

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0554 of 16 August 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer injection system FIS HT for masonry

Injection anchor for use in masonry

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0554

Page 2 of 23 | 16 August 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0554

Page 3 of 23 | 16 August 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system FIS HT for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar fischer FIS HT High Speed, FIS HT or FIS HT Low Speed, a perforated sieve sleeve and an anchor rod with hexagon nut and washer. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 – C 2
Characteristic resistance for bending moments	See Annex C 3
Displacements under shear and tension loads	See Annex C 3
Reduction Factor for job site tests (β-Factor)	See Annex C 3
Edge distances and spacing	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-12/0554

Page 4 of 23 | 16 August 2016

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

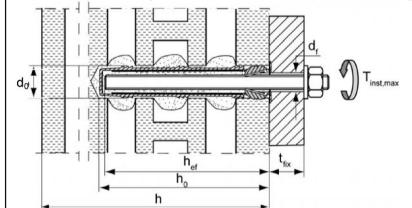
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 029, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

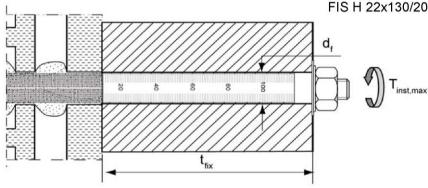

Issued in Berlin on 16 August 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider

Threaded rods with perforated sleeve FIS H K; installation in perforated and solid brick

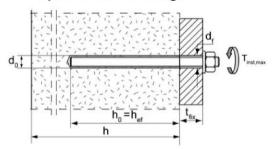
Pre-positioned anchorage

FIS H 16x85 K

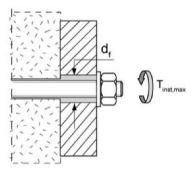

FIS H 16x130 K

FIS H 20x130 K

FIS H 20x200 K


Push through anchorage

FIS H 18x130/200 K FIS H 22x130/200 K



Threaded rods without perforated sleeve FIS H K; installation in solid brick

Pre-positioned anchorage

Push-through anchorage

nominal drill bit diameter

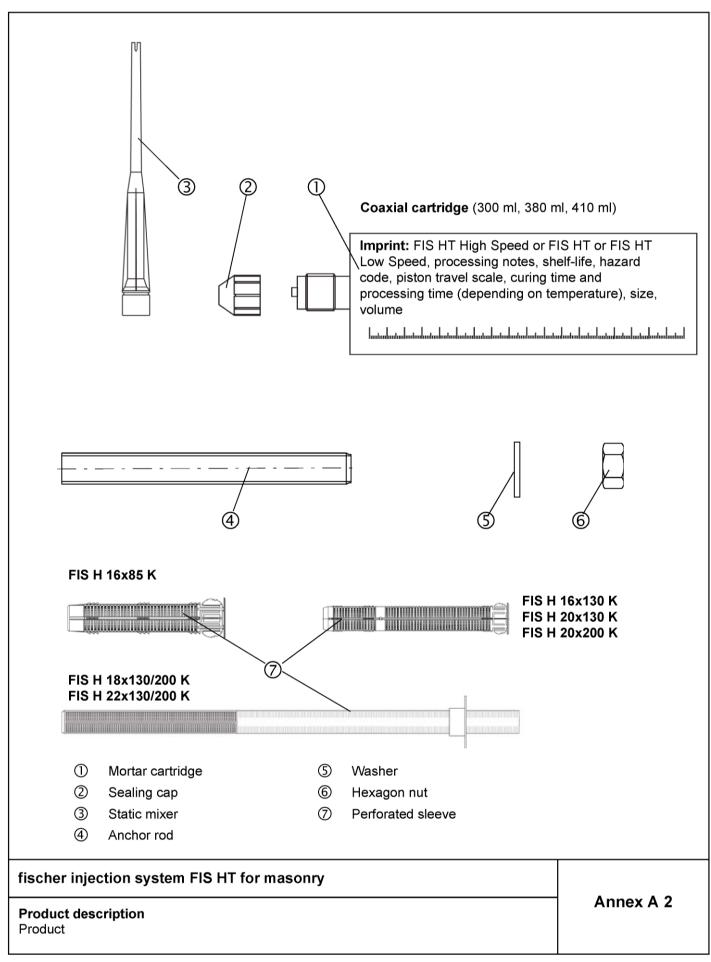
diameter of clearance hole in the fixture

T_{inst.max} maximum torque moment

> h thickness of masonry

effective anchorage depth

depth of drill hole


thickness of fixture

fischer injection system FIS HT for masonry

Product description

Installation conditions

Annex A 1

Table A1: Materials

Part	Designation		Material							
1	Mortar cartridge	Mortar, hardener; filler								
		Steel, zinc plated Stainless steel A4		Steel, zinc plated Stainless steel A4 High						
4	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4462, 1.4662 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation						
5	Washer ISO 7089:2000	zinc plated ≥ 5µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014						
6	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014						
7	Perforated sleeve FIS HK		PP / PE							

fischer injection system FIS HT for masonry	
Product description Materials	Annex A 3

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

Solid brick masonry (Use category b), acc. to Annex B9, B10

Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.

