

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0655 of 30 September 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Sikla screwbolt TSM

Concrete screw of sizes 6, 8, 10, 12 and 14 mm for use in concrete

Sikla Holding Ges.m.b.H. Kornstraße 14 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 2

16 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchor for use in concrete", ETAG 001 Part 3: "Undercut anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 and European Assessment Document (EAD) 330011-00-0601.

European Technical Assessment ETA-16/0655

Page 2 of 16 | 30 September 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0655 English translation prepared by DIBt

Page 3 of 16 | 30 September 2016

Specific Part

1 Technical description of the product

The Sikla screwbolt TSM is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for static and quasi static action	See Annex C 1 and C 2
Characteristic values for seismic category C1	See Annex C 3
Displacements under tension and shear loads	See Annex C 5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 4

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, and European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-16/0655

Page 4 of 16 | 30 September 2016

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

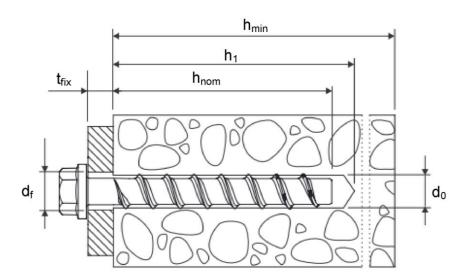
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 30 September 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p. p. Head of Department

beglaubigt: Tempel

Product and installation situation


Concrete screw TSM

TSM zinc plated

TSM A4 TSM HCR

 d_0 = nominal drill hole diameter h_{nom} = nominal embedment depth h_1 = depth of the drill hole

 h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

Screwbolt TSM

Product description

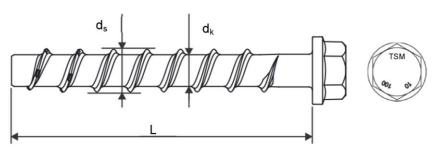
Product and installation situation

Annex A1

Table A1: Anchor types and desc

,	Anchor type		Description							
1		ВІ	Anchor version with metric connection thread and hexagon socked							
2		В	Anchor version with metric connection thread and hexagon drive							
3		SUTX	Anchor version with washer, hexagon head and TORX drive							
4		SU	Anchor version with hexagon head and pressed-on washer							
5		s	Anchor version with hexagon head							
6		SK	Anchor version with countersunk head and TORX drive							
7		LK	Anchor version with pan head and TORX drive							
8		LP	Anchor version with large pan head and TORX drive							
9		BSK	Anchor version with countersunk head and metric connection thread							
10		ST	Anchor version with hexagon drive and metric connection thread							
11		IM	Anchor version with internal thread and hexagon drive							

Screw	pol	t TSM


Product descriptionAnchor types and description

Annex A2

Table A2: Dimensions

Anchor size				TSM 6 TSM			гѕм 8	3	TSM 10			TSM 12			TSM 14		
Nomi depth	inal embedment n	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Leng	th of the anchor	L≤	[mm]	500													
ad	Core diameter	d _k	[mm]	5	5,1 7,1				9,1			11,1		13,1			
Thread	Outside diameter	ds	[mm]	7	,5		10,6		12,6		14,6		16,6				

Marking e.g.: ◆ BSZ 10 100 or TSM 10 100

◇ BSZ Trade name (optional or with manufacturer
 TSM identification ◇)

10 Anchor size

100 Lenght of anchor

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant

steel

Table A3: Materials

Version	Steel, zinc plated TSM	Stainless steel TSM A4	High corrosion resistant steel TSM HCR				
Material	Steel EN 10263-4 galvanized acc. to EN ISO 4042 or zinc flake coating acc. to EN ISO 10683 (≥ 5µm)	1.4401, 1.4404, 1.4571, 1.4578	1.4529				
Nominal characteristic steel yield strength f _{yk}	560 N/mm²						
Nominal characteristic steel ultimate strength f _{uk}	700 N/mm²						
Elongation at fracture A _s		≤ 8%					

Screwbolt TSM	
Product description Dimensions, marking and materials	Annex A3

English translation prepared by DIBt

Intended use

Anchorages subject to:

