

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0353 of 3 June 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TECNOL Injection system TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete

Bonded anchor for use in concrete

TQ TECNOL, S.A. C/Guerau de Liost, 11-13 Polig. Ind. Mas Les Animes. 43206 REUS, TARRAGONA SPANIEN

PLANT 1

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0353

Page 2 of 20 | 3 June 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0353

Page 3 of 20 | 3 June 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "TECNOL Injection system TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete" is a bonded anchor consisting of a cartridge with injection mortar S TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 / C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A1		
Resistance to fire	No performance assessed		

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0353

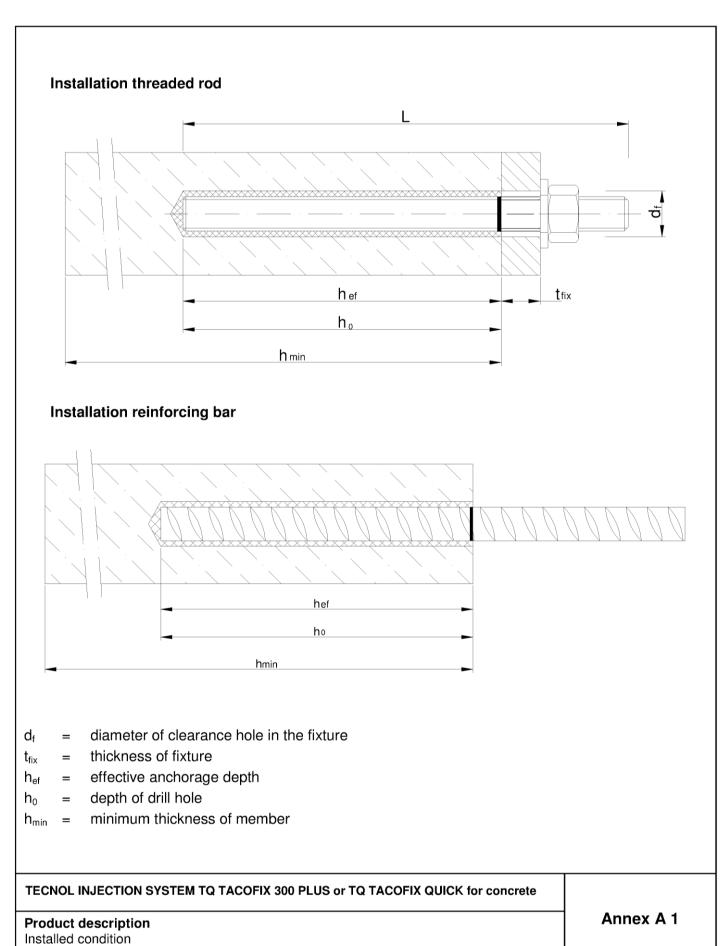
Page 4 of 20 | 3 June 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

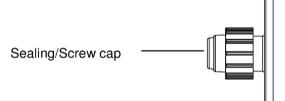
The system to be applied is: 1

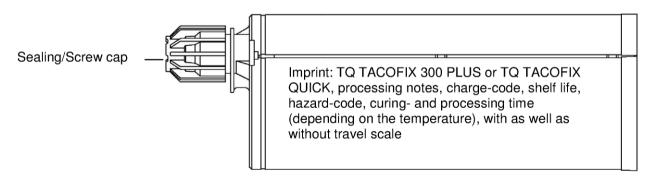

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

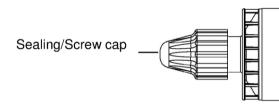
Issued in Berlin on 3 June 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider



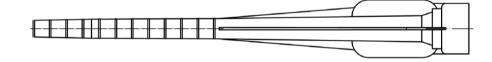

Cartridge: TQ TACOFIX 300 PLUS; TQ TACOFIX QUICK

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

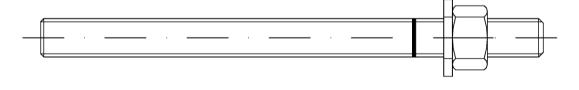

165 ml and 300 ml cartridge (Type: "foil tube")