- Hollow brick masonry (use category c), according to Annex B9, B10
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the sleeve may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C3, Table C4

Temperature Range:

- I: From 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- II: From -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar)
- Structures subject to dry internal conditions exists
 (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure including industrial and marine environment or
 exposure to permanently damp internal condition, if no particular aggressive conditions exist exist
 (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

fischer injection system FIS HT for masonry	
Intended Use	Annex B 1
Specifications	

Specifications of intended use

Design:

The anchorage s have to be designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work

Applies to all bricks, if no other values are specified:

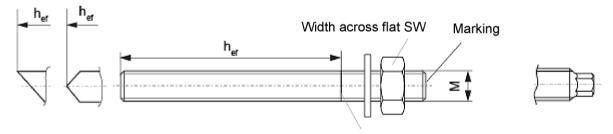
$$N_{Rk} = N_{Rk,s} = N_{Rk,p} = N_{Rk,b} = N_{Rk,pb}$$

$$V_{Rk} = V_{Rk,s} = V_{Rk,b} = V_{Rk,c} = V_{Rk,pb}$$

Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the region
of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The
position of the sleeve is indicated on the design drawings

Installation:

- Category d/d: -Installation and use in dry structures
- Category w/w: -Installation and use in dry and wet structures
- Hole drilling by hammer drill mode


In case of aborted hole: The hole shall be filled with mortar

- Bridging of unbearing layer (e.g. plaster) see Annex B 4 (Table B2)
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Minimum curing time see Annex B5. Table B5
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements
 are fulfilled:
- Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A3, Table A1
- Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored
- Marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or by a person on job site

fischer injection system FIS HT for masonry	
Intended Use Specifications	Annex B 2

Anchor rods M8, M10, M12, M16

possible marking setting depth

Marking:

Property class 8.8 or high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel C, property class 50: ••

Table B1: Installation parameters for anchor rods in solid bricks without perforated sleeves

Size	М8	M10	M12	M16	
Nominal drill hole diameter	d ₀ [mm]	10	12	14	18
Width across flat	SW[mm]	13	17	19	24
Effective anchorage depth h _{ef} 1) h _{ef,min} [mm]		50	50	50	64
Depth of drill hole $h_0 = h_{ef}$ $h_{ef,max}[mm]$		h-30, ≤200			
Diameter of clearance	pre-position d _f ≤[mm]	9	12	14	18
hole in the fixture	push through d _f ≤[mm]	11	14	16	20
Diameter of steel brush	d _b ≥[mm]	See Table B4			
Maximum installation torque	T _{inst,max} [Nm]		10	0	

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible

fischer injection system FIS HT for masonry	
Intended Use Installation parameters, part 1	Annex B 3

Perforated sleeves FIS H 16x85; 16x130; 20x130; 20x200 K

Marking:

Size D_{sleeve,nom} x L_{sleeve}

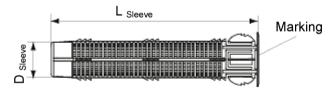


Table B2: Installation parameters for threaded rods with perforated sleeves (pre-positioned anchorage)

Size FIS HK			16x85	16x130 ³⁾	20x130 ³⁾	20x200 ³⁾	
Nominal drill hole diameter d ₀ = D _{sleeve,nom}	$d_{nom}=d_0$	[mm]	16	16	20	20	
Depth of drill hole	h_{o}	[mm]	90	135	135	205	
Effective encharge depth	$\mathbf{h}_{ef,min}$	[mm]	85	110	110	180	
Effective anchorage depth -	$h_{\text{ef},\text{max}}$	[mm]	85	130	130	200	
Size of threaded rod		[-]	[-] M8, M10 M12, M		M16		
Maximum installation torque	T _{inst,max}	[Nm]	4 ²				
Diameter of steel brush ¹⁾	d _b	[mm]	See Table B4				

