Approval body for construction products and types of construction

Bautechnisches Prüfamt
An institution established by the Federal and Laender Governments

Designated according to \star
Article 29 of Regulation (EU) No 305/2011 and member of EOTA (European Organisation for Technical \star Assessment)

European Technical

ETA-16/0241
Assessment of 11 May 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product
Product family
to which the construction product belongs
Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

B+BTec Chemical Capsule Anchor VD-EA
Bonded anchor for use in non-cracked concrete

B+BTec
Munterij 8
4762 AH ZEVENBERGEN
NIEDERLANDE
B+BTec Werk 1, NIEDERLANDE
B+BTec Werk 2, NIEDERLANDE

14 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 1: "Anchors in General", April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment

ETA-16/0241
Page 2 of 14 | 11 May 2016
English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.
Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment

ETA-16/0241
Page 3 of 14 | 11 May 2016
English translation prepared by DIBt

Specific Part

1 Technical description of the product

The B+BTec Chemical Capsule Anchor VD-EA is a bonded anchor consisting of a glass capsule VDP-EA and a threaded anchor rod with hexagon nut and washer. The anchor rod (including nut and washer) is made of zinc-plated steel, hot-dip galvanised steel, stainless steel or made of high corrosion resistant steel.
The glass capsule is placed into the hole and the anchor rod is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between anchor rod, chemical mortar and concrete.
The product description is given in Annex A.
2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static loads, Displacements	See Annex C1 - C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

$3.4 \quad$ Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC]
The system to be applied is: 1
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 May 2016 by Deutsches Institut für Bautechnik

Uwe Bender	beglaubigt:
Head of Department	Baderschneider

Product and Installed condition

Mortar Capsule VDP-EA:

Marking capsule

Manufacturer:	B+BTec
Capsule type:	VDP-EA
Capsule size:	M..

Anchor rod

Marking anchor rod
z.B. B16A

Manufacturer	B			
Size	8, 10, 12, 16, 20, 24			
Material				
Galvanised property class 5.8 Galvanised property class 8.8 Hot dipped galvanised property class 5.8 Hot dipped galvanised property class 8.8		A	Stainless steel 1.4401, property class 70	C
		B	Stainless steel 1.4404, property class 70	K
		H	Stainless steel 1.4529, property class 70	E
		I	Stainless steel 1.4565, property class 70	R
			Stainless steel 1.4571, property class 70	D
			Stainless steel 1.4401, property class 80	M
			Stainless steel 1.4404, property class 80	P
			Stainless steel 1.4571, property class 80	0

B+BTec Chemical Capsule Anchor VD-EA	
Product description Product and installed condition	Annex A 1

Table A1: Materials

Part	Description	Material			
1	Threaded rod	Carbon steel property class 5.8 or 8.8 EN ISO 898-1:2013		Stainless steel1.4401, 1.4404 or1.4571property classA4-70 or A4-80EN ISO$3506-1: 2009$A $_{5}>8 \%$ fractureelongation	High Corrosionresistant steel1.4529 or 1.4565property class 70EN ISO$3506-1: 2009$$A_{5}>8 \%$ fractureelongation
		Galvanised steel $\geq 5 \mu \mathrm{~m}$ acc. to EN ISO 4042:1999 $A_{5}>8 \%$ fracture elongation	Hot dip galvanised steel EN ISO 10684:2004+AC:2009 $A_{5}>8 \%$ fracture elongation		
2	Washer	Carbon steel		$\begin{aligned} & \text { Stainless steel } \\ & 1.4401,1.4404 \text { or } \\ & 1.4571 \end{aligned}$	High Corrosion resistant steel 1.4529 or 1.4565
		Galvanised steel $\geq 55 \mathrm{~mm}$ acc. to EN ISO $4042: 1999$	Hot dip galvanised steel 10684:2004+AC:2009		
		EN ISO 887:2006 oder EN ISO 7089:2000 bis EN ISO 7094:2000			
3	Hexagon nut	Carbon steel property class 5 to 8 EN ISO 898-2:2012		Stainless steel $1.4401,1.4404$ or 1.4571 property class A4-70 or A4-80 EN ISO $3506-2: 2009$	High Corrosion resistant steel 1.4529 or 1.4565 property class 70 EN ISO 3506-2:2009
		Galvanised steel $\geq 5 \mu \mathrm{macc}$. to EN ISO 4042:1999	Hot dip galvanised steel 10684:2004+AC:2009		
		EN ISO 4032:2012 oder EN ISO 4034:2012			
4	Glass capsule	Glass Quartz Resin Hardener			

