

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0208 of 19 January 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Carbon Fix

nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

DAW SE Roßdörfer Straße 50 64372 Ober-Ramstadt DEUTSCHLAND

DAW Herstellwerk 10183
DAW manufacturing plant 10183

13 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, edition February 2011,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-15/0208 issued on 28 April 2015

European Technical Assessment ETA-15/0208

Page 2 of 13 | 19 January 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z98007.15 8.06.04-493/15

European Technical Assessment ETA-15/0208 English translation prepared by DIBt

Page 3 of 13 | 19 January 2016

Specific Part

1 Technical description of the product

The nailed-in anchor Carbon Fix consists of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of polyethylene and an accompanying specific nail of galvanised steel with an overmoulding of polyamide. The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates SBL 140 plus and VT 90. An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.3 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Point thermal transmittance	See Annex C 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 2

Z98007.15 8.06.04-493/15

European Technical Assessment ETA-15/0208

Page 4 of 13 | 19 January 2016

English translation prepared by DIBt

3.4 Sustainable use of natural resources (BWR 7)

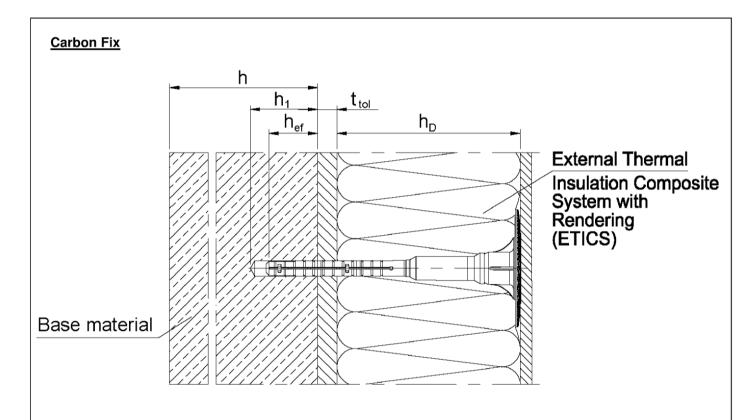
For the sustainable use of natural resources no performance was determined for this product.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 014, February 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 19 January 2016 by Deutsches Institut für Bautechnik

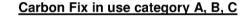
Uwe Benderbeglaubigt:Head of DepartmentZiegler

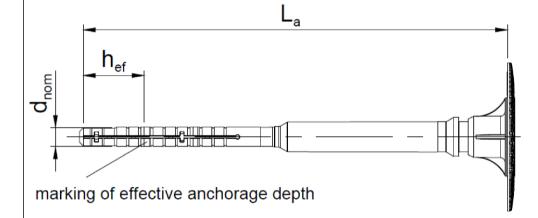
Z98007.15 8.06.04-493/15

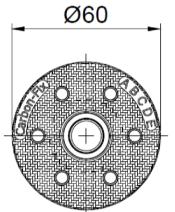
Intended use

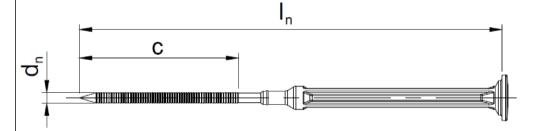
- Anchorage of ETICS in concrete and masonry
- Anchorage of ETICS in autoclaved aerated concrete

Legend: h_D = thickness of insulation material


h_{ef} = effective anchorage depth h = thickness of member (wall)


h₁ = depth of drill hole to deepest point


ttol = thickness of equalizing layer or non-load-bearing coating


Carbon Fix	
Product description Intended use	Annex A 1

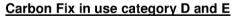
Marking of the anchor sleeve: Anchor type (Carbon Fix) Use category A,B,C,D,E

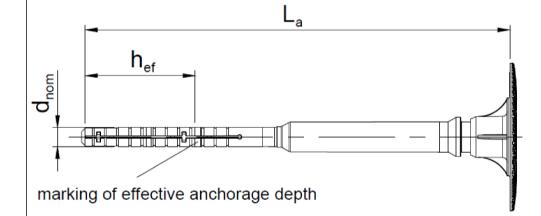
accompanying specific nail with overmolding

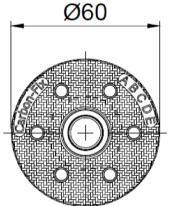
Marking of the nail: Length of anchor (e.g. 235)

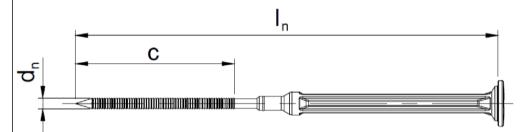
Table A1: Dimens	ions						
		4	nchor slee	ve		Specific na	ail
Anchor Type	Colour	d _{nom}	h _{ef}	min L _a max L _a	d _n	С	min I _n max I _n
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Carbon Fix	anthracite /	8	25	95	4,13	60	95
	grey			295			295