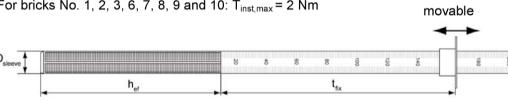

¹⁾ Only for KSL and solid bricks

Table B3: Installation parameters for threaded rods with perforated sleeves (push through anchorage)

Size FIS HK		18x1	30/200	22x130/200		
Nominal sleeve diameter	D _{sleeve,nom} [mm]	•	20			
Nominal drill hole diameter	d ₀ [mm]	•	18	22		
Depth of drill hole	h ₀ [mm]	135 + t _{fix}				
Effective anchorage depth	h _{ef} [mm]	≥130				
Diameter of steel brush ¹⁾	d _b ≥ [mm]	See Table B4				
Size of threaded rod		M10	M16			
Maximum installation torque	T _{inst,max} [Nm]	4 ²⁾				
Thickness of fixture	t _{fix,max} [mm]	200				

¹⁾ Only for KSL and solid bricks

²⁾ Valid for bricks No. 4, 5, 11 and 12 For bricks No. 1, 2, 3, 6, 7, 8, 9 and 10: $T_{inst,max}$ = 2 Nm

Perforated sleeves FIS H 18x130/200 K and FIS H 22x130/200 K

fischer injection system FIS HT for masonry	
Intended Use Installation parameters, part 2	Annex B 4

²⁾ Valid for bricks No. 4, 5, 11 and 12

For bricks No. 1, 2, 3, 6, 7, 8, 9 and 10: T_{inst,max} = 2 Nm

³⁾ bridging of unbearing layer (e.g. plaster) is possible

Steel brush BS

Only for KSL and solid bricks

Table B4: Parameters of steel brush

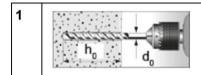
Drill hole diameter	do	[mm]	10	12	14	16	18	20	22
Brush diameter	$d_{b,nom}$	[mm]	11	14	16	20	20	24	24

Table B5: Maximum processing times and minimum curing times

(During the curing time of the mortar the masonry temperature may not fall below the listed minimum temperature).

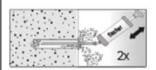
Tomi	ooroti	uro ot	Minimum curing time ¹⁾ t _{cure} [minutes]					
Temperature at anchoring base [°C]			FIS HT High Speed ³⁾	FIS HT ²⁾	FIS HT Low Speed ²⁾			
-10	to	-5	12 hours					
>-5	to	±0	3 hours	24 hours				
>±0	to	+5	90	3 hours	6 hours			
>+5	to	+10	45	90	3 hours			
>+10	to	+20	30	60	2 hours			
>+20	to	+30		45	60			
>+30	to	+40		35	30			

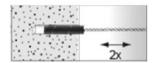
System-	Maximum processing time t _{work} [minutes]					
temperature (mortar) [°C]	FIS HT High Speed ³⁾	FIS HT ²⁾	FIS HT Low Speed ²⁾			
±0	5					
+5	5	13	20			
+10	3	9	20			
+20	1	5	10			
+30		4	6			
+40		2	4			


¹⁾ For wet bricks the curing time must be doubled ²⁾ Minimum cartridge temperature +5°C

fischer injection system FIS HT for masonry	
Intended Use	Annex B 5
Steel brush	
Maximum processing times and minimum curing times	

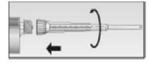
³⁾ Minimum cartridge temperature ±0°C


Installation instruction part 1


Installation in solid brick (without perforated sleeve)

Drill the hole in hammer drill function. Depth of drill hole \mathbf{h}_0 and drill hole diameter \mathbf{d}_0 see **Table B1**

2



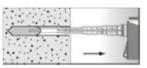
Blow out the drill hole two times. Brush two times and blow out two times again. Adequate brushes see **Table B4**.

3

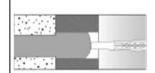
Remove the sealing cap

Screw on the static mixer. (the spiral in the static mixer must be clearly visible)

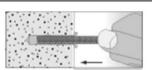
4



Place the cartridge into a suitable dispenser


Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed off.

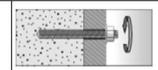
5


Fill approximetly 2/3 of the drill hole with mortar beginning from the bottom of the hole¹⁾.

Avoid bubbles!

For push through anchorage fill the annular clearance with mortar.

6


Only use clean and oil-free sleeve elements. Mark the threaded rod for setting depth. Insert the anchor by hand using light turning motions. When reaching the setting depth marking, excess mortar must emerge from the mouthof the drill hole.