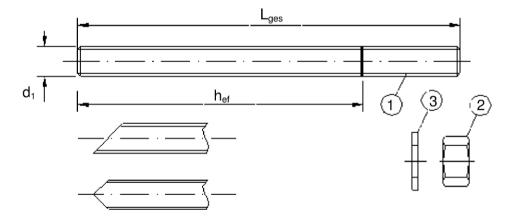
Imprint: TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK,

processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

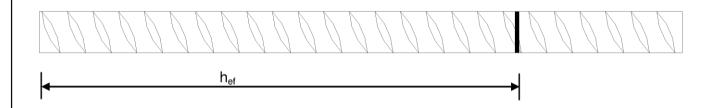
TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete


Product description


Injection system

Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Product description Threaded rod and reinforcing bar	Annex A 3

English translation prepared by DIBt

Tab	Table A1: Materials						
Part	Designation	Material					
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:19 , hot-dip galvanised ≥ 40 μm acc. to EN ISO		C:2009				
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 4.8, 5.8, 8.8, EN 1999 A ₅ > 8% fracture elongation					
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	EN ISO 898-2:2012, SO 898-2:2012,				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
Stain	less steel						
1	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation						
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006,						
High	corrosion resistance steel						
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506-1 \leq M24: Property class 70 EN ISO 3506-1 A ₅ > 8% fracture elongation	1:2009				
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro	d) EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005				
Reinf	orcing bars						
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$						
· · · · · · · · · · · · · · · · · · ·							
TECI	TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete						
Proc Mate	luct description prials	Annex A 4					

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation	parameters fo	or threa	aded ro	od					
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	$t_{fix,min}$ [mm] >	0							
Triickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn				h _{ef} + 2d ₀	1	
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Nominal drill hole diameter	12	14	16	18	20	24	32	35	40	
Effective anabarage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	40 50		70	80	100	125	140	160
Minimum edge distance c _{min} [mm]			50	60	70	80	100	125	140	160

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Intended Use	Annex B 2
Installation parameters	

Steel brush

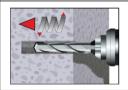
Table B3: Parameter cleaning and setting tools

Threaded Rebar		d₀ Drill bit - Ø	d₀ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)
M8		10	12	10,5	
M10	8	12	14	12,5	
M12	10	14	16	14,5	No
	12	16	18	16,5	piston plug required
M16	14	18	20	18,5	'
	16	20	22	20,5	
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
M27	25	32	34	32,5	# 32
M30	28	35	37	35,5	# 35
	32	40	41,5	40,5	# 38

Hand pump (volume 750 ml)

Drill bit diameter (d_0) : 10 mm to 20 mm – uncracked concrete

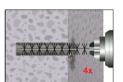
Drill bit diameter (d₀): 10 mm to 40 mm


Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 40 mm

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions



1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar

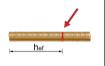
or

or

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can **only** be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm.


Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.

2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).

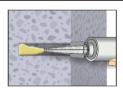
2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand-pump can <u>only</u> be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.

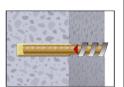
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

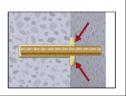
- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

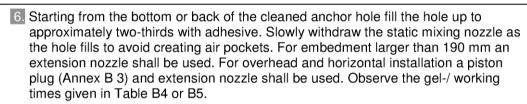
 For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete

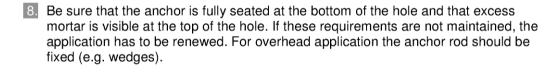

Intended Use

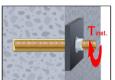

Installation instructions


Annex B 4



Installation instructions (continuation)





Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 or B5).

