

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0461 of 14 September 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment: DÜNA** Thermo Trade name of the construction product Product family Nailed-in plastic anchor for fixing of external thermal to which the construction product belongs insulation composite systems with rendering in concrete and masonry Manufacturer DÜNA Befestigungstechnik GmbH Im Langel 24 59872 Meschede-Freienohl DEUTSCHLAND Werk DÜNA Manufacturing plant This European Technical Assessment 11 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Plastic issued in accordance with Regulation (EU) anchors for fixing of external thermal insulation composite No 305/2011, on the basis of systems with rendering", ETAG 014, edition February 2011, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0461

Page 2 of 11 | 14 September 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 11 | 14 September 2016

Specific Part

1 Technical description of the product

The nailed-in anchor DÜNA Thermo consists of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of polyethylene and an accompanying specific nail of galvanised steel with a mounting plug of polyamide. The serrated expanding part of the anchor sleeve is slotted.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.3 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Point thermal transmittance	See Annex C 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 2

3.4 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

European Technical Assessment ETA-15/0461 English translation prepared by DIBt

Page 4 of 11 | 14 September 2016

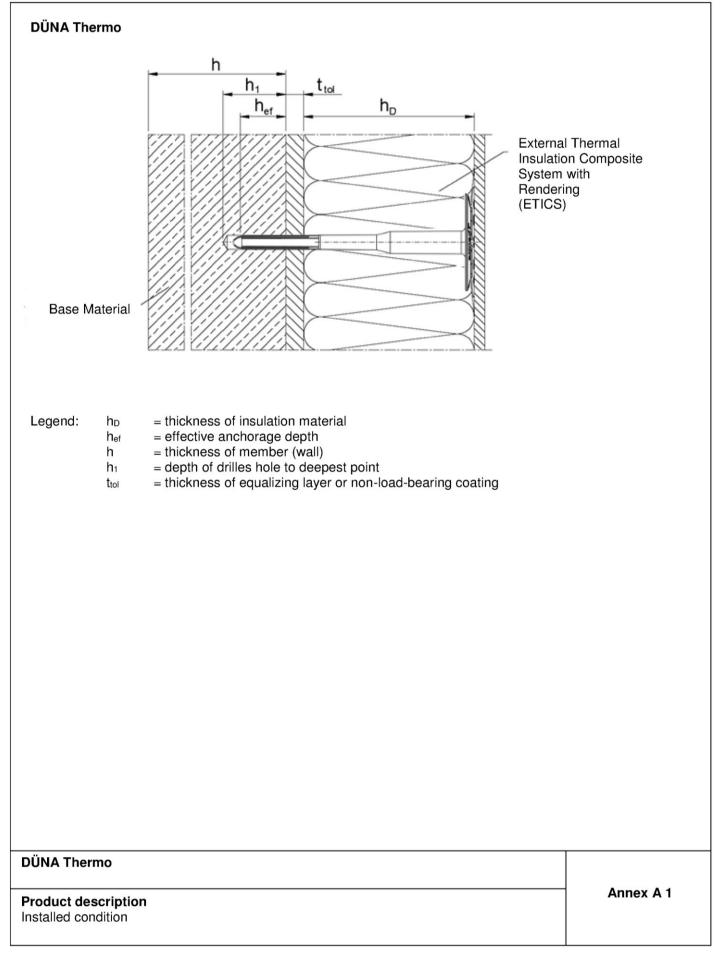
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 014, February 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 14 September 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p. p. Head of Department *beglaubigt:* Ziegler

Page 5 of European Technical Assessment ETA-15/0461 of 14 September 2016

English translation prepared by DIBt

Page 6 of European Technical Assessment ETA-15/0461 of 14 September 2016

English translation prepared by DIBt

monb	her marking of efficiency of e		a			ABC CE				
	companying sp	In Decific nail Iu				Is1	Ma Pro Le	ngth of the ameter of	er: DÜNA ne: Thermo e anchor: 1 the anchor: ies: A, B, C	25
•										
ac	companying sp		ith instal	Anchor	r	Mounting		Specific		
ac			d _{nom}	Anchor Sleeve h _{ef}	min L _a max L _a	Plug min L₅ max L₅	dn	nail min In max In	lu [mm]	
ac	Table A1: Dir Anchor	mensions		Anchor Sleeve	min La	Plug min L₅	dn [mm] 4,4	nail min In	lu [mm] 140 260	
etermina ho g. ho ho	Table A1: DirAnchorTypeDÜNAThermotion of maximum $= L_a - t_t$ $= 125 - t_{max}$ $= 80$	Colour nature	d _{nom} [mm] 8 of insula	Anchor Sleeve h _{ef} [mm] 35 ation h _D [n	min L _a max L _a [mm] 105 225	Plug min Ls max Ls [mm] 45,0 36,6 NA Thermo	[mm]	nail min In max In [mm] 95	[mm] 140	
etermina ho g. ho ho	Table A1: DirAnchorTypeDÜNAThermotion of maximul $= L_a - t_b$ $= 125 - c_max$ $= 80$ A2: Materials	Colour Colour nature m thickness	d _{nom} [mm] 8 of insula	Anchor Sleeve h _{ef} [mm] 35 ation h _D [r	min L _a max L _a [mm] 105 225 nm] for DÜI	Plug min Ls max Ls [mm] 45,0 36,6 NA Thermo	[mm]	nail min In max In [mm] 95	[mm] 140	
termina h _D h _D Table Name Ancho	Table A1: DirAnchorTypeDÜNAThermotion of maximul $= L_a - t_b$ $= 125 - c_max$ $= 80$ A2: Materials	Colour Colour nature m thickness	d _{nom} [mm] 8 of insula	Anchor Sleeve h_{ef} [mm] 35 ation h_D [r (La = e.g.	min L _a max L _a [mm] 105 225 nm] for DÜI	Plug min L _s max L _s [mm] 45,0 36,6 NA Thermo	[mm]	nail min In max In [mm] 95	[mm] 140	