7

electronic copy of the eta by dibt: eta-12/0554

Do not touch.
Minimum curing time see **Table B5.**

Mounting the fixture.

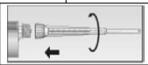
T_{inst,max} see **Table B1**

Intended Use Installation instruction (without perforated sleeve) Part 1

¹⁾ Exact volume of mortar see manufacturer's specification.

Installation instruction, part 2

Installation in perforated or solid brick with perforated sleeve (pre-positioned anchorage)


1

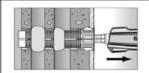
Drill the hole (hammer drill). Depth of drill hole h_0 and drill hole diameter d_0 see **Table B2**

When install perforated sleeves in solid bricks or solid areas of hollow bricks, also clean the hole by blowing out and brushing.

Remove the sealing cap.

Screw on the static mixer. (the spiral in the static mixer must be clearly visible)

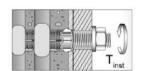
Place the cartridge into a suitable dispenser



Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed off.

Insert the perforated sleeve flush with the surface of the masonry or plaster

Fill the perforated sleeve completely with mortar beginning from the bottom of the hole¹⁾.



Only use clean and oil-free sleeve elements. Mark the threaded rod for setting depth. Insert the threaded rod by hand using light turning motions until reaching the setting depth marking.

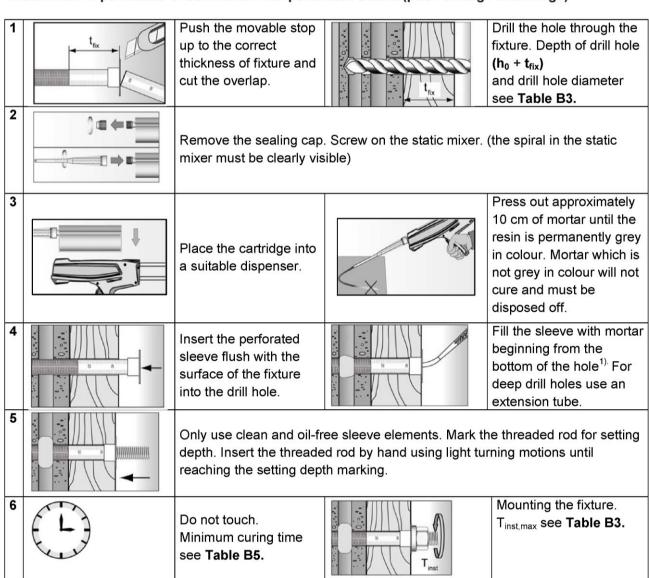
6

Do not touch.
Minimum curing time see
Table B5.

Mounting the fixture. $T_{inst,max}$ see **Table B2**

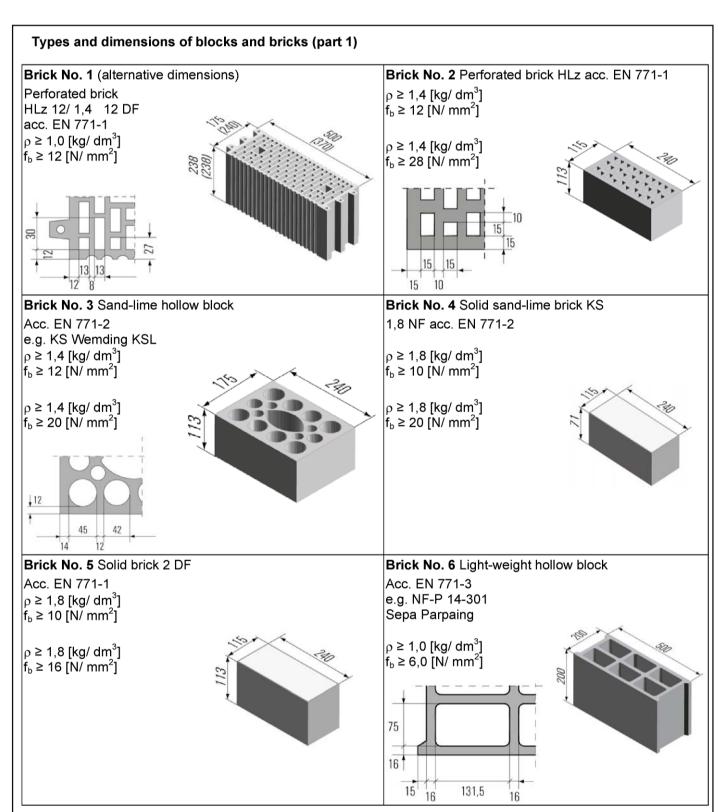
Intended Use
Installation instruction (with perforated sleeve) Part 2

