

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0352 of 12 April 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer concrete screw ULTRACUT FBS II

Adjustable concrete screw

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

14 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 3: "Undercut anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 and European Assessment Document (EAD) 330011-00-0601 "Assessment of adjustable concrete screws", July 2014.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0352 English translation prepared by DIBt

Page 2 of 14 | 12 April 2016

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 14 | 12 April 2016

European Technical Assessment ETA-15/0352 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer concrete screw ULTRACUT FBS II is an anchor made of hardened carbon steel of sizes 8, 10, 12 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance for static and quasi-static loads	See Annex C 1
Characteristic resistance for seismic performance categories C1 and C2	See Annex C 2
Displacements for tension and shear loads	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 3

3.3 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

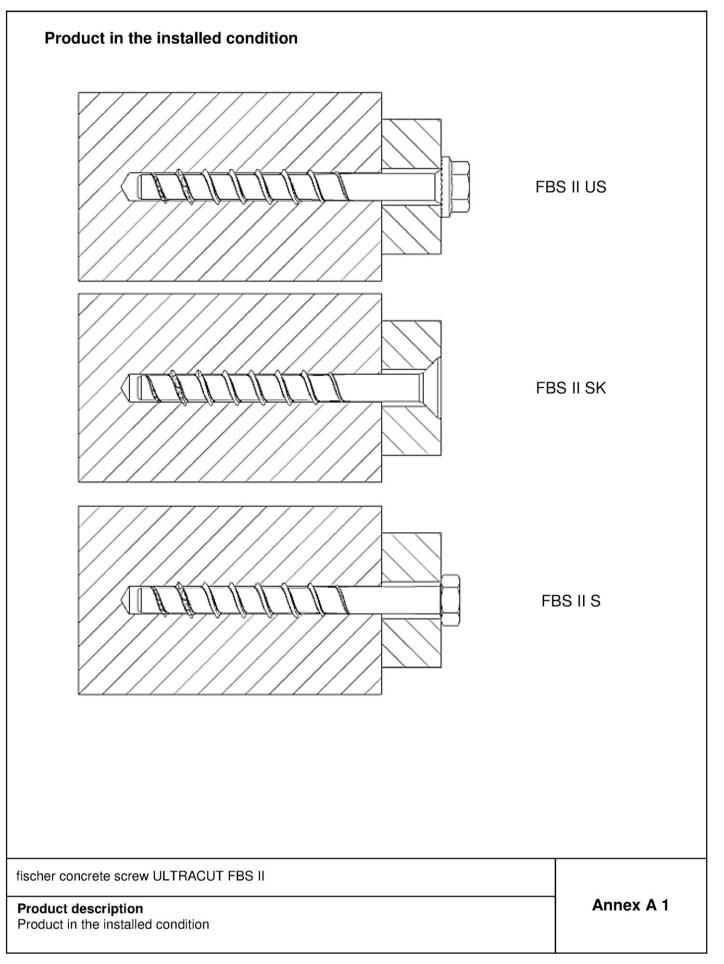
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, and European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-15/0352 English translation prepared by DIBt

Page 4 of 14 | 12 April 2016


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 April 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Lange

Page 6 of European Technical Assessment ETA-15/0352 of 12 April 2016

English translation prepared by DIBt

				FBS II US	5 / SK / S	
Type of	screw / size		8	10	12	14
Thread outer diameter	d _a	[mm]	10,3	12,5	14,5	16,6
Core diameter	d _k	[mm]	7,4	9,4	11,3	13,3
Shaft diameter	ds	[mm]	8,0	9,9	11,7	13,7
Material				dened carbon		
Coating				lated		
Hexagon head with formed washer (US)	ALL ALL	- Z			Ŭ	
Hexagon head with formed washer (US TX)					L	
Countersunk Head (SK)	FBS/			L		
Hexagon Head (S)	a sa	Ĥ	<u> </u>	<u>III</u>	L	
Hexagon Head (S TX)		J.Å				
Head Marking						
		- FRS II· P	roduct desc	ription		
FBS#	VI					
1200	s/	– 10: scre	ew size			
	4	- XXX: scr	ew length			
\sim			en longin			
er concrete screw ULT	RACUT FBS	S II				
luct description						Annex A 2

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads: All sizes and all embedment depths
- · Seismic action for Seismic Performance Category C1 and C2: Only for maximum hnom.
- · Fire exposure: all sizes and all embedment depths according to Annex C3.

Base materials:

- Reinforced and unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Non-cracked or cracked concrete: All sizes and all embedment depths

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions.