steel, galvanized acc. to EN ISO 4042: 2001

DÜNA Thermo

Specific nail

Product description Marking and dimension of the anchor sleeve Expansion element Annex A 2

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1
- Solid masonry (use category B), according to Annex C 1
- Hollow or perforated masonry (use category C), according to Annex C 1
- For other base materials of the use categories A, B or C the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

DÜNA Thermo

Intended use Specifications Annex B 1

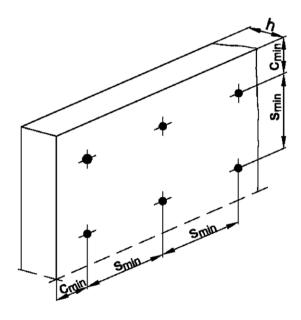
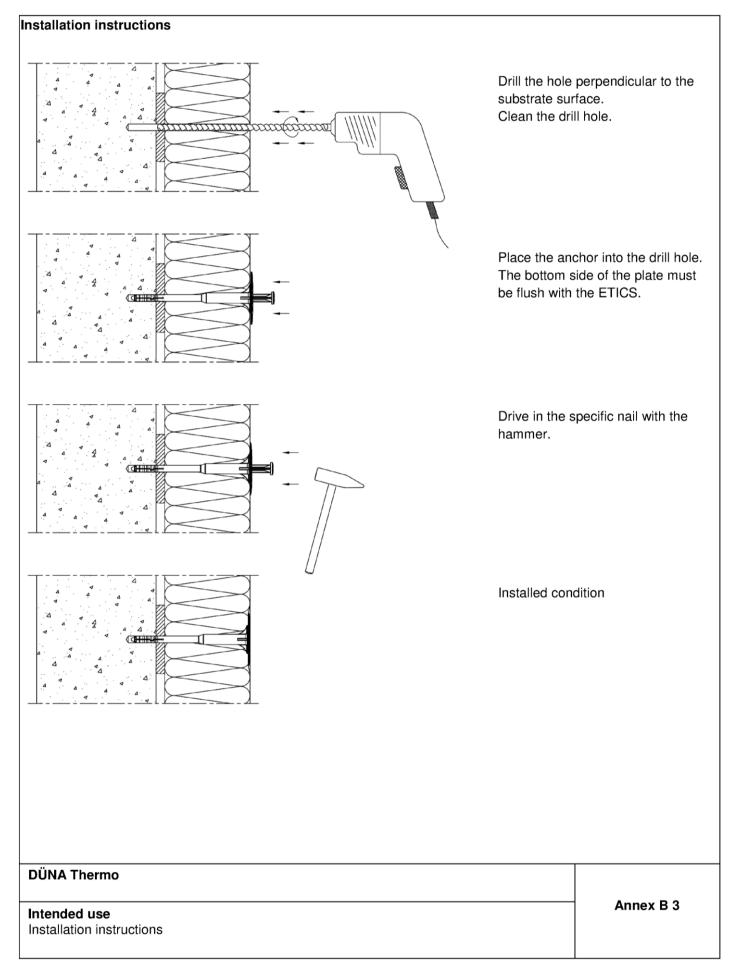


Table B1: Installation parameters		
Anchor type		DÜNA Thermo
Use category		ABC
Drill hole diameter	d ₀ [mm] =	8
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45
Depth of drilled hole to deepest point	h₁ [mm] ≥	45
Effective anchorage depth	h _{ef} [mm] ≥	35

Table B2: Anchor distances and dimensions of members

Anchor type		DÜNA Thermo
Minimum allowable spacing	s _{min} ≥ [mm]	100
Minimum allowable edge distance	$c_{min} \geq [mm]$	100
Minimum thickness of member	h ≥ [mm]	100