- · Static and quasi-static loads,
- · Used for anchorages with requirements related to resistance of fire
- Used for anchorages with seismic actions category C1, sizes 8-14 for maximum embedment depth per anchor size

Base materials:

- Reinforced and unreinforced concrete acc. to EN 206-1:2000-12,
- Strength classes C20/25 to C50/60 acc. to EN 206-1:2000-12,
- Cracked and uncracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition. If other particular aggressive conditions exist

(high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternation immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the
 anchor is indicated on the design drawings (e.g. position of the anchor relative of reinforcement or to supports, etc.).
- Anchorages under static and quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A.
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D
 - (It must be ensured that local spalling of the concrete cover does not occur)
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- The design method according to ETAG 001, Annex C also applies for the specified diameter d_f of clearance hole in the
 fixture in Annex B2, Table B1.
- In CEN/TS 1992-4-1, section 5.2.3.1 the 3. indent will be replaced as follow: only the most unfavorable anchors of an
 anchor group take up shear loads, if diameter d_f of the clearance hole is larger than given in
 CEN/TS 1992-4-1, Table 1.
- The condition according to CEN/TS 1992-4-1, Section 5.2.3.3, no. 3) is also fulfilled for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.

Installation:

electronic copy of the eta by dibt: eta-16/0655

- Making of drill hole by hammer drilling,
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site,
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance
 if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of
 the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The drill hole may be filled with injection mortar MKT TSM-FM.
- Adjustability according to Annex B4, sizes 8-14, all anchorage depths

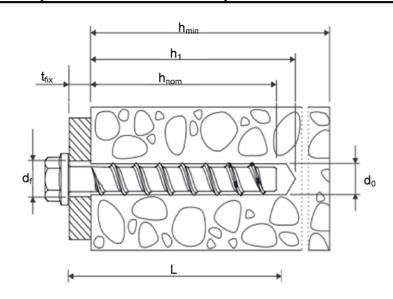

Screwbolt TSM	
Intended use Specifications	Annex B1

Table B1: Installation parameters

Anchor size		TSM 6		TSM 8			TSM 10				
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	
Nominal drill hole diameter	d ₀	[mm]	6	6		8 10			•		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,	4		8,45			10,45		
Depth of drill hole	h ₁ ≥	[mm]	45	60	55	65	75	65	85	95	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	ε	3		12			14	•	
Thickness of fixture	\mathbf{t}_{fix}	[mm]				t_fix :	= L - h _{nor}	n			
Max. Installation torque for screws with metric connection thread	T _{inst} ≤	[Nm]	1	10 20 40							
Tangential impact screw driver 1)	$T_{\text{imp},\text{max}}$	[Nm]	16	0	300 400						
				TSM 12				TSM 14			
Anchor size				٦	TSM 12			٦	TSM 14		
Anchor size Nominal embedment depth	h _{nom}	[mm]	65		85 85	100) 7	75	100	115	
	h _{nom}	[mm]	65			100) 7			115	
Nominal embedment depth			65		85	100) 7		100	115	
Nominal embedment depth Nominal drill hole diameter	d ₀	[mm]	65 75		85 12	110			100	115	
Nominal embedment depth Nominal drill hole diameter Cutting diameter of drill bit	d ₀ d _{cut} ≤	[mm]			85 12 12,5			75	100 14 14,5		
Nominal embedment depth Nominal drill hole diameter Cutting diameter of drill bit Depth of drill hole Diameter of clearance hole in the	d_0 $d_{cut} \le$ $h_1 \ge$	[mm] [mm]			85 12 12,5 95	110		35	100 14 14,5 110		
Nominal embedment depth Nominal drill hole diameter Cutting diameter of drill bit Depth of drill hole Diameter of clearance hole in the fixture	$\begin{array}{l} d_0 \\ \\ d_{cut} \leq \\ h_1 \geq \\ \\ d_f \leq \\ \\ t_{fix} \end{array}$	[mm] [mm] [mm]			85 12 12,5 95	110	3 (35	100 14 14,5 110		

 $^{^{1)}}$ Installation with tangential impact screw driver, with maximum power output $\,T_{imp,max}\,$ acc. to manufacturers instructions is possible.

