

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-14/0087 vom 15. Dezember 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer FIF-S R

Schlagdübel zur Verankerung von außenseitigen Wärmedämmverbundsystemen mit Putzschicht in Beton und Mauerwerk

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

11 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäische technische Zulassung für "Kunststoffdübel zur Befestigung von außenseitigen Wärmedämm-Verbundsystemen in Putzschichten" ETAG 014, Fassung Februar 2011, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

ETA-14/0087 vom 29. April 2014

Europäische Technische Bewertung ETA-14/0087

Seite 2 von 11 | 15. Dezember 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-14/0087

Seite 3 von 11 | 15. Dezember 2016

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer Schlagdübel FIF-S R besteht aus einer Dübelhülse mit aufgeweitetem Schaftbereich aus Polypropylen, einem Dämmstoffhalteteller aus glasfaserverstärktem Polyamid und einem Spezial-Compoundnagel (für den FIF-S R 60-180) aus glasfaserverstärktem Polyamid mit galvanisch verzinktem Stahl oder einem Spezialnagel (für FIF-S R 200-340) aus galvanisch verzinktem Stahl der zusammen mit einem Zylinder aus glasfaserverstärktem Polyamid installiert wird.

Der Dübel darf zusätzlich mit den Dübeltellern DT 90, DT 110 und DT 140 kombiniert werden. Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 25 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Anforderungen im Hinblick auf die mechanische Festigkeit und Standsicherheit von nichttragenden Teilen des Bauwerks sind nicht von dieser Grundanforderung erfasst, sondern gehören zu der Grundanforderung "Sicherheit bei der Nutzung".

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3.3 Sicherheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Zugbeanspruchung	siehe Anhang C 1
Rand- und Achsabstände	siehe Anhang B 2
Punktbezogener Wärmedurchgangskoeffizient	siehe Anhang C 1
Tellersteifigkeit	siehe Anhang C 1
Verschiebungen	siehe Anhang C 1

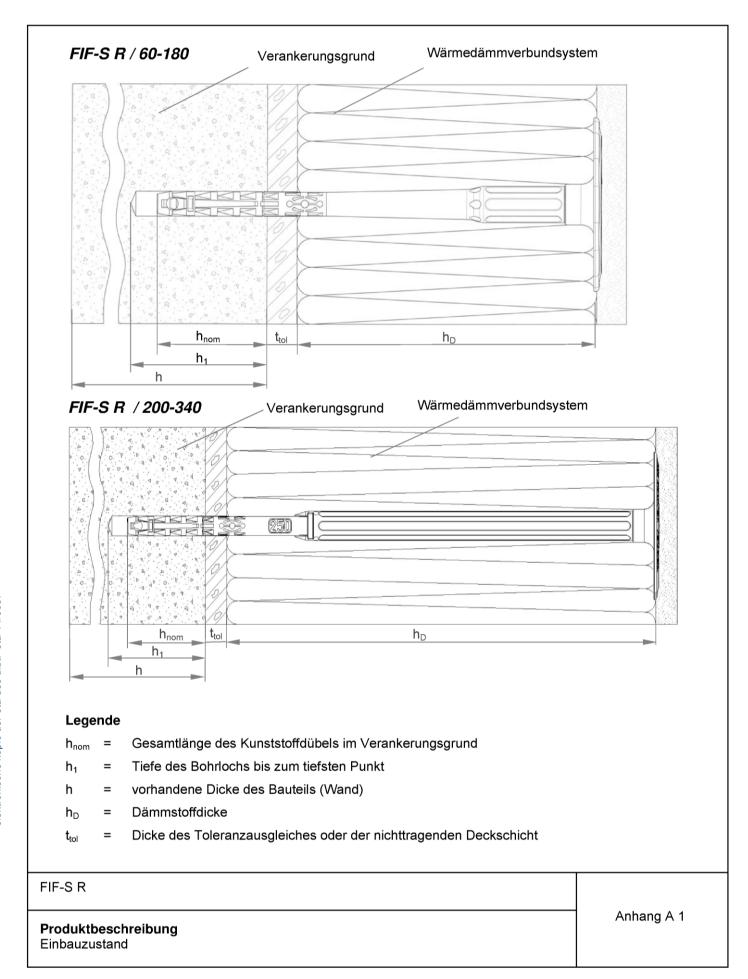
Europäische Technische Bewertung ETA-14/0087