Table A2: Dimensions

Part	Description			M8	M10	M12	M16	M20	M24
	Threaded rod	D_{a}	$[\mathrm{mm}]$	M 8	M 10	M 12	M16	M20	M24
		$\mathrm{L}_{\mathrm{a}} \geq$		95	100	120	140	190	235
2	Washer	s	$[\mathrm{mm}]$	1,6	2,1	2,5	3,0	3,0	4,0
		d		16	21	24	30	37	44
3	Hexagon nut	SW	$[\mathrm{mm}]$	13	17	19	24	30	36
4	Glass capsule	D_{p}	$[\mathrm{~mm}]$	9	11	13	17	22	24
	$\mathrm{~L}_{\rho}$		80	80	95	95	175	210	

B+BTec Chemical Capsule Anchor VD-EA	
Product description Materials Dimensions	Annex A 2

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: all sizes.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete.

Temperature Range:

- I: $-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (max long term temperature $+24^{\circ} \mathrm{C}$ and max short term temperature $+40^{\circ} \mathrm{C}$)
- II: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (max long term temperature $+50^{\circ} \mathrm{C}$ and max short term temperature $+80^{\circ} \mathrm{C}$)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
(zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist
(high corrosion resistant steel).
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
- EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
- CEN/TS 1992-4:2009

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Dry or wet concrete: all sizes.
- Hole drilling by hammer drilling.
- cleaning the drill hole:
removing possibly existing water in the drill hole completely and cleaning the drill hole by at least one blowing operation, by at least $1 \times$ brushing / $1 \times$ blowing / $1 \times$ brushing operation by using the steel brush supplied by the manufacturer; before brushing cleaning the brush and checking whether the brush diameter according to Annex B 2, Table B3 is still sufficient. The steel brush shall produce natural resistance as it enters the anchor hole. If this is not the case a new brush or a brush with a larger diameter must be used.
- the anchor component installation temperature shall be at least $+5^{\circ} \mathrm{C}$; during curing of the chemical mortar the temperature of the concrete must not fall below $-5^{\circ} \mathrm{C}$.

B+BTec Chemical Capsule Anchor VD-EA

Intended Use
Specifications
Annex B 1

Table B1: Installation parameters

Anchor size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	d_{0}	$[\mathrm{~mm}]$	10	12	14	18	25	28
Cutting diameter	$\mathrm{d}_{\text {cut }} \leq$	$[\mathrm{mm}]$	10,5	12,5	14,5	18,5	25,5	28,5
Depth of drill hole	h_{0}	$[\mathrm{~mm}]$	80	90	110	125	170	210
Effective anchorage depth	$\mathrm{h}_{\text {ef }}$	$[\mathrm{mm}]$	80	90	110	125	170	210
Diameter of clearance hole in the fixture	d_{f}	$[\mathrm{mm}]$	9	12	14	18	22	26
Diameter of steel brush	D	$[\mathrm{mm}]$	11	13	16	20	27	30
Torque moment	$\mathrm{T}_{\text {inst }}$	$[\mathrm{Nm}]$	10	20	40	80	120	180

Steel brush

B+BTec brush, extension and SDS+ connector

Installation procedure

Table B2: Minimum member thickness, edge distance and spacing

Anchor size			M8	M10	M12	M16	M20	M24
Minimum member thickness	$\mathrm{h}_{\text {min }}$	$[\mathrm{mm}]$	110	120	140	160	220	260
Minimum edge distance	$\mathrm{C}_{\text {min }}$	$[\mathrm{mm}]$	40	45	55	65	85	105
Minimum spacing	$\mathrm{S}_{\text {min }}$	$[\mathrm{mm}]$	40	45	55	65	85	105

Table B3: Minimum curing time

Temperature in the concrete member	Minimum curing time in dry concrete	Minimum curing time in wet concrete
$\geq-5^{\circ} \mathrm{C}$	5 hrs.	10 hrs.
$\geq+5^{\circ} \mathrm{C}$	1 hr.	2 hrs.
$\geq+20^{\circ} \mathrm{C}$	20 min.	40 min.
$\geq+30^{\circ} \mathrm{C}$	10 min.	20 min.