Design:

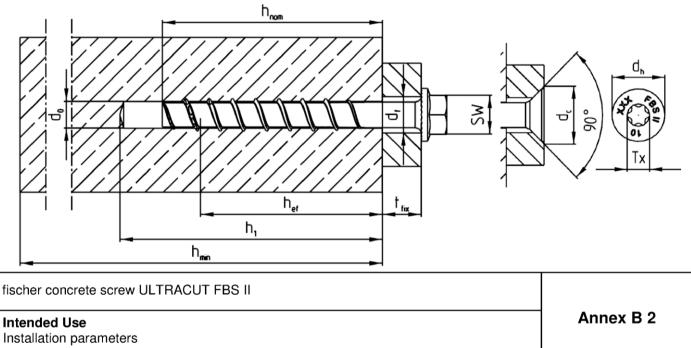
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the screw is indicated on the design drawings (e.g. position of the screw relative to reinforcement or
 to supports, etc.).
- Anchorages under static or quasi-static actions are to be designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions are to be designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer under seismic action are not allowed.
- Anchorages under fire exposure are to be designed in accordance with:
- EOTA Technical Report TR 020, Edition May 2004 or
- CEN/TS 1992-4:2009, Annex D
- It must be ensured that local spalling of the concrete cover does not occur.

Installation:

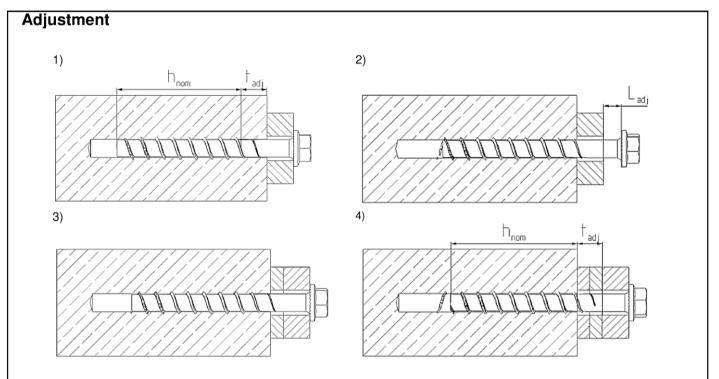
- Hammer drilling or diamond drilling or hollow drilling according to Annex B4: All sizes and all embedment depths.
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- · Adjustability according to Annex B3 for: All sizes and all embedment depths.
- Cleaning of drill hole is not necessary when using a hollow drill or:
 - If drilling vertically upwards
 - If drilling vertical downwards and the drill hole depth has been increased. We recommend to increase the drill depth with additional 3 d₀.
- After correct installation further turning of the screw head should not be possible
- The head of the screw must be fully engaged on the fixture and show no signs of damage.
- For Seismic Performance Category C2 applications: The gap between screw shaft and fixture must be filled with mortar; compressive strength ≥ 50 N/mm² (for example FIS V, FIS EM, FIS HB or FIS SB).

fischer concrete screw ULTRACUT FBS II

Intended Use Specifications Annex B 1


Table B1: Installation	•														
screw size								FBS II							
001011 0120		′		B		10			12			14			
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115		
Nominal drill hole diameter	d ₀	[mm]	8	8		10			12			14			
Cutting diameter of drill bits	d _{cut} ≤	[mm]	8,	45		10,45			12,50			14,50			
Cutting diameter tolerance especially for diamond drillers	d _{cut}	[mm]	8,05	- 8,45	10,	05 - 10	,45	12,	10 - 12	2,50					
Clearance hole diameter	df	[mm]	10,6 -	- 12,0	12	2,8 – 14	,0	14	1,8 – 16	5,0	16	16,9 – 18,0			
Wrench size (US,S)	SW	[mm]	1	3		15			17			21			
Tx size	Tx	-	4	0	50				-			-			
Countersunk head diameter	d _h	[mm]	1	8		21			-			-			
Countersunk diameter in fixture	d _c	[mm]	2	20		23			-		-				
Drill hole depth ¹⁾	h₁≥	[mm]	60	75	65	75	95	70	85	110	80	100	130		
Drill hole depth ¹⁾ (with adjustable setting process)	h₁≥	[mm]	70	85	75	85	105	80	95	120	90	110	140		
Thickness of fixture	$t_{fix}^{3)} \ge$	[mm]						0							
	t _{fix} ≤	[mm]						L - h _{norr}	n						
Longth of corour	$L_{min}^{3)} =$	[mm]	50	65	55	65	85	60	75	100	65	85	115		
Length of screw	L _{max} =	[mm]	400	415	405	415	435	410	425	450	415	435	465		
Torque impact screw driver ²⁾	T _{imp,max}	[Nm]	60	00					650						

¹⁾ Cleaning of drill hole is not necessary when using a hollow drill or:


if drilling vertical upwards

If drilling vertical downwards and the drill hole depth has been increased. We recommend to increase the drill depth with additional 3 d₀.