Seite 4 von 11 | 15. Dezember 2016

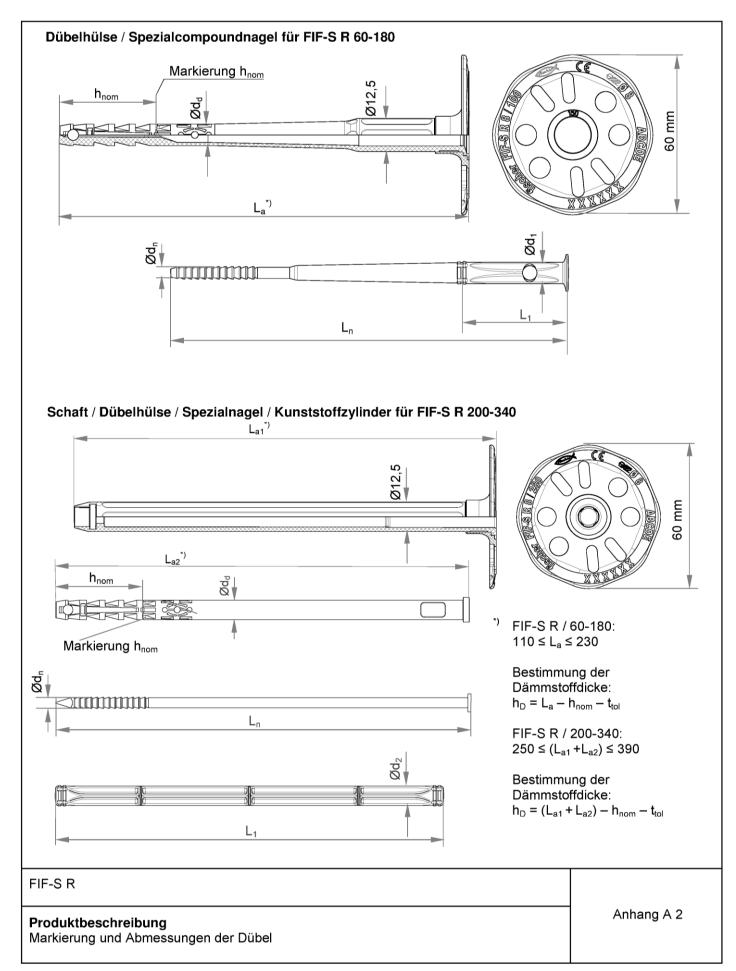
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 014, Februar 2011 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: 97/463/EG.

Folgendes System ist anzuwenden: 2+


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind im Prüfplan angegeben, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 15. Dezember 2016 vom Deutschen Institut für Bautechnik

Uwe Bender Abteilungsleiter Beglaubigt

Tabelle A3.1: Markierung

Dübeltyp	FIF-S R
Name und Dübelgröße	FIF-S R 8
Dämmstoffdicken	60, 80, 100, 120,, 340
Beispiel	fischer FIF-S R 8/100 (optional) CE (optional) Ø 8 ABCDE

Tabelle A3.2: Abmessungen [mm]

Dübeltyp	Düb	elhülse	Scl	naft	Spezialnagel		Kunststoffzylinder		
	$Ø d_d$	h _{nom}	L _{a1}	L _{a1} +L _{a2}	$Ø d_n$	L _n	Ø d₁	L ₁	$Ø d_2$
FIF-S R 60-180	8	35/55 ¹⁾	110-230	-	4,5	L _a - 4	8	40	-
FIF-S R 200-340	8	35/55 ¹⁾	-	250-390	4,5	$(L_{a1} + L_{a2}) - L_1 - 4$	-	157	8

¹⁾ Nur für Nutzungskategorie "E"

Tabelle A3.3: Werkstoffe

Benennung	Material
Dübelhülse	PP Farbe: grau
Schaft (FIF-S R / 200-340)	PA6 GF Farbe: grau
Kunststoffzylinder (FIF-S R / 200-340)	PA6 GF natur
Spezialcompoundnagel (FIF-S R / 60- 180) oder Spezialnagel (FIF-S R / 200-340)	PA6 GF mit Stahl gal Zn A2G oder A2F nach EN ISO 4042:2001 Stahl gal Zn A2G oder A2G nach EN ISO 4042:2001
Tellerelement	PA6 GF Farbe: grau