Screwbolt TSM	
Intended use	Annex B2

Table B2: Minimum thickness of concrete member, minimum spacing and edge distance

Anchor size				VI 6		TSM 8		TSM 10			
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	100		100	100	120	100	130	130	
Minimum spacing	\mathbf{s}_{min}	[mm]	40		40	5	60	50			
Minimum edge distance	C _{min}	[mm]	40		40	5	50	50			
Anchor size			TSM 12					TSI	M 14		
Nominal embedment depth	h _{nom}	[mm]	65	8	35	100	75	1	00	115	
Minimum thickness of member	h _{min}	[mm]	120	1:	30	150	130	1	50	170	

50

50

70

70

50

50

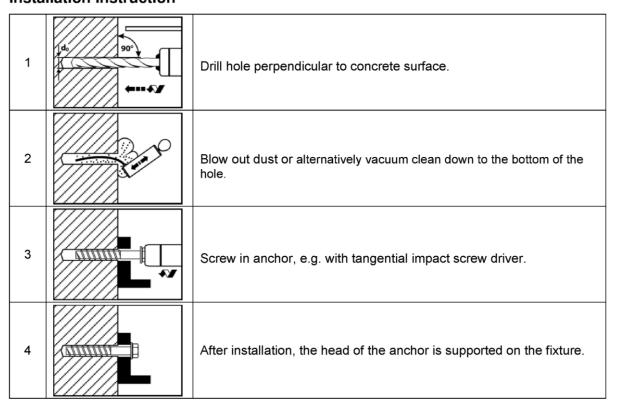
70

70

Installation instruction

 \mathbf{S}_{min}

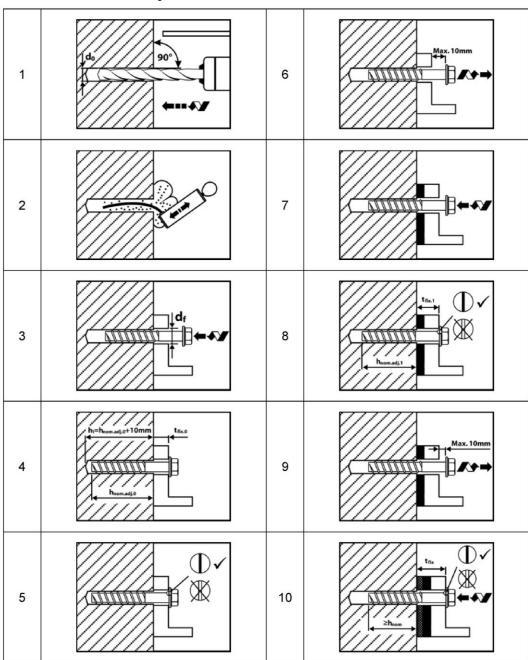
 C_{min}


[mm]

[mm]

Minimum spacing

Minimum edge


distance

Intended use Minimum thickness of concrete member, minimum spacing and edge distance, installation instruction Annex B3

Installation instruction for adjustment M8-M14

- The anchor may be adjusted at most two times while the anchor may be turned back at most 10 mm.
- The total allowed thickness of shims added during the adjustment process is 10 mm.
- The required setting depth h_{nom} must be maintained after the adjustment. ($h_{nom} = L t_{fix}$).