[^0]Annex B 3

Table C1: Design method A, characteristic values for tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure								
Characteristic resistance property class 5.8	$\mathrm{N}_{\text {RK, }}$		18	29	42	78	123	177
Characteristic resistance property class 8.8	$\mathrm{N}_{\text {Rk, }}$	[kN]	29	46	67	126	196	282
Combined pull-out and concrete failure								
Characteristic resistance in non-cracked concrete C20/25 to C50/60								
Temperature range I	$\mathrm{N}^{0}{ }_{\text {R, },{ }^{1}}{ }^{1)}$	[kN]	20	30	40	60	90	120
Temperature range II	N^{0} Rk, ${ }^{1)}$	[kN]	20	30	40	50	75	90
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3	k_{8}	[-]						
Concrete cone failure								
Factor according to CEN/TS 1992-4-5 Section 6.2.3.1	kucr	[-]	10,1					
Characteristic edge distance	$\mathrm{Ccrer}_{\text {, }}$	[mm]	$1,5 h_{\text {ef }}$					
Characteristic spacing	$\mathrm{Scren}_{\text {c }}$	[mm]	$3 \mathrm{hef}_{\text {ef }}$					
Splitting ${ }^{2}$								
Edge distance	$\mathrm{c}_{\mathrm{cr}, \mathrm{sp}}$	[mm]	$1,5 h_{\text {ef }}$	$1 h_{\text {ef }}$				
Spacing	Scr, sp	[mm]	$3 h_{\text {ef }}$	$2 h_{\text {ef }}$				
Installation safety factor	$\gamma_{2}=\gamma_{\text {inst }}$	[-]	1,2					

1) $\quad \tau_{R k}=N_{R k, p}^{0} /\left(h_{e f} \cdot D_{a} \cdot \pi\right), D_{a}$ acc. Table $A 2$
2) For the proof against splitting failure, $\mathrm{N}^{0}{ }_{R k, c}$ has to be replaced by $\mathrm{N}^{0}{ }_{R k, p}$.

Table C2: Displacements under tension loads

Anchor size			M8	M10	M12	M16	M20	M24	
Tension load	N	$[\mathrm{kN}]$	8	12	16	20	30	38	
Displacement	$\delta_{\text {No }}$	$[\mathrm{mm}]$	0,1	0,2	0,2	0,2	0,5	0,4	
	$\delta_{\text {Noo }}$	$[\mathrm{mm}]$	0,5						

B+BTec Chemical Capsule Anchor VD-EA

Performance

Annex C 1
Characteristic values for tension loads
Displacements

Metal parts made of stainless steel 1.4401, 1.4404 or 1.4571

Table C3: Design method A, characteristic values for tension loads

Anchor size		M8	M10	M12	M16	M20	M24
Steel failure							
Characteristic resistance strength class A4-70	$\mathrm{N}_{\mathrm{R}, \mathrm{S}} \quad[\mathrm{kN}]$	26	40	59	110	172	247
Characteristic resistance strength class A4-80	$\mathrm{N}_{\mathrm{Rk}, \mathrm{S}} \quad[\mathrm{kN}]$	29	46	67	126	196	282
Combined pull-out and concrete failure							
Characteristic resistance in non-cracked concrete C20/25 to C50/60							
Temperature range I	$\mathrm{N}_{\text {Rk, }}^{0}{ }^{1)} \quad[\mathrm{kN}]$	20	30	40	60	90	120
Temperature range II	$\mathrm{N}_{\text {Rk, } p^{1}}{ }^{1)} \quad[\mathrm{kN}]$	20	30	40	50	75	90
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3	$\mathrm{k}_{8} \quad[-]$						
Concrete cone failure							
Factor according to CEN/TS 1992-4-5 Section 6.2.3.1	$\mathrm{K}_{\text {ucr }} \quad[-]$						
Characteristic edge distance	$\mathrm{C}_{\mathrm{cr}, \mathrm{N}} \quad[\mathrm{mm}]$						
Characteristic spacing	$\mathrm{Scr}, \mathrm{N} \quad[\mathrm{mm}]$						
Splitting ${ }^{2}$							
Edge distance	$\mathrm{C}_{\text {cr,sp }} \quad[\mathrm{mm}]$	$1,5 h_{\text {ef }}$			$1 h_{\text {ef }}$		
Spacing	$\mathrm{S}_{\mathrm{cr}, \mathrm{sp}} \quad[\mathrm{mm}]$	$3 \mathrm{~h}_{\text {ef }}$			$2 \mathrm{hef}_{\text {ef }}$		
Installation safety factor	$\gamma_{2}=\gamma_{\text {inst }} \quad[-]$						