Annex B 7


electronic copy of the eta by dibt: eta-12/0554

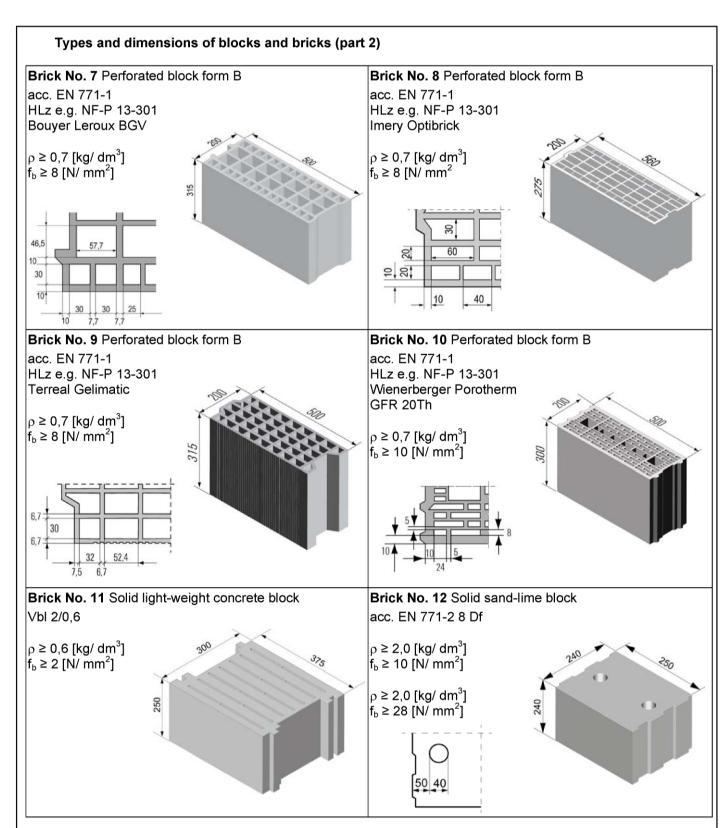
¹⁾ Exact volume of mortar see manufacturer's specification.

Installation instruction, part 3


Installation in perforated or solid brick with perforated sleeve (push through anchorage)

¹⁾ Exact volume of mortar see manufacturer's specification.

fischer injection system FIS HT for masonry	
Intended Use Installation instruction (with perforated sleeve) Part 3	Annex B 8



Bricks and blocks not drawn to scale

Intended Use Types and dimensions of blocks and bricks (part 1) Annex B 9

Bricks and blocks not drawn to scale

fischer injection system FIS HT for masonry Intended Use Types and dimensions of blocks and bricks (part 2) Annex B 10

Table B6: Allocation of anchor rods, perforated sleeves and bricks¹⁾

Brick		Perforated sleeve						
No.				Þ				
1		FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
2	FIS H 16x85 K (M8/ M10)							
3	FIS H 16x85 K (M8/ M10)	FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
4	FIS H 16x85 K (M8/ M10)			M8; M10; M12; M16				
5	FIS H 16x85 K (M8/ M10)			M8; M10; M12; M16				
6		FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
7		FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
8		FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
9		FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
10		FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
11		FIS H 16x130 K (M8/ M10) FIS H 20x130 K (M12/ M16) FIS H 20x200 K (M12/ M16)	FIS H 18x130/200 K (M10/ M12) FIS H 22x130/200 K (M16)					
12	FIS H 16x85 K (M8/ M10)			M8; M10; M12; M16				

 $^{^{1)}}$ Other combinations can be use after job site tests acc. to ETAG 029, Annex B. The β -factor for this job site tests are given in **Table C4**

fischer injection system FIS HT for masonry	
Intended Use Allocation of anchor rods, perforated sleeves and bricks	Annex B 11