Screwbolt TSM

Intended use

Installation instruction for adjustment

Annex B4

Installation safety factor $\gamma_2 = \gamma_{inst} Fermion of the factor of the facto$	Anchor size			TSI	M 6		TSM 8		TSM 10			
Steel failure Characteristic load N _{Rk.B} [kN] 14 27 45	Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	55 75 85		
Characteristic load	Installation safety factor	γ ₂ = γ _{inst}	[-]				1	,0		•		
Pull-out failure Characteristic Cracked N _{Rk,p} [kN] 2 4 5 9 12 9 1 1 1 1 1 1 1 1 1	Steel failure											
Characteristic tension load in cracked N _{Rk,p} [kN] 2 4 5 9 12 9 1)	Characteristic load	$N_{Rk,s}$	[kN]	1	4		27			45		
tension load in concrete C20/25 uncracked N _{Rk,p} [kN] 4 9 7.5 12 16 12 20 2 2	Pull-out failure											
concrete C20/25 uncracked N _{Rk,P} (kN) 4 9 7,5 12 16 12 20 2 Increasing factor for N _{Rk,P} for strength classes > C20/25 Ψc [-] (fck.cube / 25) Concrete cone failure Effective anchorage depth hef (mm) 31 44 35 43 52 43 60 6 Spacing (Edge distance) s _{cr,N} (c _{cr,N}) [mm] 31 44 35 43 52 43 60 6 Spacing (Edge distance) s _{cr,N} (c _{cr,N}) [mm] 31 44 35 43 52 43 60 6 Factor for concrete (acc. to concrete (Clacke	d N _{Rk,p}	[kN]	2	4	5	9	12	9		1)	
Increasing factor for $N_{Rk,p}$ for strength classes > C20/25 Ψ_{C} [-]		d N _{Rk,p}	[kN]	4	9	7,5	12	16	12	20	25	
Concrete cone failure	Increasing factor for N _{Rk,p}		[-]					be \				
Spacing (Edge distance) S _{cr.N} (C _{cr.N}) [mm] 3 h _{ef} (1,5 h _{ef})	Concrete cone failure						· 20					
Factor for concrete (acc. to CEN/TS 1992-4) uncracked k _{ucr} [-] 10,1 10,	Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Spacing (Edge distance) s _c	cr,N (C _{cr,N})	[mm]			•	3 h _{ef} (1,5 h _{ef})		•		
CEN/TS 1992-4 uncracked k _{ucr} [-] 10,1	Clacke	d k _{cr}	[-]				7	,2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		d k _{ucr}	[-]				10),1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· •	Scrsn	[mm]	120	160	120	140	150	140	180	21	
$ \begin{array}{ c c c c c c c c } \hline \textbf{Anchor size} & \textbf{TSM 12} & \textbf{TSM 14} \\ \hline \textbf{Nominal embedment depth} & \textbf{h}_{nom} & [mm] & 65 & 85 & 100 & 75 & 100 & 11 \\ \hline \textbf{Installation safety factor} & \gamma_{2} = \gamma_{inst} & [-] & & & & & & & & & & & & & & & & & & &$	· · · · · · · · · · · · · · · · · · ·										10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					TSI	VI 12			TSI	VI 14		
		h	[mm]	65			100	75			115	
	·											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12 - Tillst						, -				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N _{Rks}	[kN]		6	67			9	94		
tension load in concrete C20/25 $\frac{\text{Voc}}{\text{uncracked}} = \frac{\text{N_{Rk,p}}}{\text{uncracked}} = \frac{\text{IN_{Rk,p}}}{\text{uncracked}} = \frac{\text{IN_{Rk,p}}}{\text{uncracked}} = \frac{\text{IN_{Rk,p}}}{\text{Increasing factor for N_{Rk,p}}} = \frac{\text{Increasing factor for N_{Rk,p}}}{\text{Increasing factor for N_{Rk,p}}} = \text{Increasing fact$	Pull-out failure	11110										
tension load in concrete C20/25 uncracked $N_{Rk,p}$ [kN] 16 Increasing factor for $N_{Rk,p}$ for strength classes > C20/25 Ψ_{C} [-] $\left(\frac{f_{Ck,cube}}{25}\right)^{0,5}$ Concrete cone failure Effective anchorage depth N_{ef} [mm] 50 67 80 58 79 92 Spacing (Edge distance) $N_{cr,N}$ [mm] N_{ef} [mm] N_{ef	Clacke	d N _{Rk n}	[kN]	12						4)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tension load in				\dashv	1)				1)		
Concrete cone failure Effective anchorage depth hef [mm] 50 67 80 58 79 92 Spacing (Edge distance) scr,N (ccr,N) [mm] 3 hef (1,5 hef) Factor for concrete (acc. to CEN/TS 1992-4) cracked kucr [-] 7,2 Splitting Spacing scr,sp [mm] 150 210 240 180 240 28 Edge distance ccr,sp [mm] 75 105 120 90 120 14	Increasing factor for N _{Rk,p}						$(f_{ck,cu})$	be				
							(25	, ,				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		h .	[mm]	50		;7 T	80	58	7	'a T	92	
	<u> </u>			30		,, I				<u>, </u>		
(acc. to CEN/TS 1992-4) uncracked k _{ucr} [-] 10,1 Splitting Spacing s _{cr,sp} [mm] 150 210 240 180 240 28 Edge distance c _{cr,sp} [mm] 75 105 120 90 120 14												
Splitting Spacing s _{cr,sp} [mm] 150 210 240 180 240 28 Edge distance c _{cr,sp} [mm] 75 105 120 90 120 14	(acc. to											
Spacing s _{cr,sp} [mm] 150 210 240 180 240 28 Edge distance c _{cr,sp} [mm] 75 105 120 90 120 14	0214/10 1002 4/	u Nucr	[-]				10	7, 1				
Edge distance c _{cr,sp} [mm] 75 105 120 90 120 14			[mana]	150		10	240	100		40	200	
0 0,09 1 1										-		
Pull-out is not decisive		O _{Cr,sp}	[111111]	73	'	05	120	90	1,	20	140	
Screwbolt TSM	Dull out is not decision											