Zeichnung der Dübelteller

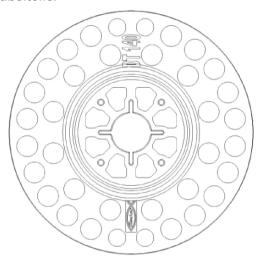


Tabelle A3.4: Dübelteller, Durchmesser und Materialien

Dübelteller	Ø D [mm]	Ø d₀ [mm]	d [mm]	Material
DT 90	90	22,5	3,9	PA 6 GF
DT 110	110	22,5	3,9	PA 6 GF
DT 140	140	22,5	3,9	PA 6 GF

FIF-S R	
Produktbeschreibung Markierung, Abmessungen, Material Dübelteller kombiniert mit FIF-S R	Anhang A 3

Angaben zum Verwendungszweck

Beanspruchung der Verankerung:

 Der Dübel darf nur zur Übertragung von Windsoglasten und nicht zur Übertragung der Eigenlasten des Wärmedämm-Verbundsystems verwendet werden.

Verankerungsgrund:

- Normalbeton (Nutzungskategorie A) nach Anhang C1.
- Vollstein Mauerwerk (Nutzungskategorie B) nach Anhang C1.
- Hohl- oder Lochsteine (Nutzungskategorie C) nach Anhang C1.
- · Haufwerksporiger Leichtbeton (Nutzungskategorie D), nach Anhang C1.
- Porenbeton (Nutzungskategorie E), nach Anhang C1.
- Bei anderen Steinen der Nutzungskategorie A, B, C, D und E darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach ETAG 014 Fassung Februar 2011, Anhang D ermittelt werden.

Temperaturbereich:

0°C bis +40°C (max. Kurzzeit-Temperatur +40°C und max. Langzeit-Temperatur +24°C)

Bemessung:

- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit ETAG 014 Fassung Februar 2011 unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Dübel anzugeben.
- Die Befestigungen sind nur als Mehrfachbefestigung für nichttragende Systeme nach ETAG 014 Fassung Februar 2011 zu verwenden.

Einbau:

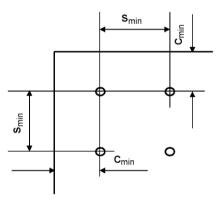
- Beachtung des Bohrlochverfahrens nach Anhang C1.
- Einbau der Dübel durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Temperatur beim Setzen des Dübels von 0°C bis +40°C
- UV-Belastung durch Sonneneinstrahlung des ungeschützten, d. h. unverputzten Dübels ≤ 6 Wochen.

FIF-S R

Verwendungszweck
Bedingungen

Anhang B 1

Tabelle B2.1: Montagekennwerte

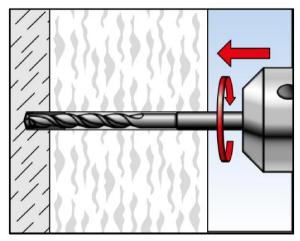

Dübeltyp				FIF-S R
Bohrernenndurchmesser	d_0	=	[mm]	8
Bohrerschneidendurchmesser	d_{cut}	≤	[mm]	8,45
Tiefe des Bohrlochs bis zum tiefsten Punkt	h₁	≥	[mm]	45 / 65 ¹⁾
Gesamtlänge des Kunststoffdübels im Verankerungsgrund	h _{nom}	2	[mm]	35 / 55 ¹⁾

¹⁾ Nur für Nutzungskategorie "E"

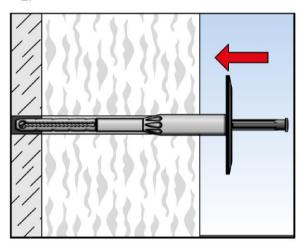
Tabelle B2.2: Achs- und Randabstände und Bauteildicke

Dübeltyp				FIF-S R
Bauteildicke	h	≥	[mm]	100
Minimal zulässiger Achsabstand	S _{min}	=	[mm]	100
Minimal zulässiger Randabstand	C _{min}	=	[mm]	100

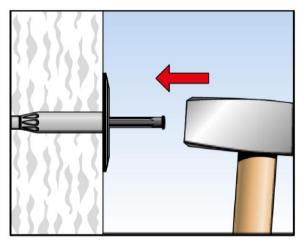
Anordnung Achs- und Randabstände



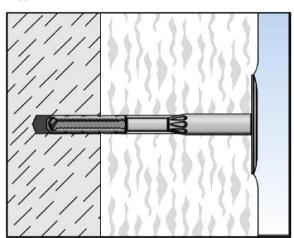
FIF-S R	
Verwendungszweck Montagekennwerte, Achs- und Randabstände	Anhang B 2


Montageanleitung

1.