${ }^{1)} \tau_{R k}=N_{R k, p}^{0} /\left(h_{\text {ef }} \cdot D_{a} \cdot \pi\right), D_{a}$ acc. Table A2
${ }^{2)}$ For the proof against splitting failure, $N_{R k, c}^{0}$ has to be replaced by $N^{0}{ }_{\text {Rk,p }}$.
Table C4: Displacements under tension loads

Anchor size			M8	M10	M12	M16	M20	M24	
Tension load	N	$[\mathrm{kN}]$	8	12	16	20	30	38	
Displacement	$\delta_{\mathrm{N} 0}$	$[\mathrm{~mm}]$	0,1	0,2	0,2	0,2	0,5	0,4	
	$\delta_{\mathrm{N} \infty}$	$[\mathrm{mm}]$	0,5						

B+BTec Chemical Capsule Anchor VD-EA
Performance
Characteristic values for tension loads
Displacements

Annex C 2

Metal parts made of high corrosion resistant steel 1.4529 or 1.4565
Table C5: Design method A, characteristic values for tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure								
Characteristic resistance strength class 70	$\mathrm{N}_{\text {RK, }} \mathrm{S}$		26	40	59	110	172	247
Combined pull-out and concrete failure								
Characteristic resistance in non-cracked concrete C20/25 to C50/60								
Temperature range I		[kN]	20	30	40	60	90	120
Temperature range II	$\mathrm{N}^{0}{ }_{\text {RK, }}{ }^{1)}$	[kN]	20	30	40	50	75	90
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3		[-]						
Concrete cone failure								
Factor according to CEN/TS 1992-4-5 Section 6.2.3.1	$\mathrm{kucr}^{\text {r }}$	[-]	10,1					
Characteristic edge distance	$\mathrm{C}_{\mathrm{cr}, \mathrm{N}}$	[mm]	$1,5 h_{\text {ef }}$					
Characteristic spacing	$\mathrm{Scren}_{\text {, }}$	[mm]	$3 \mathrm{~h}_{\text {ef }}$					
Splitting ${ }^{2}$								
Edge distance	$\mathrm{Ccr}_{\text {crsp }}$	[mm]	$1,5 h_{\text {ef }}$	$1 h_{\text {ef }}$				
Spacing	$\mathrm{S}_{\text {cr,sp }}$	[mm]	$3 h_{\text {ef }}$	$2 h_{\text {ef }}$				
Installation safety factor	$\gamma_{2}=\gamma_{\text {inst }}$	[-]	1,2					

${ }^{1)} \tau_{R k}=N^{0}{ }_{R k, p} /\left(h_{e f} \cdot D_{a} \cdot \pi\right), D_{a}$ acc. Table A2
${ }^{2)}$ For the proof against splitting failure, $N^{0}{ }_{R k, c}$ has to be replaced by $N^{0}{ }_{R k, p}$.
Table C6: Displacements under tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Tension load		[kN]	8	12	16	20	30	38
Displacement	$\delta_{\text {No }}$	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
		[mm]	0,5					

B+BTec Chemical Capsule Anchor VD-EA
Performance
Characteristic values for tension loads
Displacements

Annex C 3

Table C7: Design method A, characteristic values for shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance property class 5.8	$\mathrm{V}_{\text {Rk, }}$	[kN]	9	14	21	39	61	88
Characteristic resistance property class 8.8	$\mathrm{V}_{\text {Rk, }}$	[kN]	15	23	33	63	98	141
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k_{2}	[-]						
Steel failure with lever arm								
Characteristic bending moment property class 5.8	$\mathrm{M}^{0} \mathrm{Rk}, \mathrm{S}$	[Nm]	19	37	65	166	325	561
Characteristic bending moment property class 8.8	$M^{0}{ }_{\text {RK, }}$	[Nm]	30	60	105	266	519	898
Pry out failure								
Factor k_{3} in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k acc. to ETAG 001, Annex C	$\mathrm{k}_{(3)}$	[-]						
Installation safety factor	$\gamma_{2}=\gamma_{\text {inst }}$	[-]						
Concrete edge failure								
Effective length of anchor	ℓ_{f}	[mm]	80	90	110	125	170	210
Outside diameter of anchor	$\mathrm{d}_{\text {nom }}$	[mm]	10	12	14	18	25	28
Installation safety factor $\quad \gamma_{2}$	$\gamma_{2}=\gamma_{\text {inst }}$	[-]						

