

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0439 of 8 August 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Concrete screw BSZ

Concrete screw of size 5 and 6 mm for multiple use for non-structural applications in concrete and in prestressed hollow core slabs

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

MKT Werk 5, D

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 6: "Anchors for multiple use for non-structural applications", August 2010

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0439

Page 2 of 15 | 8 August 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0439

Page 3 of 15 | 8 August 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The concrete screw BSZ in sizes of 5 and 6 mm is an anchor made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Anchorages satisfy requirements for Class A1	
Resistance to fire	See Annex C 3	

3.3 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads as well as bending moments in concrete	See Annex C 1 and C 2
Edge distances and spacing	See Annex C 1

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-16/0439

Page 4 of 15 | 8 August 2016

English translation prepared by DIBt

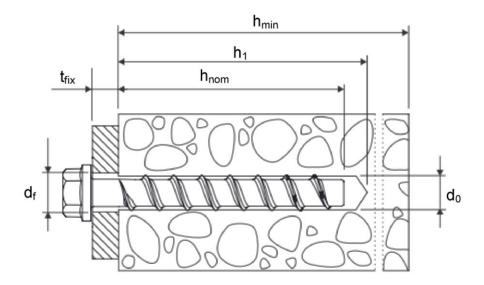
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 August 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentTempel

Product and installation situation


Concrete Screw BSZ

BSZ zinc plated

BSZ A4 BSZ HCR

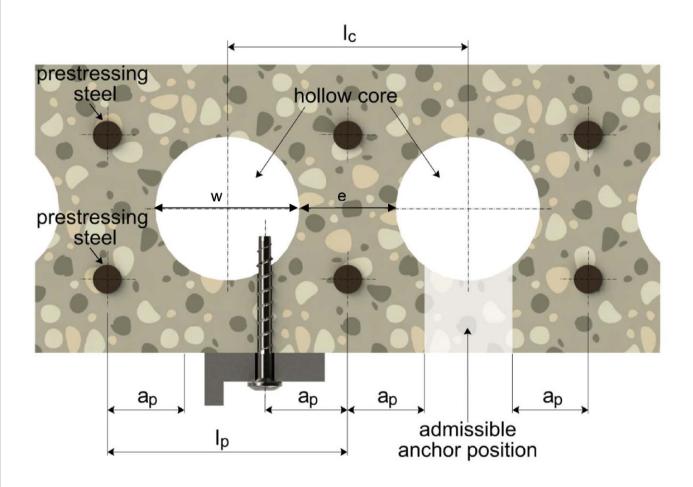
 $\begin{array}{lll} d_0 & = & \text{nominal drill bit diameter} \\ h_{\text{nom}} & = & \text{nominal anchorage depth} \\ h_1 & = & \text{depth of the drill hole} \\ h_{\text{min}} & = & \text{minimum thickness of member} \end{array}$

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

Concrete Screw BSZ

Product description


Product and installation situation

Annex A1

Z49521.16

$w/e \le 4,2$

w core width

e web thickness

Core distance I_c ≥ 100 mm

Prestressing steel $I_p \ge 100 \text{ mm}$

Distance between anchor position and $a_p \ge 50 \text{ mm}$

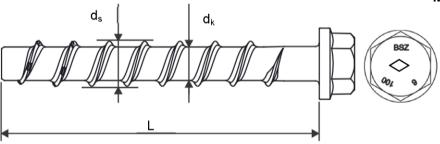
prestressing steel

Concrete Screw BSZ

Product description

Installation situation

Annex A2


Table A1. Alicilot types and description						
	Anchor type		BSZ -	Description		
1			ВІ	Anchor version with metric connection thread and hexagon socked		
2		•	В	Anchor version with metric connection thread and hexagon drive		
3			SUTX	Anchor version with hexagon head, pressed-on washer and TORX drive		
4		75b	su	Anchor version with hexagon head and pressed-on washer		
5		3, 5	s	Anchor version with hexagon head		
6		75 to 2	sĸ	Anchor version with countersunk head and TORX drive		
7			LK	Anchor version with pan head and TORX drive		
8		1884	GLK	Anchor version with large pan head and TORX drive		
9			BSK	Anchor version with countersunk head and metric connection thread		
10			BS	Anchor version with hexagon drive and metric connection thread		
11		0	М	Anchor version with internal thread and hexagon drive		

Concrete Screw BSZ	
Product description Anchor types and description	Annex A3

Table A2: Dimensions

Anch	nor size			BSZ 5	BSZ 6
Length of the anchor L ≤ [mm]		200			
ad	Core diameter	d_{k}	[mm]	4,0	5,1
Thread	Outside diameter	ds	[mm]	6,5	7,5

Marking e.g.: ♦ BSZ 6 100

or TSM 6 100

6 Anchor size

100 Length of anchor

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant steel

"k" *or* "x" for anchors with connection thread and

 $h_{nom} = 35 \text{ mm}$

Table A3: Materials

Version	Steel, zinc plated BSZ	Stainless steel BSZ A4	High corrosion resistant steel BSZ HCR		
Material	Steel EN 10263-4 galvanized acc. to EN ISO 4042 or zinc flake coating acc. to EN ISO 10683 (≥ 5μm)	1.4401, 1.4404, 1.4571, 1.4578			
Nominal characteristic steel yield strength f _{yk}	560 N/mm²				
Nominal characteristic steel ultimate strength f _{uk}	700 N/mm²				
Elongation at fracture A _s	≤ 8%				