Determination of maximum thickness of insulation h_D [mm] for Carbon Fix:


$$\begin{array}{lll} & & h_D & = L_a - t_{tol} - h_{ef} \\ e.g. & h_D & = 155 - 10 - 25 \\ & h_{Dmax} & = 120 \end{array}$$


$$= L_a - t_{tol} - h_{ef}$$
 (L_a = e.g. 155; t_{tol} = 10)


Carbon Fix


Product description
Marking and dimension of the anchor sleeve, use category A, B, C expansion element

Annex A 2

Marking of the anchor sleeve: Anchor type (Carbon Fix) Use category A,B,C,D,E

accompanying specific nail with overmolding

Marking of the nail: Length of anchor (e.g. 235)

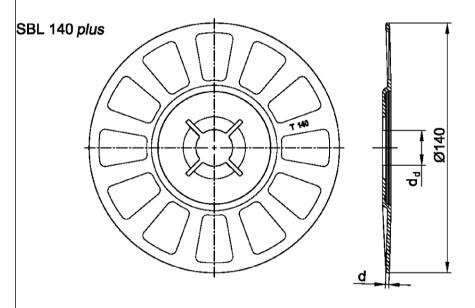
Table A2: Dimens	sions						
		4	Anchor slee	ve .		Specific n	ail
Anchor Type	Colour	d _{nom}	h _{ef}	min L _a max L _a	d _n	С	min I _n max I _n
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Carbon Fix	anthracite /	8	45	95	4,13	60	95
	grey			295			295

Determination of maximum thickness of insulation h_D [mm] for Carbon Fix:

$$h_D = L_a - t_{tol} - h_{ef}$$

e.g. $h_D = 155 - 10 - 45$

h_{D}	$= L_a - t_{tol} - h_{ef}$	$(L_a = e.g. 155; t_{tol} = 10)$
h_D	= 155 - 10 - 45	
h_{Dmax}	= 100	


Carbon Fix	
Product description Marking and dimension of the anchor sleeve, use category D and E expansion element	Annex A 3

electronic copy of the eta by dibt: eta-15/0208

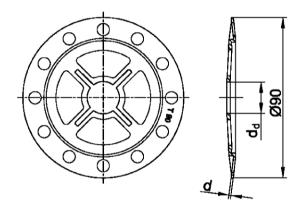


Table A3: Materials	
Name	Materials
Anchor sleeve + Anchor plate	Polyethylene, PE-HD, colour: anthracite / grey
Specific nail - overmoulding	Polyamide, PA GF 50
Specific nail	Steel, electro galvanized ≥ 5 µm according to EN ISO 4042:2001, blue passivated f _{yk} ≥ 670 N/mm²

SBL 140 plus		
colour nature		
d _d [mm] 20,0		
d [mm] 2,0		
Material	1) 2)	

VT 90

VT 90			
colour	nature		
d _d [mm]	17,5		
d [mm]	1,2		
Material	1) 2)		

¹⁾ Polyamide, PA 6 ²⁾ Polyamide, PA GF 50

Carbon Fix	
Product description	Annex A 4
·	
Materials,	
Slip on plates with Carbon Fix	

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1.
- Solid masonry (use category B), according to Annex C 1.
- · Hollow or perforated masonry (use category C), according to Annex C 1.
- Lightweight aggregate concrete (use category D), according to Annex C 1.
- Autoclaved aerated concrete (use category E), according to Annex C 1.
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

electronic copy of the eta by dibt: eta-15/0208

- Hole drilling by the drill modes according to Annex C 1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

Carbon Fix

Intended use
Specifications

Annex B 1

Deutsches
Institut
für
Bautechnik

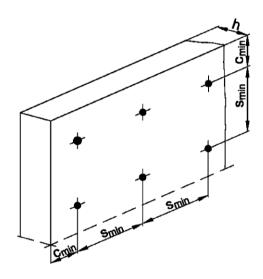
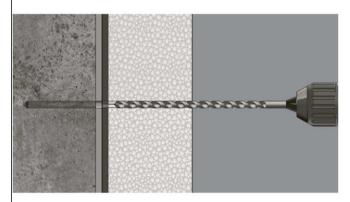

English translation prepared by DIBt

Table B1: Installation parameters					
Anchor type		Carb	on Fix		
		use ca	ategory		
		A, B, C	D and E		
Drill hole diameter	d ₀ [mm] =	8	8		
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45	8,45		
Depth of drill hole to deepest point	h₁ [mm] ≥	35	55		
Effective anchorage depth 1)	h _{ef} [mm] ≥	25	45		

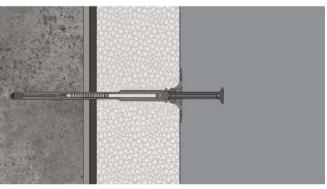
¹⁾ Larger anchoring depths are fundamentally possible.

