

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0740 of 1 December 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product ejotherm H2 eco Product family Nailed-in plastic anchor for fixing of external thermal to which the construction product belongs insulation composite systems with rendering in concrete and masonry Manufacturer EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND Manufacturing plant EJOT Herstellwerk 1, 2, 3, 4 This European Technical Assessment 13 pages including 3 annexes which form an integral part of this assessment contains This European Technical Assessment is Guideline for European technical approval of "Plastic issued in accordance with Regulation (EU) anchors for fixing of external thermal insulation composite No 305/2011, on the basis of systems with rendering", ETAG 014, Edition February 2011, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011. This version replaces ETA-15/0740 issued on 19 January 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0740

Page 2 of 13 | 1 December 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 13 | 1 December 2016

Specific Part

1 Technical description of the product

The nailed-in anchor ejotherm H2 eco consists of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of polyethylene and an accompanying specific nail of galvanised steel with an overmoulding of polyamide. The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates SBL 140 plus and VT 90.

An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.3 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Point thermal transmittance	See Annex C 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 2

European Technical Assessment ETA-15/0740

Page 4 of 13 | 1 December 2016

English translation prepared by DIBt

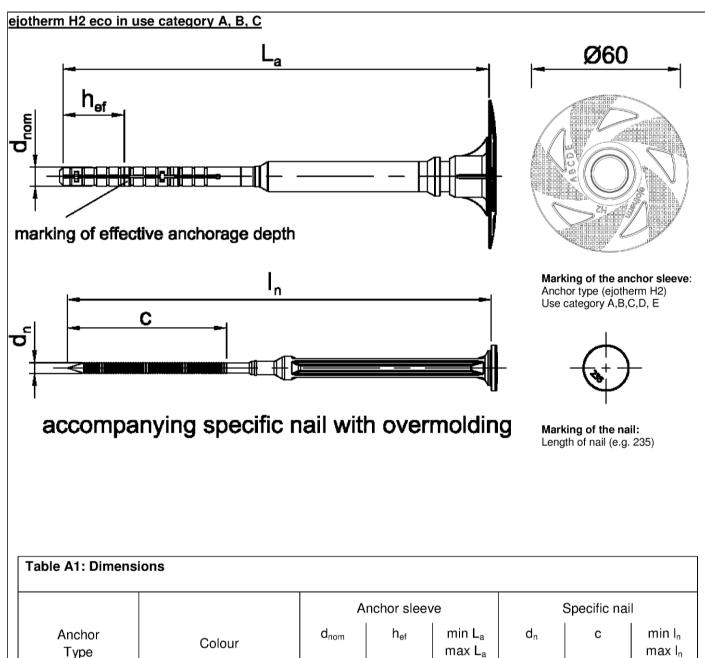
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 014, February 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC. The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 1 December 2016 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* Ziegler

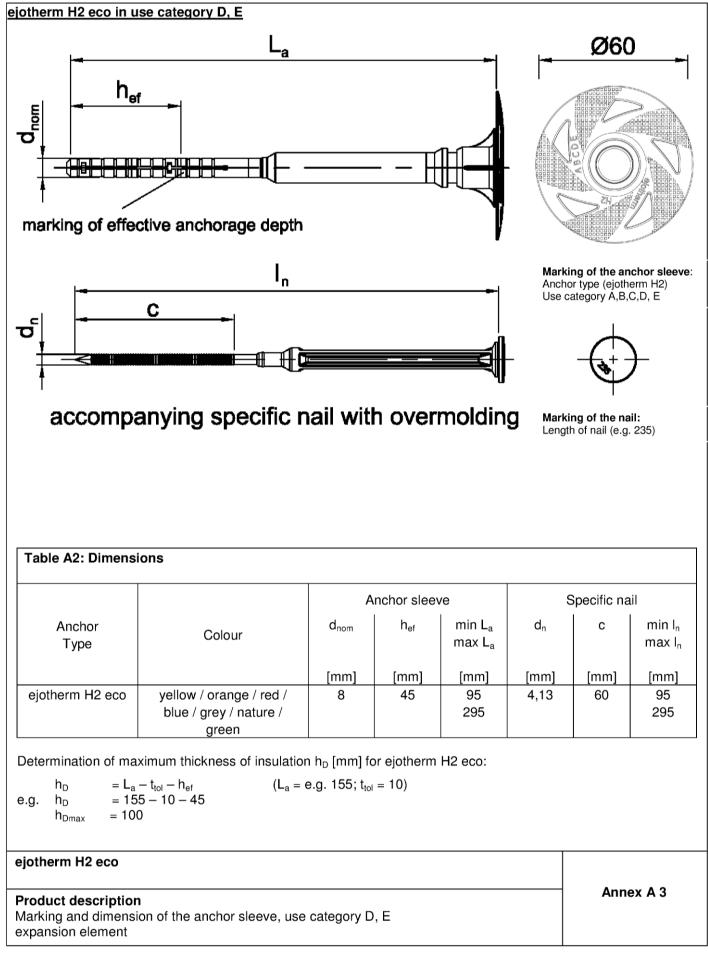
Page 5 of European Technical Assessment ETA-15/0740 of 1 December 2016