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Maximum Working time and minimum curing time Table B4: **TQ TACOFIX 300 PLUS**

Concrete temperature		perature	Gelling- / working time	Minimum curing time in dry concrete 1)	
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾	
-5 °C	to	-1°C	90 min	14 h	
0 °C	to	+4°C	45 min	7 h	
+5 °C	to	+9°C	25 min	2 h	
+ 10 °C	to	+19°C	15 min	80 min	
+ 20 °C	to	+29°C	6 min	45 min	
+ 30 °C	to	+34°C	4 min	25 min	
+ 35 °C	to	+39°C	2 min	20 min	
> + 40 °C		С	1,5 min 15 min		
Cartridge temperature		perature	+5°C to	+40°C	

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Maximum Working time and minimum curing time Table B5: TQ TACOFIX QUICK

Concre	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete 1)
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 Min
+ 10 °C			6 min	60 Min
Cartridge temperature		perature	-20°C to	+10°C

¹⁾ In wet concrete the curing time must be doubled.

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Intended Use Curing time	Annex B 6

Page 15 of European Technical Assessment ETA-16/0353 of 3 June 2016

English translation prepared by DIBt

Anchor size threaded	rod			М 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	esistance	N _{Rk,s} =N _{Rk,s,seis}	[kN]				As	• f _{uk}			
Combined pull-out and	d concrete failure		•								
Characteristic bond resi	stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,
80°C/50°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible	
Characteristic bond resi	stance in cracked concre	te C20/25									
	T	$ au_{Rk,cr}$	[N/mm²]			5,5	5,5	5,5	5,5	6,5	6,
Temperature range I:	dry and wet concrete	$ au_{Rk,seis}$	[N/mm²]	1	-!! -!-	3,7	3,7	3,7	3,8	4,5	4,
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	not adr	nissible	5,5	5,5		not adr	nissible	
	nooded bore note	τ _{Rk,seis}	[N/mm ²]			3,7	3,7		not adr	nissible	
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]			4,0	4,0	4,0	4,0	4,5	4,
Temperature range II:	dry and wer concrete	$ au_{Rk,seis}$	[N/mm ²]	not adr	nissible	2,7	2,7	2,7	2,8	3,1	3,
80°C/50°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	l not dan	moonore	4,0	4,0		not adr	nissible	
		τ _{Rk,seis}	[N/mm ²]			2,7	2,7		not adr		
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]			3,0	3,0	3,0	3,0	3,5	3,
Temperature range III: 120°C/72°C	,	τ _{Rk,seis}	[N/mm²]	not adr	nissible	2,0	2,0	2,0	2,1	2,4	2,
120°C/72°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]			3,0	3,0			nissible	
		τ _{Rk,seis}	[N/mm²]			2,0	2,0		not adr	nissible	
		C25/3 C30/3						02 04			
Increasing factors for co		C35/4					1,				
(only static or quasi-stat ψ_c	ic actions)	C40/5						08			
Ψ¢		C45/5	5				1,	09			
	Г	C50/6	0					10			
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k ₈	[-]				10),1			
Section 6.2.2.3	Cracked concrete	1.0	.,				7	,2			
Concrete cone failure											
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]				10),1			
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7	,2			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting											
Edge distance		C _{cr,sp}	[mm]		1,0	·h _{ef} ≤2	$2 \cdot h_{ef} \left(2, \frac{1}{2} \right)$	$5 - \frac{h}{h_{ef}}$	∫≤ 2,4 ·	h _{ef}	
Axial distance		S _{cr,sp}	[mm]				2 c		<u> </u>		
Installation safety factor	(dry and wet concrete)	$\gamma_2 = \gamma_{inst}$		1,0				1,2			
Installation safety factor	,			.,5	4	,4		.,_	not adr	nissible	
misianation safety factor	(noded bole fible)	γ2 = γinst				,¬			not au	IIIOOIDIC	
TECNOL INJECTIO	N SYSTEM TQ TACC	FIX 300 PLUS	or TQ TA	COFIX	QUICK	for con	crete	\top			
Performances	s of resistance under to							\dashv	Ann	ex C 1	1