Table C1.1: Characteristic values to tension load and shear load

	Density ρ [kg/dm³]		effective anchorage			Charact. resistance N _{Rk} [kN]				Charact.	
			depth		w/w		d/d		V _{Rk} [kN] (all		
	Com-									categories	
Brick No.	pressiv strength f _b [N/mm ²]	Perforated sleeve FIS HK	Anchor- size	h _{ef,min} [mm]	h _{ef,max} [mm]	50/80	72 /120	50/80	72 /120	and temperture ranges)	
1	[14/11111]	16x130	M8/M10	110	130					ranges)	
'	ρ≥ 1,4	18x130/200	M10/M12	130		3,0	2,5	3,0	2,5		
	f _b ≥ 12	20x130 ¹⁾	M12/M16	110	130					2,0	
	15 - 12	22x130/200	M16	130		3,5	3,0	4,0	3,5		
2	$\rho \ge 1,4$ $f_b \ge 12$	16x85	M8/M10	85		1,2	0,9	1,2	1,2	2,5	
	$\rho \ge 1.4$ $f_b \ge 28$	16x85	M8/M10	85		3,5	3,0	3,5	3,0	6,5 (5,5) ²⁾	
3		16x85	M8/M10	85		2,5	2,0	2,5	2,0		
		16x130	M8/M10	110	130	,	,	,	,	4,5	
	ρ≥1,4	18x130/200	M10/M12	130		20	2.5	2.5	3,0		
	f _b ≥ 12	20x130 ¹⁾	M12/M16	110	130	3,0	2,5	2,5 3,5		4.0	
		22x130/200	M16	130						4,0	
		16x85	M8/M10	85		4,5	4,0	5,0	4,0	7,5	
	.>14	16x130	M8/M10	110	130					7,5	
	ρ ≥ 1,4 f _b ≥ 20	18x130/200	M10/M12	130		5,5	4,5	6,0	5,0	7,5	
	1 _b ≥ 20	20x130 ¹⁾	M12/M16	110	130	3,5	4,5	0,0		6,5	
		22x130/200	M16	130						0,5	
4			M8	50	100					4,0	
	2518	without	M10	50	100					4,0	
	ρ≥1,8 f.>10	$\beta \ge 1.0$ $f_b \ge 10$	without	M12	50	100	1,5	1,2	2,5	2,0	5,0
	16 = 10		M16	64	100						
		16x85	M8/M10	85						3,0	
			M8	50	100					5,5	
	ρ≥1,8	without	M10	50	100						
	$f_b \ge 1,0$	William	M12	50	100	2,0	1,5	3,5	3,0	7,5	
	10 - 20		M16	64	100						
<u> </u>		16x85	M8/M10	85						4,0	
5			M8	50	100	1,5				3,0	
	ρ≥1,8	without	M10	50	100	.,,-	,_			3,5	
	$f_b \ge 10$		M12	50	100		1,5	3,0	2,5		
		40.05	M16	50	100	2,0				3,0	
		16x85	M8/M10	64	100				4.0	,	
			M8	50	100	2,5		4,5	4,0	5,0	
	ρ ≥ 1,8	without	M10 M12	50 50	100 100		20		3,5	5,5	
	f _b ≥ 16		M16	50	100	3,5	2,0	2,0 5,5	4,5		
		16x85	M8/M10	64		5,5		5,5	7,5	5,0	
		10,00	IVIO/IVI I O	<u> </u>	L				l	I	

 $^{^{1)}}$ Alternative FIS H 20x200 K; (h_{ef,min} = 110 mm) $^{2)}$ Characteristic value of pushing out of one brick V_{RK,pb} = 5,5 kN

fischer injection system FIS HT for masonry	
Performances Characteristic values to tension load and shear load (part 1)	Annex C 1