English translation prepared by DIBt

		А	nchor sleev	/e		Specific nai	il
Anchor Type	Colour	d _{nom}	h _{ef}	min L _a max L _a	d _n	c	min I _n max I _n
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ejotherm H2 eco	yellow / orange / red /	8	25	95	4,13	60	95
	blue / grey / nature /			295			295
	green						

Determination of maximum thickness of insulation $h_{\text{D}} \, [\text{mm}]$ for ejotherm H2 eco:

$$\begin{array}{rl} h_{D} & = L_{a} - t_{tol} - h_{ef} \\ e.g. & h_{D} & = 155 - 10 - 25 \\ h_{Dmax} & = 120 \end{array}$$


$$(L_a = e.g. \ 155; t_{tol} = 10)$$

ejotherm H2 eco

Product description

Marking and dimension of the anchor sleeve, use category A, B, C expansion element

Annex A 2

Page 8 of European Technical Assessment ETA-15/0740 of 1 December 2016

English translation prepared by DIBt

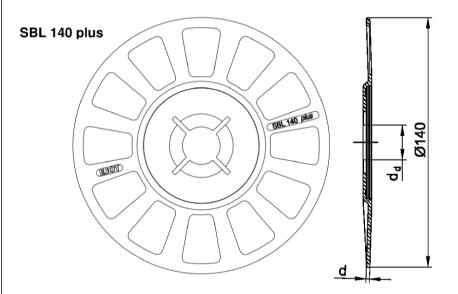
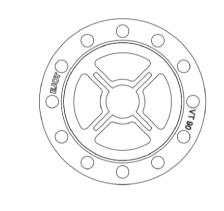


Table A3: Materials	
Name	Materials
Anchor sleeve + Anchor plate	Polyethylene, PE-HD, yellow / orange / red / blue / grey / nature / green
Specific nail - overmoulding	Polyamide, PA GF 50
Specific nail	Steel, electro galvanized \geq 5 μm according to EN ISO 4042:2001, blue passivated $f_{yk} \geq$ 670 N/mm^2

060


ð

d

SBL 140 plus					
colo	bur	nature			
d _d	[mm]	20,0			
d	[mm]	2,0			
Mat	terial	1) 2)			

VT 90

VT 90				
colour	nature			
d _d [mm]	17,5			
d [mm]	1,2			
Material	1) 2)			

¹⁾ Polyamide, PA 6 ²⁾ Polyamide, PA GF 50

ejotherm H2 eco

Product description Materials,

Slip on plates with ejotherm H2 eco

Page 9 of European Technical Assessment ETA-15/0740 of 1 December 2016

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1.
- Solid masonry (use category B), according to Annex C 1.
- Hollow or perforated masonry (use category C), according to Annex C 1.
- · Lightweight aggregate concrete (use category D), according to Annex C 1.
- · Autoclaved aerated concrete (use category E), according to Annex C 1.
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).

Design:

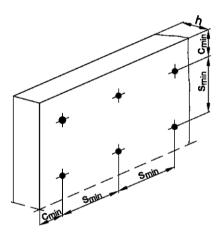
- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- · Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C.
- Exposure to UV due to solar radiation of the anchor not protected by rendering \leq 6 weeks.

ejotherm H2 eco

Intended use Specifications Annex B 1

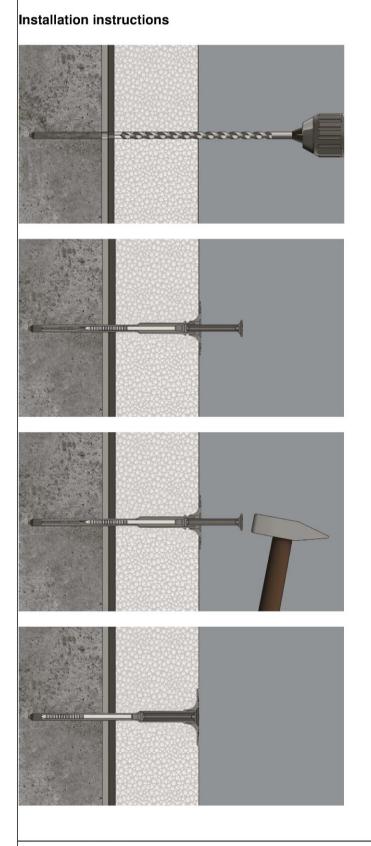

Table B1: Installation parameters				
Anchor type		ejotherr	n H2 eco	
		use category		
		A, B, C	D, E	
Drill hole diameter	d ₀ [mm] =	8	8	
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45	8,45	
Depth of drill hole to deepest point	h₁ [mm] ≥	35	55	
Effective anchorage depth ¹⁾	h _{ef} [mm] ≥	25	45	

¹⁾ Larger anchoring depths are fundamentally possible.