Scheme of distance and spacing



DÜNA Thermo

Intended Use
Installations parameters,
Edge distances and spacing

Annex B 2

Anchor type					DÜNA Thermo
Base materials	Bulk density class ρ [kg/dm ³]	minimum compressive strength f _b [N/mm²]	General remarks	Drill method	N _{Rk} [kN]
Concrete C12/15	[Kg/dill*]	[[N/11111-]			ניואן
EN 206-1:2000				hammer	0,3
Concrete C20/25 – C50/60				hammer	0,5
EN 206-1:2000 Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	1,8	28	Vertically perforation up to 15 %	hammer	0,4
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	1,8	20	Vertically perforation up to 15 %	hammer	0,4
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	0,8	16	Vertically perforation more than 15 % and less than 50 %	rotary	0,3
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011	1,4	16	Vertically perforation more than 15 % and less than 50 %	hammer	0,3
Hollow masonry of lightweight aggregate concrete, Hbl e.g. according to DIN V 18151-100:2005-10 / EN 771-3:2011	0,8	2	Outer web in longitudinal direction a=50 mm, thickness of brick d=240 mm	rotary	0,3

DÜNA Thermo

Performances Characteristic resistance Annex C 1

	ismittance	according	EOTA Tech	nical Report TR	025:2007-06	
		insulatio	n thickness	point	thermal transi	mittance
anchor type DÜNA Thermo		h⊳ [mm]		χ [W/K]		
		60 – 180		0,009		
Table C3: Plate stiffness ac	cording E	OTA Techn	ical Report T	R 026:2007-06		
		neter		esistance	plate	stiffness
anchor type	of the an	chor plate	oft the a	nchor plate		
	[n	nm]	[kN]	[kN	l/mm]
DÜNA Thermo		60		1,1	(0,5
Table C4: Displacements			Dulla	h dina ina a una		1 =
Table C4: Displacements			Dulle	N Aliasiana suga		
3ase materials			Bulk	Minimum	Tension	Displacements
Base materials			density class	Compressive strength	load	
Base materials			density class ρ	Compressive strength fb	load N _{Rk}	δ _(N_{Rk}/3)
Base materials Concrete C12/15			density class	Compressive strength	load	
Concrete C12/15 Concrete 20/25 – C50/60			density class ρ	Compressive strength fb	load N _{Rk} [kN] 0,3	δ _{(NRk} /3) [mm]
Concrete C12/15 Concrete 20/25 – C50/60 (EN 206-1:2000)			density class ρ	Compressive strength fb	load N _{Rk} [kN]	δ _(NRk/3)
Concrete C12/15 Concrete 20/25 – C50/60 (EN 206-1:2000) Clay bricks, Mz			density class ρ	Compressive strength fb	load N _{Rk} [kN] 0,3	δ _{(NRk} /3) [mm]
Concrete C12/15 Concrete 20/25 – C50/60 (EN 206-1:2000) Clay bricks, Mz (DIN 105-100:2012-01 / EN 771-1:20 Sand-lime solid bricks, KS			density class ρ [kg/dm³]	Compressive strength fb [N/mm ²]	load Nвк [kN] 0,3 0,5	δ _{(NRk} /3) [mm] 0,32
Concrete C12/15 Concrete 20/25 – C50/60 (EN 206-1:2000) Clay bricks, Mz (DIN 105-100:2012-01 / EN 771-1:20 Sand-lime solid bricks, KS (DIN V 106:2005-10 / EN 771-2:2011)		density class ρ [kg/dm³] 1,8	Compressive strength fb [N/mm ²] 28	load N _{Rk} [kN] 0,3 0,5 0,4	δ _(NRk/3) [mm] 0,32 0,24
Concrete C12/15 Concrete 20/25 – C50/60 (EN 206-1:2000) Clay bricks, Mz (DIN 105-100:2012-01 / EN 771-1:20 Sand-lime solid bricks, KS (DIN V 106:2005-10 / EN 771-2:2011 Vertically perforated clay brick) <s, hlz<="" td=""><td></td><td>density class ρ [kg/dm³] 1,8</td><td>Compressive strength fb [N/mm²] 28</td><td>load N_{Rk} [kN] 0,3 0,5 0,4</td><td>δ_(NRk/3) [mm] 0,32 0,24</td></s,>		density class ρ [kg/dm³] 1,8	Compressive strength fb [N/mm ²] 28	load N _{Rk} [kN] 0,3 0,5 0,4	δ _(NRk/3) [mm] 0,32 0,24
Concrete C12/15 Concrete 20/25 – C50/60 (EN 206-1:2000) Clay bricks, Mz (DIN 105-100:2012-01 / EN 771-1:20 Sand-lime solid bricks, KS (DIN V 106:2005-10 / EN 771-2:2011) <s, hlz<br="">⁾¹¹⁾ <sl< td=""><td></td><td>density class ρ [kg/dm³] 1,8 1,8</td><td>Compressive strength fb [N/mm²] 28 20</td><td>load N_{Rk} [kN] 0,3 0,5 0,4 0,4</td><td>δ_{(NRk}/3) [mm] 0,32 0,24 0,26</td></sl<></s,>		density class ρ [kg/dm³] 1,8 1,8	Compressive strength fb [N/mm ²] 28 20	load N _{Rk} [kN] 0,3 0,5 0,4 0,4	δ _{(NRk} /3) [mm] 0,32 0,24 0,26

DÜNA Thermo

Performances

Point thermal transmittance, plate stiffness, displacements

Annex C 2