Table C1.2: Characteristic values to tension load and shear load

	Density ρ	effective anchorage				Charact. resistance N _{Rk} [kN]				Charact.
	[kg/dm ³] 				orage epth	w/w		w/w		resistance V _{Rk} [kN] (all
	Com-							ĺ		categories
	pressiv	Perforated				50/80	72 /120	50/80	72 /120	and
Brick	strength f _b	sleeve	Anchor-	$h_{ef,min}$	$h_{\sf ef,max}$	30/60	12/120	50/60	12/120	temperture
No.	[N/mm ²]	FIS HK	size	[mm]	[mm]					ranges)
6		16x130	M8/M10	110	130	ļ				
	ρ≥ 1,0	18x130/200	M10/M12	130		1,2	1,2	1,5	1,2	2,5
	f _b ≥ 6	20x130 ¹⁾	M12/M16	110	130	',_	-,_	.,-	',_	_,-
		22x130/200	M16	130						
7		16x130	M8/M10	110	130	1,5	1,2	2,0	1,5	
	ρ≥ 0,7	18x130/200	M10/M12	130		-,-	,-	_,-	.,-	2,0
	f _b ≥ 8	20x130 ¹⁾	M12/M16	110	130	3,5	2,5	3,5	3,0	_,-
		22x130/200	M16	130		,	,	·	,	
8		16x130	M8/M10	110	130	2,0	1,5	2,5	2,0	
	ρ≥0,6	18x130/200	M10/M12	130	400	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	,	<u> </u>	2,0
	f _b ≥ 8	20x130 ¹⁾	M12/M16	110	130	2,5	2,0	2,0 3,0	2,5	,
		22x130/200	M16	130	400		·			
9		16x130	M8/M10	110	130					2,0
	ρ≥0,7	18x130/200 20x130 ¹⁾	M10/M12 M12/M16	130 110	130	2,0	1,5	2,0	2,0	
	f _b ≥ 8	20x130 22x130/200	M16	130						3,0
10		16x130	M8/M10	110	130					
'0	ρ≥0,6	18x130/200	M10/M12	130		2,5	2,0	3,0	2,5	
	$f_b \ge 0.8$	20x130 ¹⁾	M12/M16	110	130					1,5
	1 _b = 2	22×130/200	M16	130		3,5	3,0	4,0	3,0	
11		16x130	M8/M10	110	130					
''		18×130/200	M10/M12	130		2,0	1,5	2,0	2,0	
	ρ≥ 0,6	20x130 ¹⁾	M12/M16	110	130					4,5
	f _b ≥ 2	22x130/200	M16	130		2,5	2,5	3,0	2,5	
		20x200	M12/M16	180	200	3,0	3,0	4,0	3,0	6,5
12			M8	50	100	4,0	3,5	7,0	5,5	·
			M10	50	100					1
	ρ ≥ 2,0	without	M12	50	100	4,5	3,5	7,0	5,5	4,5
	f _b ≥ 10		M16	64	100	3,5	3,0	5,5	4,5	
		16x85	M8/M10	85		4,5	3,5	8,0	6,5	
			M8	50	100	8,0	7,0	12,0 (9,0) ²⁾	8,0	
			M10	50	100	0.5	7.0	12,0	11,5	
	ρ≥1,8	without	M12	50	100	8,5	7,0	$(9,0)^{2)}$	$(9,0)^{2)}$	
	f _b ≥ 16					7.0	6.0	11,0	l	9,0
			M16	64	100	7,0	6,0	$(9,0)^{2)}$	9,0	
		16x85	M8/M10	85		8,5	7,0	12,0 (9,0) ²⁾	12,0 (9,0) ²⁾	

 $^{^{1)}}$ Alternative FIS H 20x200 K; (h_{ef,min} = 110 mm) $^{2)}$ Characteristic value of pulling out of one brick N_{RK,pb} = 9,0 kN

fischer injection system FIS HT for masonry	
Performances Characteristic values to tension load and shear load (part 2)	Annex C 2

Table C2: Characteristic bending moments

Size					M8	M10	M12	M16
Charact.	Steel zinc plated	Property	5.8	[Nm]	19	37	65	166
	Steel Zille plated	class	8.8	[Nm]	30	60	105	266
	Stainless steel A4	Property	50	[Nm]	19	37	65	166
bending		class	70	[Nm]	26	52	92	232
moment	High corrosion- resistant steel C	Droporty	50	[Nm]	19	37	65	166
$M_{Rk,s}$		Property -	70 ¹⁾	[Nm]	26	52	92	232
		resistant steel C	class -	80	[Nm]	30	60	105

 $^{^{1)}}$ $f_{uk} = 700 \text{ N/mm}^2$; $f_{yk} = 560 \text{ N/mm}^2$

Table C3: Displacements under tension load and shear load

	N	δ_{N0}	$\delta_{N_{\infty}}$
	[kN]	[mm]	[mm]
Solid bricks ¹⁾	N _{Rk}		
Hollow bricks ²⁾		0,03	0,06
Brick No.6	1,4 • γ _M		

V	δ_{V0}	$\delta_{V^{\infty}}$
[kN]	[mm]	[mm]
V_{Rk}	0,59	0,88
	1,71	2,56
1,4 • γ _M	6,44	9,66

electronic copy of the eta by dibt: eta-12/0554

Table C4: β- factors for job site tests according to ETAG 029; Annex B

Use category		w.	/w	d/d		
Temperature range		50/80	72/120	50/80	72/120	
Material	Size					
Solid Bricks	M8	0,57	0,51			
	M10	M10 0,59		0,96	0,80	
	M12	0,60	0,54	0,90	0,80	
	M16					
Hollow bricks	Hollow bricks All sizes		0,72	0,96	0,80	

fischer injection system FIS HT for masonry	
Performances	Annex C 3
Characteristic bending moments, Displacements and β - factors for job site tests	