Table B2: Anchor distances and dimensions of members

Anchor type	ejotherm H2 eco	
Minimum allowable spacing	s _{min} ≥ [mm]	100
Minimum allowable edge distance	$c_{min} \geq [mm]$	100
Minimum thickness of member	h ≥ [mm]	100
Minimum thickness of thin concrete members	h ≥ [mm]	40

Scheme of distance and spacing



ejotherm H2 eco

Intended	use
Installatio	n narama

Installation parameters, Minimum thickness of member, edge distances and spacing Annex B 2

Drill the hole perpendicular to the substrate surface. Clean the drill hole 3x.

Place the anchor into the drill hole. The bottom side of the plate must be flush with the ETICS.

Drive in the specific nail with the hammer.

Installed condition ejotherm H2 eco.

ejotherm H2 eco

Intended use Installation instructions Annex B 3

Anchor type					ejotherm H2 eco
Base materials	Bulk density class ρ [kg/dm³]	minimum compressive strength f _b [N/mm²]	General remarks	Drill method	N _{Rk}
Concrete C16/20 – C50/60 EN 206-1:2000	[]	[]		hammer	0,9
Thin concrete members (e.g. weather resistant skin) Concrete C12/15 – C50/60 EN 206-1:2000			Thickness of the thin skin: 100 mm > h ≥ 40 mm	hammer	0,9
Clay bricks, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,9
Sand-lime solid bricks, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,8	12	Vertically perforation up to 15 %.	hammer	0,9
Vertically perforated clay bricks, HLz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	≥ 0,8	12	Vertically perforation ≥15 % and ≤ 50 %.	rotary	0,6 ¹⁾
Sand-lime perforated bricks, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011	≥ 1,6	12	Vertically perforation more than 15 %.	rotary	0,9 ²⁾
Lightweight concrete solid blocks, V e.g. according to DIN V 18152-100:2005-10 / EN 771-3:2011	≥ 0,7	4		hammer	0,75
Lightweight concrete hollow blocks, Hbl e.g. according to approval Z-17.1-797, DIN V 18151-100:2005-10 / EN 771-3:2011	≥ 1,2	6		rotary	0,6
Lightweight aggregate concrete, LAC 4 – LAC 25 e.g. according to EN 1520:2011-06 / EN 771-3:2011	≥ 0,7	4		rotary	0,9
Autoclaved aerated concrete, AAC 4 – AAC 7 e.g. according to DIN V 4165-100:2005-10 / EN 771-4:2011	≥ 0,55	4		rotary	0,5

1) The value applies only for outer web thickness ≥ 11 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests. 2)

The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

ejotherm H2 eco

Performances Characteristic resistance

Annex C 1

anchor type		insulation thickness h _D [mm]		point thermal transmittance \mathcal{X} [W/K]			
ejotherm H2 eco		60) – 260		0,001		
Table C3: Plate stiffness acc	cording EC	OTA Techr	nical Report T	R 026:2007-06	5		
anchor type of the anchor plate [mm]		chor plate	load resistance te of the anchor plate [kN]		plate stiffness [kN/mm]		
ejotherm H2 eco	6	50	1	,5	0	,97	
Table C4: Displacements							
Base materials			Bulk density class ρ	Min. compressive strength f _b [N/mm ²]	Tension load N [kN]	Displacements ^δ (N) [mm]	
Concrete C16/20 – C50/60			[kg/dm³]	[[N/]]]	0,3	0,4	
EN 206-1:2000 Thin concrete members (e.g. weather resistant skin) Concrete C12/15 – C50/60 EN 206-1:2000					0,3	0,5	
Clay bricks, Mz DIN 105-100:2012-01 / EN 771-1:2011			≥ 1,8	12	0,3	0,5	
Sand-lime solid bricks, KS DIN V 106:2005-10 / EN 771-2:2011			≥ 1,8	12	0,3	0,3	
Vertically perforated clay bricks, HLz DIN 105-100:2012-01 / EN 771-1:2011			\geq 0,9	12	0,2	0,5	
Sand-lime perforated bricks, KSL DIN V 106:2005-10 / EN 771-2:2011			≥ 1 ,4	12	0,3	0,4	
Lightweight concrete solid blocks, V DIN V 18152-100:2005-10 / EN 771-3:2011			≥ 0,7	4	0,25	0,4	
Lightweight concrete hollow blocks, Hbl DIN V 18151-100:2005-10 / EN 771-3:2011			≥ 1,2	6	0,2	0,4	
Lightweight aggregate concre LAC 4 – LAC 25 EN 1520:2011-06 / EN 771-3:2011	te,		\geq 0,7	4	0,3	0,5	
Autoclaved aerated concrete, AAC 4 – AAC 7 DIN V 4165-100:2005-10 / EN 771-4:2011			≥ 0,55	4	0,15	0,4	

ejotherm H2 eco

Performances Point thermal transmittance, plate stiffness displacements