Anchor size			TSI	M 6		TSM 8			TSM 10)		
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0					
Steel failure without lever arm												
Characteristic load	$V_{Rk,s}$	[kN]	7		13	3,5	17	22,5	3	4		
Factor of ductility acc. to CEN/TS 1992-4	k ₂	[-]				0,8	8					
Steel failure with lever arm								_				
Characteristic bending moment	$M^0_{\ Rk.s}$	[Nm]	10,	9		26			56			
Concrete pry-out failure Factor k acc. to ETAG 001, Annex C or k ₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1,	,0		1,0		1,0	2	2,0		
Concrete edge failure												
Effective length of anchor	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68		
Outside diameter of anchor	d_{nom}	[mm]	6	3		8		10				
Anchor size			TSM 12				TSM	Л 14				
Nominal embedment depth	h_{nom}	[mm]	65	8	5	100	75	10	00	115		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0					
Steel failure without lever arm												
Characteristic load	$V_{Rk,s}$	[kN]	33,5		42			56	56			
Factor of ductility acc. to CEN/TS 1992-4	k ₂	[-]		•		0	,8					
Steel failure with lever arm												
Characteristic bending moment	$M^0_{\ Rk.s}$	[Nm]		11	3			18	5			
Concrete pry-out failure												
Factor k acc. to ETAG 001, Annex C or k ₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1,0		2,0		1,0		2,0			
Concrete edge failure												
Effective length of anchor	$I_f = h_{ef}$	[mm]	50	6	7	80	58	7	'9	92		
Outside diameter of anchor	d_{nom}	[mm]		1	2			1	4			
Screwbolt TSM												

electronic copy of the eta by dibt: eta-16/0655

Table C3:	Characteristic	resistance	for seismic	loading,	Category	/ C1	ĺ
-----------	----------------	------------	--------------------	----------	----------	------	---

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14				
				151/110						
Nominal embedment depth	h_{nom}	[mm]	65	85	100	115				
Installation safety factor	γ ₂	[-]		1,	,0					
Tension load										
Steel failure										
Characteristic resistance	$N_{Rk,s.seis}$	[kN]	27	45	67	94				
Pull-out failure										
Characteristic resistance in concrete C20/25 to C50/60	$N_{Rk,p,seis}$	[kN]	12		1)					
Concrete cone failure										
Effective anchorage depth	h_{ef}	[mm]	52	68	80	92				
Spacing	S _{cr,N}	[mm]		3	h _{ef}					
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}							
Shear load										
Steel failure without lever arm										
Characteristic resistance	$V_{Rk,s,seis}$	[kN]	8,5	15,3	21,0	22,4				
Concrete pry-out failure										
Factor k acc. to ETAG 001, Annex C	k	[-]	1,0	1,0 2,0						
Concrete edge failure										
Effective length of anchor	$I_f = h_{ef}$	[mm]	52	68	80	92				
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14				
1)										