¹⁾ Brick No.: 4, 5, 11, 12 ²⁾ Brick No.: 1, 2, 3, 7, 8, 9, 10

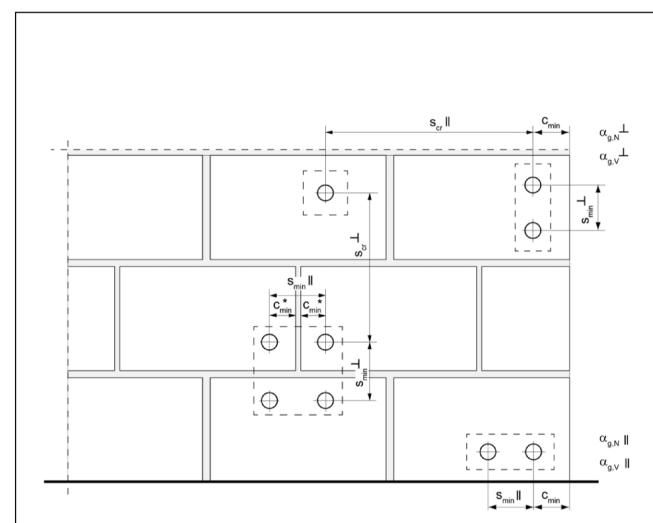


Table C5: Edge distance and spacing

Direction to bed joint		Т				Group factor			Min. thickness of the masonry			
Brick No .	h _{ef}	$c_{cr} = c_{min}$	S _{min}	S _{cr}	S _{min}	S _{cr}	١	L			members	
Brick No .	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	α^{g}_{N}	α^{g}_{V}	α^{g}_{N}	α^{g}_{V}	[mm]	
1	All sizes	100	100	240	100	375 (500) ²⁾	1					
2	All sizes	80	1	15	2	40		2				
3	All sizes	80	1	15	100	240	2		1,5			
	50	100	7	5	2	40		2				
4	80	100	7	5	2	40		2				
	200	150	7	5	2	40		2				
	50	100	7	5	60 ¹⁾	150	2	2 1,5 1,4				
5	80	100	7	5	60 ¹⁾	240	2	2		1,4	h _{ef} + 30	
	200	150	7	5	2	40		2			(≥ 80)	
6	All sizes	100	20	00	5	00	2					
7	All sizes	120	3.	15	120	500	2		1,3	1,7		
8	All sizes	80	27	75	560		2					
9	All sizes	80	100	315	100	500	1,1	1,2	1,1	1,2		
10	All sizes	80	30	00	100	250	2		1,4	2		
11	All sizes	130	2	50	370		2					
12	All sizes	60	80	240	80	250	1,5	1,2	1,5	1,2		

fischer injection system FIS HT for masonry	
Performances	Annex C 4
Edge distance and spacing	

 $^{^{1)}}$ Only valid for tension loads, for shear loads $s_{min}\|=s_{cr}\|$ Spacing depending on brick dimension, brick dimension see Annex B9, brick No.1

* Only, if joints are visible and vertical joints (butt joints) are not filled with mortar

 $s_{min} II = Minimum spacing parallel to bed joint$

 s_{min}^{\perp} = Minimum spacing vertical to bed joint

s_{cr} II = Characteristic spacing parallel to bed joint

 s_{c_1} = Characteristic spacing vertical to bed joint

 $c_{cr} = c_{min}$ = Edge distance

 $\alpha_{q,N}II$ = Group factor for tension load parallel to bed joint

 $\alpha_{a,v}II$ = Group factor for shear load parallel to bed joint

 $\alpha_{g,N}\bot$ = Group factor for tension load vertical to bed joint

 $\alpha_{a,V}\bot$ = Group factor for shear load vertical to bed joint

For $s > s_{cr}$ $\alpha_q = 2$

For $s_{min} \le s \le s_{cr}$ α_g according to Table C5

 $\begin{array}{lll} N^g_{Rk} = & \alpha_{g,N} \bullet N_{Rk} \,; & V^g_{Rk} = & \alpha_{g,V} \bullet V_{Rk} & \text{(Group of 2 anchors)} \\ N^g_{Rk} = & \alpha_{g,N} \, \text{II} \bullet & \alpha_{g,N} ^{\perp} \bullet N_{Rk} \,; & V^g_{Rk} = & \alpha_{g,V} \, \text{II} \bullet & \alpha_{g,V} ^{\perp} \bullet V_{Rk} & \text{(Group of 4 anchors)} \end{array}$

fischer injection system FIS HT for masonry

Performances

Definition of minimum edge distance, minimum spacing and group factors

Annex C 5

Z50974.16

electronic copy of the eta by dibt: eta-12/0554