Concrete Screw BSZ	
Product description Dimensions, marking and materials	Annex A4

English translation prepared by DIBt

Intended use

Anchorages subject to:

- static and quasi static loads,
- use only for multiple use for non-structural application according to ETAG 001, Part 6
- BSZ 6 can also be used for anchorages with requirements related to resistance of fire (not for use in in precast prestressed hollow core slabs)

Base materials:

- Reinforced and unreinforced concrete according to EN 206-1:2000-12,
- Strength classes C20/25 to C50/60 according to EN 206-1:2000-12,
- Cracked and uncracked concrete
- BSZ 6 can also be used in precast prestressed hollow core slabs

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternation immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used).

Design:

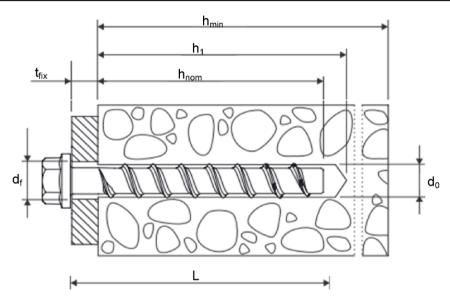
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the
 anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions for multiple use for non-structural applications are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A.
- Anchorages under static or quasi-static actions for precast prestressed hollow core slabs:
 - ETAG 001, Annex C, design method C, Edition August 2010.
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D
 - (It must be ensured that local spalling of the concrete cover does not occur)
- The design method according to ETAG 001, Annex C also applies for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.
- The design method according to CEN/TS 1992-4 applies for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.
- In CEN/TS 1992-4-1, section 5.2.3.1 the 3. indent will be replaced as follow: only the most unfavorable anchors of an anchor group take up shear loads, if diameter of the clearance hole d_f is larger than given in CEN/TS 1992-4-1, Table 1.
- The condition according to CEN/TS 1992-4-1, Section 5.2.3.3, no. 3) is also fulfilled for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.

Installation:

electronic copy of the eta by dibt: eta-16/0439

- Making of drill hole by hammer drilling,
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site,
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

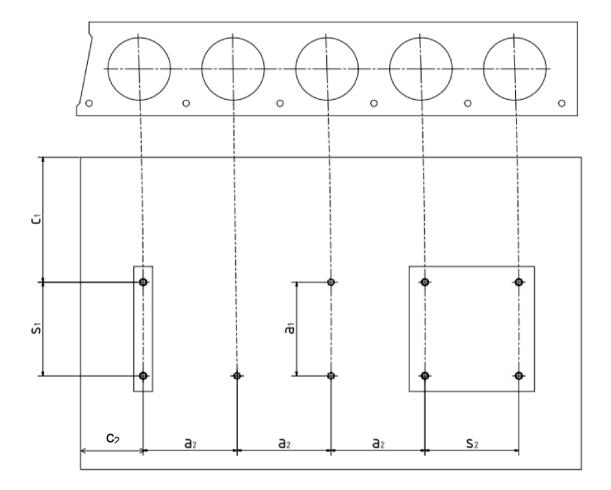
Concrete Screw BSZ	
Intended use Specifications	Annex B1


Table B1: Installation parameters

Anchor size		BSZ 5	BSZ 6		
Nominal embedment depth	h _{nom}	[mm]	35	35	55
Nominal drill bit diameter	d_{0}	[mm]	5	6	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,4	6,4	
Depth of drill hole	h₁ ≥	[mm]	40	40	60
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	10 160	
Max. Installation torque for screws with metric connection thread	T _{inst} ≤	[Nm]	8		
Tangential impact screw driver ¹⁾	$T_{imp,max}$	[Nm]	140		

Installation with tangential impact screw driver, with maximum power output T_{imp,max} acc. to manufacturers instructions is possible.

Table B2: Minimum thickness of member, minimum edge distance and minimum spacing for anchorages in solid concrete


Anchor size		BSZ 5	BSZ 6		
Nominal embedment depth	h _{nom}	[mm]	35	35	55
Minimum thickness of member	h _{min}	[mm]	80	80	100
Minimum edge distance	c_{min}	[mm]	35	35	40
Minimum spacing	S _{min}	[mm]	35	35	40

Concrete Screw BSZ	
Intended use Installation parameters Minimum thickness of concrete member, minimum spacing and edge distance	Annex B2