Page 16 of European Technical Assessment ETA-16/0353 of 3 June 2016

English translation prepared by DIBt

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure without lever arm										
Characteristic above resistance	$V_{Rk,s}$	[kN]	0,50 • A _s • f _{uk}							
Characteristic shear resistance	V _{Rk,s,seis}	[kN]	not admissible 0,35 • A _s • f _{uk}							
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂		0,8							
Steel failure with lever arm	·									
Characteristic bending moment	[Nm]				1.2 • V	V _{el} • f _{uk}				
Characteristic bending moment	[Nm]			No Perfo	ormance l	Determine	d (NPD)			
Concrete pry-out failure										
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎					2	,0			
Installation safety factor	$\gamma_2 = \gamma_{inst}$					1	,0			
Concrete edge failure	·									
Effective length of anchor	l _t	[mm]				$I_f = min(h$	l _{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	$\gamma_2 = \gamma_{inst}$					1	,0			

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Performances	Annex C 2
Characteristic values of resistance under shear loads	

electronic copy of the eta by dibt: eta-16/0353

Page 17 of European Technical Assessment ETA-16/0353 of 3 June 2016

English translation prepared by DIBt

[kN]	7,5 7,5 5,5 5,5 4,0	12 8,5 9 6,5 6,5 5,0	12 8,5 9 6,5	12 8,5	A _s • f _{uk}			I	
[N/mm² [N/	7,5 7,5 5,5 5,5 4,0	8,5 9 6,5 6,5	8,5 9	8,5					
[N/mm² [N/mm] [N	7,5 7,5 5,5 5,5 4,0	8,5 9 6,5 6,5	8,5 9	8,5	12				
[N/mm²	7,5 7,5 5,5 5,5 4,0	8,5 9 6,5 6,5	8,5 9	8,5	12				
[N/mm²	7,5 7,5 5,5 5,5 4,0	8,5 9 6,5 6,5	8,5 9	8,5	12				
[N/mm² [N/mm² [N/mm² [N/mm² [N/mm² [N/mm² [N/mm² [N/mm² [N/mm²	7,5 5,5 5,5 4,0	9 6,5 6,5	9			12	11	10	8,5
[N/mm² [N/mm² [N/mm² [N/mm² [N/mm² [N/mm² [N/mm²	5,5 5,5 4,0	6,5 6,5			8,5		not adn	nissible	
[N/mm²] [N/mm²] 25 [N/mm²] [N/mm²] [N/mm²]	5,5 4,0	6,5	6.5	9	9	9	8,0	7,0	6,0
[N/mm² [N/mm² [N/mm² [N/mm² [N/mm²	4,0		0,0	6,5	6,5		not adn	nissible	
[N/mm² [N/mm² [N/mm²		5,0	6,5	6,5	6,5	6,5	6,0	5,0	4,5
[N/mm² [N/mm² [N/mm²			5,0	5,0	5,0		not adn	nissible	
[N/mm²									
[N/mm²			5,5	5,5	5,5	5,5	5,5	6,5	6,5
[N/mm²	not odr	nicaible	3,7	3,7	3,7	3,7	3,8	4,5	4,5
	Tiot adr	nissible	5,5	5,5	5,5		not adn	nissible	
			3,7	3,7	3,7		not adn	nissible	
[N/mm²	_		4,0	4,0	4,0	4,0	4,0	4,5	4,5
[N/mm²	→ not adr	nissible	2,7	2,7	2,7	2,7	2,8	3,1	3,1
[N/mm²			4,0	4,0	4,0		not adn		
[N/mm²			2,7	2,7	2,7		not adn		
[N/mm²	_		3,0	3,0	3,0	3,0	3,0	3,5	3,5
[N/mm²	—l not adr	nissible	2,0	2,0	2,0	2,0	2,1 not adn	2,4	2,4
[N/mm²	_		3,0 2,0	3,0 2,0	3,0 2,0		not adn		
C25/30			2,0	2,0	1,02		not au	IIISSIDIC	
C30/37					1,04				
C35/45 1,07									
C40/50 1,08									
C45/55 1,09 C50/60 1,10									
C50/60									
[-]					10,1				
					7,2				
[-]					10,1				
[-]					7,2				
[mm]					1,5 h _{ef}				
[mm]					3,0 h _{ef}				
•									
[mm]			1,0 · h _{ef}	≤2·h _e	, 2,5 –	$\frac{h}{h_{ef}}$ \leq	2,4 · h _{ef}		
[mm]						''ef /			
	1.0					,2			
	1,0		1,4		<u>'</u>	, <u> </u>	not adn	nissible	
			-, -			<u> </u>			
0 PLUS or	TQ TAC	OFIX QU	JICK fo	r conci	ete		A	··· 0 1	
st	[mm] sst 00 PLUS or 1	1,0 on PLUS or TQ TACC	1,0 DO PLUS or TQ TACOFIX QU	1,0 1,4 00 PLUS or TQ TACOFIX QUICK fo	1,0 1,4 00 PLUS or TQ TACOFIX QUICK for conci	1,0 1 1,4 00 PLUS or TQ TACOFIX QUICK for concrete	1,0 1,2 1,4 00 PLUS or TQ TACOFIX QUICK for concrete	1,0 1,2 1,4 not adr 00 PLUS or TQ TACOFIX QUICK for concrete Anne	1,0 1,2 1,4 not admissible 00 PLUS or TQ TACOFIX QUICK for concrete Annex C 3