- ²⁾ Installation with any torque impact screw driver up to the maximum mentioned torque moment (T_{imp,max}). Alternatively, all other tools without a mentioned torque moment are allowed (e.g. ratchet spanner). In any case it must be secured, that after installation the head of the screw must be tight down on the fixture. An easy further turning of the screw must not be possible and the head of the screw is not damaged. The torque moments T_{imp,max} are not valid for manual installation (e.g. torque wrench).
- ³⁾ For countersunk screws the height of the head must be added to t_{fix} and L_{min}.

It is permissible to untighten the screw up to two times for adjustment purposes. Therefor the screw may be untighten to a maximum of $L_{adj} = 20$ mm off the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10$ mm.

Table B3:Minimum thickness of concrete members,
minimum spacing and edge distance

Seren eize			FBS II											
Screw size		8	3		10			12			14			
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	100	120	140	110	130	150	120	140	180	
Minimum spacing	S _{min}	[mm]	35		40				50					
Minimum edge distance	C _{min}	[mm]	35		40				50					

fischer concrete screw ULTRACUT FBS II

Intended Use Adjustment

Minimum thickness of concrete members, minimum spacing and edge distance

Annex B 3

Installation instruction	
	Drill the hole using hammer drill, hollow drill or diamond core drill. Drill hole diameter d_0 and drill hole depth h_1 according to table B1
a) b)	 Option a) Clean the drill hole Option b) Cleaning of drill hole is not necessary when using a hollow drill or: If drilling vertically upwards or If drilling vertically downwards and the drill hole depth has been increased. We recommend to increase the drill hole depth additional 3 times d₀. Installation with any torque impact screw driver up to the maximum mentioned torque moment (T_{imp,max}). Alternatively, all other tools without an indicated torque moment are allowed (e.g. ratchet spanner). The indicated torque moments for impact screw driver are therefore not decisive.
	After installation a further turning of the screw must not be possible. The head of the screw must be supported on the fixture and is not damaged.
	OPTIONAL: It is permissible to adjust the screw two times. Therefor the screw may be untighten to a maximum of $L_{adj} = 20$ mm off the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10$ mm
	For Seismic Performance Category C2 applications: The gap between screw shaft and fixture must be filled with mortar; compressive strength \geq 50 N/mm ² for example: FIS V, FIS EM, FIS HB or FIS SB.

fischer concrete screw ULTRACUT FBS II

Intended Use Installation instructions Annex B 4

Screw size				\$	в		10		FBS II	1 12			14				
Nominal emb	pedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115			
	for tension load			00	00	00		00	00		100	00	00				
		N _{Rk,S}	[kN]	3	5		55			76			103				
		γm,s,n	[kN]						1,4								
		V _{Rk,S}	[kN]	13,1	19,0	29	,4	34,9	31	,9	42,7	46	5,5	61,7			
Characteristi	c resistance	γm,s,v	[-]						1,5	<u> </u>							
		k ₂ ²⁾	[-]						1,0								
		M ⁰ _{Rk,s}	[Nm]	5	1		95			165			269				
Pullout failu	ire																
Charact. resistance in	Cracked	N _{Rk,P}	[kN]	6	12	9	12	_1)	- ¹⁾	_1)	- ¹⁾	_1)	-1)	-1)			
concrete C20/25	Non-cracked	N _{Rk,P}	[kN]						_1)								
	C25/30								1,10								
	C30/37								1,22								
Increasing factor	C35/45	Ψc	[_]	1,34													
concrete C40/50 C45/55	C40/50		[-]	1,41													
								1,48									
	C50/60		1,55														
Installation sa	-	$\gamma_2 = \gamma_{inst}$	[-]		1,0												
	one failure and s																
Effective emb	bedment depth	h _{ef}	[mm]	40	52	43	51	68	47	60	81	50	67	93			
Factor for	Cracked	k _{cr} ²⁾	[mm]						7,2								
	Non-cracked	k _{ucr} ²⁾	[mm]						10,1								
Concrete	Edge distance	C _{cr,N}	[mm]						1,5 h _e	f							
cone failure	Spacing	S _{cr,N}	[mm]						3 h _{ef}								
Splitting	Edge distance	C _{cr,sp}	[mm]						1,5 h _e	f							
failure	Spacing	S _{cr,sp}	[mm]			1.0			3 h _{ef}								
k-factor for p		$k^{(3)} = k_3^{(2)}$	[-]	1,0	2,0	1,0				2	2,0						
Installation sa		$\gamma_2^{(3)} = \gamma_{inst}^{(2)}$	[-]						1,0								
Concrete ed	<u> </u>																
	gth in concrete	$I_f = h_{nom}$	[mm]	50	65	55	65	85	60	75	100	65	85	115			
	meter of screw	d _{nom}	[mm]	6	8		10			12			14				
Adjustment	-																
adjustment la	nax. thickness of t _{adj} [mn								10								
Max. number	r of adjustments	n _a	[-]						2								