Installation parameters for anchorages in precast prestressed hollow core slabs

c₁, c₂ edge distance

s₁, s₂ anchor spacing

a₁, a₂ distance between anchor groups

Minimum edge distance $c_{min} \ge 100 \text{ mm}$

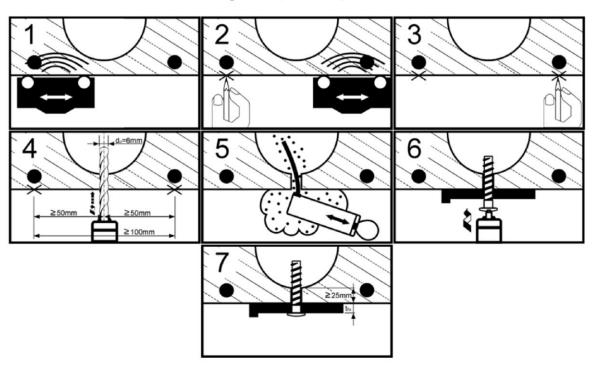
Minimum anchor spacing $s_{min} \ge 100 \text{ mm}$

Minimum distance between anchor groups $a_{min} \ge 100 \text{ mm}$

Concrete Screw BSZ

Intended use

Installation parameters for anchorages in precast prestressed hollow core slabs


Annex B3

English translation prepared by DIBt

Installation instructions Drill hole perpendicular to concrete surface. Blow out dust or alternatively vacuum clean down to the bottom of the hole. Screw in anchor, e.g. with tangential impact screw driver. After installation, the head of the anchor is supported on the fixture.

Installation instructions for anchorages in precast prestressed hollow core slabs

Intended use Annex B4

Installation instructions

Z49521.16

Table C1: Characteristic values for tension loads

Anchor size			BSZ 5	BSZ 6			
Nominal embedment depth h _{nom}		[mm]	35	35	55		
Installation safety factor	γ2	2 = γinst	[-]	1,2	1,2	1,0	
Steel failure							
Characteristic tension re	esistance	$N_{Rk,s}$	[kN]	8,7	14,0		
Pull-out							
Characteristic resistance cracked and uncracked C20/25		$N_{Rk,p}$	[kN]	1,5	1,5	7,5	
Increasing factor for $N_{Rk,p}$ for concrete strength > C20/25		[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Concrete cone failure							
Effective anchorage depth h _{ef}		[mm]	27	27	44		
Spacing (Edge distance) $s_{cr,N}$ ($c_{cr,N}$)		[mm]	3 h _{ef} (1,5 h _{ef})				
Factor for concrete	cracked	k _{cr}	[-]	7,2			
(according CEN/TS 1992-4)	uncracked	k _{ucr}	[-]	10,1			
Splitting							
Spacing		S _{cr,sp}	[mm]	120	120	160	
Edge distance C _{cr,sp}		[mm]	60	60	80		

Table C2: Characteristic values for shear loads

Anchor size			BSZ 5	BSZ 6		
Nominal embedment depth	h_{nom}	[mm]	35	35	55	
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0	1,0		
Steel failure without lever arm						
Characteristic shear resistance	$V_{Rk,s}$	[kN]	4,4	7,0		
Factor of ductility acc. to CEN/TS 1992-4	k ₂	[-]	0,8	0,8		
Steel failure with lever arm						
Characteristic bending moment	M ⁰ _{Rk.s}	[Nm]	5,3	10,9		
Concrete pry-out failure						
Factor k acc. to ETAG 001, Annex C or k ₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1,0	1,0		
Concrete edge failure						
Effective length of anchor	$I_f = h_{ef}$	[mm]	27	27	44	
Outside diameter of anchor	d_{nom}	[mm]	5	6		

Concrete Screw BSZ	
Performance Characteristic values for tension and shear loads	Annex C1

Table C3: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60

Anchor size			BSZ 6		
Installation safety factor $\gamma_2 = \gamma_{inst}$			1,2		
Flange thickness	d _b	[mm]	≥ 25	≥ 30	≥ 35
Characteristic resistance for all directions	F_Rk	[kN]	1	2	3
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	10,9		
Edge distance	$c_{cr} = c_{min}$	[mm]	100		
Spacing	$s_{cr} = s_{min}$	[mm]	100		

Concrete Screw BSZ	
Performance Characteristic values of resistance in precast prestressed hollow core slabs	Annex C2

Table C4: Characteristic values of resistance under fire exposure 1)

Anchor size				BSZ 6			
			Steel, zinc plated		Stainless steel A4 / HCR		
Nominal embedment depth h _{nom} [n		[mm]	35	55	35	55	
Steel failure (ter	nsion and shear	resistance)					
	R30		[kN]	0,9		1,2	
Characteristic	R60	N _{Rk,s,fi}		0,8		1,2	
resistance	R90	$V_{Rk,s,fi}$		0,6		1,2	
	R120			0,4		0,8	
Steel failure wit							
Characteristic	R30		[NIm]	0,7		0,9	
	R60	$M^0_{Rk,s,fi}$		0,6		0,9	
bending moment	R90	IVI Rk,s,fi	[Nm]	0	,5	0,	9
	R120			0	,3	0,	6
Spacing	Spacing s _{cr,fi} [mm]		4 h _{ef}				
Edge distance		$\mathbf{c}_{cr,fi}$	[mm]	2 h _{ef}			

¹⁾ The values are not for use in precast prestressed hollow core slabs

The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to TR 020 / CEN/TS 1992-4.

Concrete Screw BSZ	
Performance Characteristic values of resistance under fire exposure	Annex C3