English translation prepared by DIBt

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Ohavastaviatia ahaan yasiatawa	$V_{Rk,s}$	[kN]				0,	50 • A _s •	f _{uk}				
Characteristic shear resistance	V ⁰ _{Rk,s,seis}	[kN]		ot ssible			0,3	35 • A _s •	f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8					
Steel failure with lever arm												
Characteristic bonding moment	Characteristic bending moment						2 · W _{el} ·	f _{uk}				
Characteristic bending moment	[Nm]			No Pe	erformar	nce Dete	rmined	(NPD)				
Concrete pry-out failure												
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎						2,0					
Installation safety factor	$\gamma_2 = \gamma_{inst}$						1,0					
Concrete edge failure												
Effective length of anchor	I _f	[mm]				$I_f = m$	nin(h _{ef} ; 8	d _{nom})				
Outside diameter of anchor	[mm]	8	10	12	14	16	20	25	28	32		
Installation safety factor	Installation safety factor $\gamma_2 = \gamma_{\text{Inst}}$											

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Performances	Annex C 4
Characteristic values of resistance under shear loads	

English translation prepared by DIBt

Table C5: Di	splaceme	ents under tensi	on load ¹⁾	threa	aded ro	od)				
Anchor size thread	ded rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25		·							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]					0,0	70		
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]					0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]					0,1	70		
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]		-			0,2	245		
Temperature range III: δ_{N0} -factor [mm/(N/mm²)]		[mm/(N/mm²)]					0,1	70		
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]					0,2	245		

¹⁾ Calculation of the displacement

 τ : action bond stress for tension $\delta_{N0} = \delta_{N0}\text{-factor} \ \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ (threaded rod) Table C6:

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
For non-cracked c	oncrete C20)/25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}\text{-factor}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
For cracked concr	For cracked concrete C20/25										
All temperature	δ_{V0} -factor	[mm/(kN)]			0,11	0,10	0,09	0,08	0,08	0,07	
rangaa	$\delta_{V\infty}\text{-factor}$	[mm/(kN)]			0,17	0,15	0,14	0,13	0,12	0,10	

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \quad V; \end{split}$$
V: action shear load

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Performances	Annex C 5
Displacements (threaded rods)	

8.06.01-133/16 Z34750.16

Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C					0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]						0,070			
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]]					0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]]					0,170			
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]] '					0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]						0,170			
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]]					0,245			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacement under shear load¹⁾ (rebar) Table C8:

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	rete C20/2	25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25										
All temperature	δ_{V0} -factor	[mm/(kN)]			0,11	0,11	0,10	0,09	0,08	0,07	0,06
rangas	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]			0,17	0,16	0,15	0,14	0,12	0,11	0,10

Calculation of the displacement $\begin{array}{l} \delta_{V0} = \delta_{V0}\text{-factor} & V; \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} & V; \end{array}$

V: action shear load

TECNOL INJECTION SYSTEM TQ TACOFIX 300 PLUS or TQ TACOFIX QUICK for concrete	
Performances Displacements (rebar)	Annex C 6

8.06.01-133/16 Z34750.16