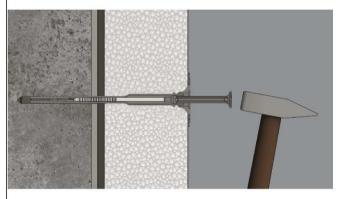
Table B2: Anchor distances and dimensions of members				
Anchor type Carbon Fix				
Minimum allowable spacing	$s_{min} \geq [mm]$	100		
Minimum allowable edge distance	$c_{min} \geq [mm]$	100		
Minimum thickness of member	h ≥ [mm]	100		
Minimum thickness of thin concrete members	h ≥ [mm]	40		

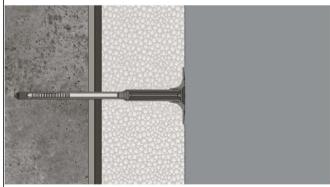
Scheme of distance and spacing


Carbon Fix	A
Intended use	Annex B 2
Installation parameters,	
Minimum thickness of member, edge distances and spacing	

Page 11 of European Technical Assessment ETA-15/0208 of 19 January 2016


English translation prepared by DIBt


Installation instructions


Drill the hole perpendicular to the substrate surface. Clean the drill hole 3x.

Place the anchor into the drill hole. The bottom side of the plate must be flush with the ETICS.

Drive in the specific nail with the hammer.

Installed condition Carbon Fix

Carbon Fix	
Intended use Installation instructions	Annex B 3

Anchor type					Carbon Fix
Base materials	Bulk density class P	minimum compressive strength f _b	General remarks	Drill method	N _{Rk}
	[kg/dm³]	[N/mm²]			[kN]
Concrete C16/20— C50/60 EN 206-1:2000				hammer	0,9
Thin concrete members (e.g. weather resistant skin) Concrete C12/15– C50/60 EN 206-1:2000			Thickness of the thin skin: 100 mm > h ≥ 40 mm	hammer	0,9
Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,9
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,9
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 0,8	12	Vertically per- foration ≥ 15 % and ≤ 50 %.	rotary	0,6 1)
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,6	12	Vertically perforation more than 15 %.	rotary	0,9 2)
Lightweight concrete solid blocks, V e.g. according to DIN V 18152-100:2005-10 / EN 771-3:2011	≥ 0,7	4		hammer	0,75
Lightweight concrete hollow blocks, Hbl e.g. according to approval Z-17.1-797, DIN V 18151-100:2005-10 / EN 771-3:2011	≥ 1,2	6		rotary	0,6
Lightweight aggregate concrete, LAC 4 – LAC 25 e.g. according to EN 1520:2011-06 / EN 771-3:2011	≥ 0,7	4		rotary	0,9
Autoclaved aerated concrete, AAC 4 – AAC 7 e.g. according to DIN V 4165-100:2005-10 / EN 771-4:2011	≥ 0,55	4		rotary	0,5

The value applies only for outer web thickness ≥ 11 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

Carbon Fix	
Performances	Annex C 1
Characteristic resistance	

English translation prepared by DIBt

Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2007-06				
anchor type	insulation thickness h _D [mm]	point thermal transmittance ${\cal X} \ { m [W/K]}$		
Carbon Fix	60 – 260	0,001		

Table C3: Plate stiffness according EOTA Technical Report TR 026:2007-06				
anchor type	diameter of the anchor plate	load resistance of the anchor plate	plate stiffness	
	[mm]	[kN]	[kN/mm]	
Carbon Fix	60	1,5	1,17	

Table C4: Displacements				
Base materials	Bulk density class ρ [kg/dm³]	Min. compressive strength f _b [N/mm ²]	Tension load N [kN]	Displacements δ(N) [mm]
Company 010/00 050/00	[rigianii]	[]	[······]	[]
Concrete C16/20- C50/60			0,3	0,4
EN 206-1:2000 Thin concrete members				
(e.g. weather resistant skin) Concrete C12/15 – C50/60 EN 206-1:2000			0,3	0,5
Clay bricks, Mz DIN 105-100:2012-01 / EN 771-1:2011	≥ 1,8	12	0,3	0,5
Sand-lime solid bricks, KS DIN V 106:2005-10 / EN 771-2:2011	≥ 1,8	12	0,3	0,3
Vertically perforated clay bricks, HLz DIN 105-100:2012-01 / EN 771-1:2011	≥ 0,9	12	0,2	0,5
Sand-lime perforated bricks, KSL DIN V 106:2005-10 / EN 771-2:2011	≥ 1,4	12	0,3	0,4
Solid masonry of lightweight aggregate concrete, V DIN V 18152-100:2005-10 / EN 771-3:2011	≥ 0,7	4	0,25	0,4
Hollow masonry of lightweight aggregate concrete, Hbl DIN V 18151-100:2005-10 / EN 771-3:2011	≥ 1,2	6	0,2	0,4
Lightweight aggregate concrete, LAC 4 – LAC 25 EN 1520:2011-06 / EN 771-3:2011	≥ 0,7	4	0,3	0,5
Autoclaved aerated concrete, AAC 4 – AAC 7 DIN V 4165-100:2005-10 / EN 771-4:2011	≥ 0,55	4	0,15	0,4

Carbon Fix	
Performances	Annex C 2
Point thermal transmittance, plate stiffness displacements	