1. Zulassungskonforme Bohrlocherstellung

2.



2. Dübel im Bohrloch platzieren

3.

4.

3. Kunststoffzylinder einschlagen bis der Dübelteller oberflächenbündig sitzt

4. Korrekt gesetzter Dübel

FIF-S R

Verwendungszweck Montageanleitung Anhang B 3

Tabelle C1.1: Charakteristische Zugtragfähigkeit N_{Rk} in [kN] je Dübel in Beton und Mauerwerk in kN

Verankerungsgrund	Rohdichte Klasse p [kg/dm³]	Mindest- Druck- festigkeit f _b [N/mm ²]	Bemerkungen	Bohr- ver- fahren	Charakteris- tische Tragfähigkeit FIF-S R 8 N _{Rk} [kN]
Beton C16/20 - C50/60 EN 206-1:2000	-	-		Н	0,9
Mauerziegel Mz, z.B. gemäß DIN 105-100:2012-01, EN 771-1:2011	≥ 2,0	12	Querschnitt bis 15 % durch Lochung senkrecht zur Lagerfläche reduziert	н	0,9
Hochlochziegel, HLz z.B. gemäß DIN 105-100:2012-01, EN 771-1:2011	≥ 1,0	12	Querschnitt mehr als 15 % durch Lochung senkrecht zur Lagerfläche reduziert Außenstegdicke ≥ 12 mm	R	0,6
Haufwerksporiger Leichtbeton, LAC z.B. gemäß EN 1520:2011/ EN771-3:2011	≥ 0,8	6	Minimum solid brick or minimum exterior web thickness t = 50 mm	Н	0,6
Porenbeton, AAC z.B. gemäß DIN V 165-100:2005-10, EN 771-4:2011	> 0,4	4	-	R	0,3

¹⁾ H = Hammerbohren, R = Drehbohren

Tabelle C1.2: Punktbezogener Wärmedurchgangskoeffizient It. EOTA TR 025 Report TR 025:2007-06

Dübeltyp	Dämmstoffdicke h _D	Punktbezogener Wärmedurchgangskoeffizient χ
	[mm]	[W/K]
FIF-S R / 60-180	60	0,001
111-31(700-100	80 - 180	0,000
FIF-S R / 200-340	200 - 300	0,000
FIF-S R / 200-340	320 - 340	0,001

Tabelle C1.3: Tellersteifigkeit gemäß EOTA Technical Report TR 026:2007-06

Dübeltyp	Durchmesser des Dübeltellers [mm]	Tragfähigkeit des Dübeltellers [kN]	Tellersteifigkeit [kN/mm]	
FIF-S R	60	1,63	0,63	

Tabelle C1.4: Verschiebungen

Base material	Zugkraft [kN]	Verschiebungen δ[mm]
Beton ≥ C16/20 – C50/60, acc. to EN 206-1:2000	0,3	0,3
Mauerziegel z.B. gemäß DIN 105-100:2012-01, EN 771-1:2011, Mz 12	0,3	0,5
Hochlochziegel z.B. gemäß DIN 105-100:2012-01, EN 771-1:2011, Hlz 12	0,2	0,2
Haufwerksporiger Leichtbeton z.B. gemäß EN 1520:2011 / EN 771-3:2011 LAC 6	0,2	0,3
Porenbeton z.B. gemäß DIN V 4165-100:2005-10, EN 771-4:2011, AAC 4	0,1	0,2

fischer FIF-S R	
Leistungen	Anhang C 1
Charakteristische Zugtragfähigkeit in Beton und Mauerwerk	
Punktbezogener Wärmedurchgangskoeffizient, Tellersteifigkeit und Verschiebungen	