20	M24	
$\delta_{ extsf{V0-Factor}}$	[mm/kN]	0,15	0,12	0,09	0,07	0,06	
δ _{N∞-Factor}	[mm/kN]	0,22	0,18	0,14	0,11	0,09	

1) Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot \, V_{\text{Ed}}$

 $\delta_{\text{V}_{\infty}} = \delta_{\text{V}_{\infty}\text{-Factor}} \, \cdot \, \text{V}_{\text{Ed}}$

 $(V_{Ed}: Design \ value \ of \ the \ applied \ shear \ force)$

Injection system fischer Powerbond	
Performances Displacements	Annex C 3
Displacements	