³⁾ Parameters relevant only for design according to ETAG 001 Annex C

fischer concrete screw ULTRACUT FBS II

Performances

Performance for static and quasi-static action

Carrowsing					FB	IS II				
Screw size				8	10	12	14			
Nominal embedr	nent depth	h _{nom}	[mm]	65	85	100	115			
Steel failure for	tension loa	d and shea	r load C	:1						
Characteristic re	alatanaa	N _{Rk,S,C1}	[kN]	35	55	76	103			
Characteristic re	sistance	V _{Rk,S,C1}	[kN]	11,4	22,3	26,9	38,3			
Pullout failure										
Characteristic re cracked concrete		N _{Rk,p,C1}	,c1 [kN] 12 - ¹⁾							
Concrete cone	failure									
Effective embed	ment depth	h _{ef}	[mm]	52	68	81	93			
Concrete cone	Edge distance	C _{cr,n}	[mm]		1,5	5 h _{ef}				
failure -	Spacing	S _{cr,n}	[mm]		3	h _{ef}				
Installation safet	y factor	γ2	[-]		1	,0				
Concrete pryou	t failure									
k-factor		k	[-]		2	2,0				
Concrete edge	failure									
Effective length i	n concrete	$I_f = h_{nom}$	[mm]	65	85	100	115			
Nominal diamete	er of screw	d _{nom}	[mm]	8	10	12	14			

Table C3: Characteristic values for Seismic Performance Category C2

Gap between screw shaft and fixture must be filled with mortar

Screw size				FBS II									
Screw Size				8	10	12	14						
Nominal embed	lment depth	h _{nom}	[mm]	65	85	100	115						
Steel failure fo	r tension loa	d and shea	r load C	2									
Characteristic re	alatanaa	N _{Rk,S,C2}	[kN]	35,0	55	76,0	103						
Characteristic re	esistance	V _{Rk,S,C2}	[kN]	13,3	20,4	29,9	35,2						
Pullout failure													
Characteristic re cracked concret		N _{Rk,p,C2}	[kN]	2,1	6,0	8,9	17,1						
Concrete cone	failure												
Effective embed	dment depth	h _{ef}	[mm]	52	68	81	93						
Concrete cone	Edge distance	C _{cr,n}	[mm]		1,5	h _{ef}							
failure	Spacing	S _{cr,n}	[mm]		3	h _{ef}							
Installation safe	ty factor	γ2	[-]		1	,0							
Concrete pryo	ut failure												
k-factor		k	[-]		2	,0							
Concrete edge	failure												
Effective length	in concrete	$I_f = h_{nom}$	[mm]	65	85	100	115						
Nominal diamet	er of screw	d _{nom}	[mm]	8	10	12	14						
¹⁾ Pullout	failure not de	cisive.		-	-	-	-						