¹⁾ Pull-out is not decisive

Screwbolt TSM	
Performance Characteristic values for seismic loading, Category C1	Annex C3

Table C4: Characteristic values under fire exposure

Anchor s	ize			TSI	M 6		TSM 8	3	ī	SM 1	0	1	SM 1	2	1	SM 1	4
Nominal embedme depth	ent	h _{nom}	[mm]	40 55		45	55	65	55	75	85	65	85	100	75	100	115
Steel failure (tension and shear load)																	
	R30			0,	0,9		2,4			4,4			7,3			10,3	
eristic	R60	$N_{Rk,s,fi}$	ri. Nia	0,	,8		1,7			3,3			5,8			8,2	
Characteristic resistance	R90	$=$ $V_{Rk,s,fi}$	[kN]	0,	,6		1,1			2,3			4,2		5,9		
Cha	R120			0,	,4	0,7			1,7			3,4			4,8		
Steel fail	ure with	lever arr	n														
	R30			0,	,7	2,4			5,9			12,3			20,4		
eristic	R60	n a 0	[Nima]	0,	,6		1,8		4,5 3,0			9,7 7,0			15,9 11,6		
Characteristic bending moment	R90	$M^0_{Rk,s,fi}$	[Nm]	0	,5		1,2										
Cha ben mor	R120			0,	,3		0,9		2,3			5,7			9,4		
Spacing		S _{cr,fi}	[mm]						4 h _{ef}								
Edge dist	ance	C _{cr,fi}	[mm]							2	h _{ef}						

The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to TR 020 / CEN/TS 1992-4. If no value for $N_{Rk,p}$ is given, in Eq. 2.4 and Eq. 2.5, TR 020 (or Eq. D1 and D.2, CEN/TS 1992-4) $N_{Rk,p}$ must be replaced by the value of $N_{Rk,c}^0$.

Screwbolt TSM	
Performance Characteristic values under fire exposure	Annex C4

Table C5: Displacements under tension load

Anchor size				TS	М 6		TSM 8			TSM 1	10
Nominal embed	Nominal embedment depth h _{nor}		[mm]	40	55	45	55	65	55	75	85
	Tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6
Cracked concrete	Displacement -	δ_{N0}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9
	Displacement	$\delta_{N\infty}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2
	Tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9
Uncracked Displacer	Displacement -	δ_{N0}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0
	Displacement	$\delta_{N\infty}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2
Anchor size					TSN	/I 12	_		TSN	Л 14	
Anchor size Nominal ember	dment depth	h _{nom}	[mm]	65	TSN		100	75		// 14	115
Nominal embed	dment depth Tension load	h _{nom}	[mm]	65 5,7	8		100	75 7,6	10		115 15,1
Nominal embed	Tension load		[kN]		9	5			10	00	
Nominal embed	•	N	[kN]	5,7	9	5	12,3	7,6	10 12 0	2,0	15,1
Nominal embed	Tension load	$N \\ \delta_{N0}$	[kN]	5,7 0,9	9 0 1	5 ,4 ,5	12,3 1,0	7,6 0,5	10 12 0	00 2,0 ,8	15,1 0,7
Nominal embed	Tension load Displacement	$\begin{array}{c} N \\ \delta_{\text{N0}} \\ \delta_{\text{N}\infty} \end{array}$	[kN] [mm] [mm]	5,7 0,9 1,0	8 9 0 1 13	5 ,4 ,5 ,2	12,3 1,0 1,2	7,6 0,5 0,9	10 12 0 1 16	00 2,0 ,8 ,2	15,1 0,7 1,0

Table C6: Displacements under shear load

Anchor size			TSI	VI 6	TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth	h_{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Shear load	V	[kN]	3	3,3		8,6		16,2		20,0		30,5				
Diaplacement	δ_{V0}	[mm]	1,	1,55		2,7		2,7		4,0		3,1				
Displacement	$\delta_{V\infty}$	[mm]	3	,1	4,1		4,3			6,0			4,7			

Screwbolt TSM

Performance
Displacements

Annex C5