Table C8: Displacements under shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Shear load	V	$[\mathrm{kN}]$	5	8	12	22	35	50
Displacement	$\delta_{\mathrm{V} 0}$	$[\mathrm{~mm}]$	2	3	3	4	5	5
	$\delta_{\mathrm{V}_{\infty}}$	$[\mathrm{mm}]$	4	5	5	6	7	7

B+BTec Chemical Capsule Anchor VD-EA

Performance

Annex C 4
Characteristic values for shear loads
Displacements

Table C9: Design method A, characteristic values for shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance strength class A4-70	$V_{\text {Rk, }}$	[kN]	13	20	29	55	86	124
Characteristic resistance strength class A4-80	$\mathrm{V}_{\mathrm{RK}, \mathrm{S}}$	[kN]	15	23	33	62	98	141
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k_{2}	[-]						
Steel failure with lever arm								
Characteristic bending moment strength class A4-70	$\mathrm{M}^{0} \mathrm{RK}, \mathrm{S}$	[Nm]	26	52	92	233	454	785
Characteristic bending moment strength class A4-80	M ${ }_{\text {Rk,S }}$	[Nm]	30	60	105	266	519	898
Pry out failure								
Factor k_{3} in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k acc. to ETAG 001 , Annex C	$\mathrm{k}_{(3)}$	[-]						
Installation safety factor γ_{2}	$\gamma_{2}=\gamma_{\text {inst }}$	[-]						
Concrete edge failure								
Effective length of anchor	ℓ_{f}	[mm]	80	90	110	125	170	210
Outside diameter of anchor	$\mathrm{d}_{\text {nom }}$	[mm]	10	12	14	18	25	28
Installation safety factor γ_{2}	$\gamma_{2}=\gamma_{\text {inst }}$	[-]						

Table C10: Displacements under shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Shear load	V	$[\mathrm{kN}]$	5	8	12	22	35	50
Displacement	$\delta_{\mathrm{V} 0}$	$[\mathrm{~mm}]$	2	3	3	4	5	5
	$\delta_{\mathrm{V} o}$	$[\mathrm{~mm}]$	4	5	5	6	7	7

B+BTec Chemical Capsule Anchor VD-EA

Performance

Annex C 5
Characteristic values for shear loads
Displacements

Metal parts made of high corrosion resistant steel 1.4529 or 1.4565
Table C11: Design method A, characteristic values for shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance strength class 70	$\mathrm{V}_{\mathrm{Rk}, \mathrm{S}}$	[kN]	13	20	29	55	86	124
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2. 1	k_{2}	[-]						
Steel failure with lever arm								
Characteristic bending moment strength class 70	$M^{0}{ }_{\text {Rk, }} \mathrm{S}$	[Nm]	26	52	92	233	454	785
Pry out failure								
Factor k_{3} in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k acc. to ETAG 001, Annex C								
Installation safety factor	$\gamma_{2}=\gamma_{\text {inst }}$	[-]						
Concrete edge failure								
Effective length of anchor	ℓ_{f}	[mm]	80	90	110	125	170	210
Outside diameter of anchor	$\mathrm{d}_{\text {nom }}$	[mm]	10	12	14	18	25	28
Installation safety factor	$\gamma_{2}=\gamma_{\text {inst }}$	[-]						

Table C12: Displacements under shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Shear load	V	$[\mathrm{kN}]$	5	8	12	22	35	50
Displacement	$\delta_{\mathrm{v} 0}$	$[\mathrm{~mm}]$	2	3	3	4	5	5
	$\delta_{\mathrm{V}_{\infty}}$	$[\mathrm{mm}]$	4	5	5	6	7	7

B+BTec Chemical Capsule Anchor VD-EA

Performance

Annex C 6
Characteristic values for shear loads
Displacements

[^0]: B+BTec Chemical Capsule Anchor VD-EA

 Intended Use
 Installations parameters, minimum thickness of concrete member,
 Minimum edge distance and spacing, Minimum curing time