fischer concrete screw ULTRACUT FBS II

Performances

Characteristic values for Seismic Performance Category C1 and C2

Deutsches Institut für Bautechnik

Screw size										FBS I					
						3		10			12				
Minimum embe			h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Steel failure fo	r tension lo	ad and s	shear load	d (F _{Rk,s,}	$fi = N_F$	Rk,s,fi =	V _{Rk,s,f}	i)							
		R30	F _{Rk,s,fi}	[kN]	2,	33		3,45		4,62			6,46		
		R60	F _{Rk,s,fi}	[kN]	1,	82		2,73			3,66			5,11	
	US, S	R90	F _{Rk,s,fi}	[kN]	1,	30	2,00				2,69			3,75	
		R120	F _{Rk,s,fi}	[kN]	1,	04	1,64				2,20			3,08	
		R30	F _{Rk,s,fi}	[kN]	2,	12	2,96			-				-	
Characteristic	SK,	R60	F _{Rk,s,fi}	[kN]	1,	67	2,26			-				-	
resistance for head shape	US TX, S TX	R90	F _{Rk,s,fi}	[kN]	1,	21	1,56			-				-	
		R120	F _{Rk,s,fi}	[kN]	0,	99	1,21			-				-	
		R30	M ⁰ _{Rk,s,fi}	[Nm]	2,	62	4,92				7,83			12,89)
	All head	R60	M ⁰ _{Rk,s,fi}	[Nm]	2,	05	3,89			6,20)	
	shapes	R90	M ⁰ _{Rk,s,fi}	[Nm]	1,	46		2,85		4,56			7,48		
	R120	M ⁰ _{Rk,s,fi}	[Nm]	1,17			2,34			3,73			6,14		
Pullout failure															
		R30	N _{Rk,s,fi}	[kN]											
Oh and a taniatia		R60	N _{Rk,s,fi}	[kN]	1,5	3,0	2,3	3,0	5,0	2,9	4,2	6,6	3,2	4,9	8,1
Characteristic re	esistance	R90	N _{Rk,s,fi}	[kN]											
		R120	N _{Rk,s,fi}	[kN]	1,2	2,4	1,8	2,4	4,0	2,3	3,3	5,2	2,5	3,9	6,5
Concrete cone	failure														
		R30	N _{Rk,s,fi}	[kN]											
Oh and a taniatia		R60	N _{Rk,s,fi}	[kN]	1,7	3,5	2,2	3,3	6,9	2,7	5,0	10,6	3,2	6,6	15,0
Characteristic re	esistance	R90	N _{Rk,s,fi}	[kN]											
R90 R12			N _{Rk,s,fi}	[kN]	1,4	2,8	1,7	2,7	5,5	2,2	4,0	8,5	2,5	5,3	12,0
															•
Edge distance		11120													
R30 to R120			C _{cr,fi}	[mm]						2 h _{ef}					
R30 to R120 In case of fire a	ttack from m		C _{cr,fi}	[mm]	nimurr	ı edge	dista	nce sh	all be) mm			_	_
R30 to R120 In case of fire a Spacing	ttack from m		C _{cr,fi} one side,	[mm] the mir	nimum	n edge	dista	nce sh		≥ 300					
R30 to R120 In case of fire a Spacing R30 to R120			C _{cr,fi}	[mm]	nimum	ı edge	dista	nce sh							
R30 to R120 In case of fire a Spacing			C _{cr,fi} one side,	[mm] the mir	nimum	2,0	dista	nce sh		≥ 300		,0			_

fischer concrete screw ULTRACUT FBS II

Performances:

Characteristic values for resistance to fire

Deutsches Institut für Bautechnik

Table C5: Displacer	able C5: Displacements due to tension loads (static)														
Screw size				8		10		FBS II	12		1	14			
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115		
Tension load in cracked concrete	N	[kN]	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,3		
	δ_{N0}	[mm]	0,5	0,9	0,7	0,7	0,8	0,7	0,9	0,8	0,8	1,0	0,8		
Displacement	$\delta_{N\infty}$	[mm]	1,3	1,0	0,7	0,7	0,8	1,3	0,9	0,8	1,1	1,0	1,1		
Tension load in non - cracked concrete	Ν	[kN]	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,6		
Displacement	δ_{N0}	[mm]	0,9	1,4	0,9	0,9	1,4	0,9	1,1	1,4	1,0	1,3	1,1		
Displacement	$\delta_{N\infty}$	[mm]	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,1	1,3	1,1		

Table C6: Displacements due to shear loads (static)

Screw size			FBS II											
Sciew size				8		10			12			14		
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115	
Shear load in cracked and non-cracked concrete	v	[kN]	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,5	
Displacement	δ_{V0}	[mm]	1,4	1,4	3,2	3,2	3,2	2,5	2,5	3,4	2,8	2,8	5,4	
Displacement	$\delta_{V\infty}$	[mm]	2,0	2,1	4,9	4,9	4,9	3,8	3,8	5,1	4,2	4,2	8,1	

Table C7: Displacements due to tension loads (Seismic Performance Category C2)

Screw size			FBS II				
			8	10	12	14	
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115	
Displacement DLS	$\delta_{N,C2(DLS)}$	[mm]	0,5	0,8	0,9	1,3	
Displacement ULS	$\delta_{N,C2}$ (ULS)	[mm]	1,7	2,8	2,7	5,0	

Table C8: Displacements due to shear loads (Seismic Performance Category C2)

Screw size			FBS II				
			8	10	12	14	
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115	
Displacement DLS	$\delta_{V,C2(DLS)}$	[mm]	1,6	2,7	3,1	4,1	
Displacement ULS	$\delta_{V,C2 (ULS)}$	[mm]	3,9	7,1	5,3	8,7	

fischer concrete screw ULTRACUT FBS II

Performances:

Displacements under tension and shear loads