

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0818 of 8 December 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

FIF - CN

Nailed-in anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

11 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, Edition February 2011, used as European Assessment Document (EAD)

according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0818

Page 2 of 11 | 8 December 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z71656.16 8.06.04-259/16

European Technical Assessment ETA-16/0818 English translation prepared by DIBt

Page 3 of 11 | 8 December 2016

Specific Part

1 Technical description of the product

The fischer nailed-in anchor FIF-CN consists of an anchor sleeve with an enlarged shaft made of polypropylene, an insulation plate made of glass fibre reinforced polyamide and a specific compound nail (for FIF-CN 60-180) made of glass fibre reinforced polyamide with galvanized steel or a specific nail (for FIF-CN 200-340) made of galvanised steel which is installed together with a plastic cylinder made of glass fibre reinforced polyamide.

The anchor may in addition be combined with the anchor plates DT 90, DT 110 and DT 140.

The illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Requirements with respect to the mechanical resistance and stability of non- load bearing parts of the works are not included in this Essential requirement but are under the Essential Requirement safety in use.

3.2 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of the Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.3 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Point thermal transmittance	See Annex C 1
Plate stiffness	See Annex C 1
Displacements	See Annex C 1

Z71656.16 8.06.04-259/16

European Technical Assessment ETA-16/0818

Page 4 of 11 | 8 December 2016

English translation prepared by DIBt

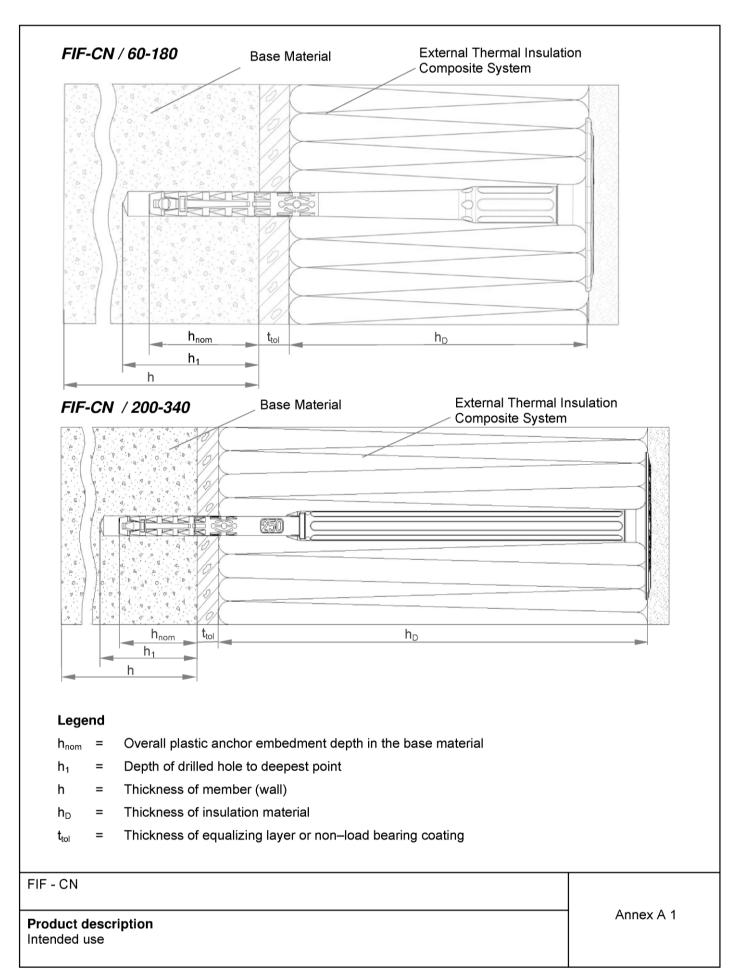
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

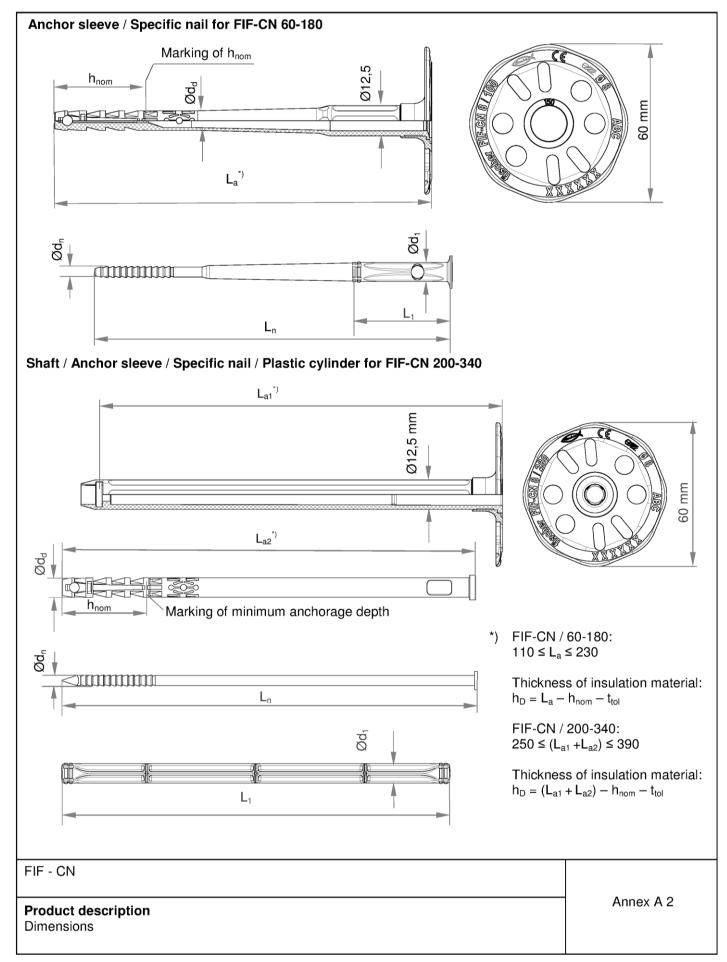
In accordance with guideline for European technical approval ETAG 014, February 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 8 December 2016 by Deutsches Institut für Bautechnik


Andreas Kummerow beglaubigt:
p. p. Head of Department Ziegler

Z71656.16 8.06.04-259/16

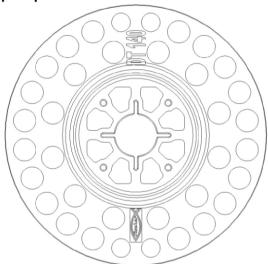
English translation prepared by DIBt

electronic copy of the eta by dibt: eta-16/0818

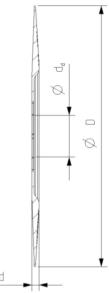
English translation prepared by DIBt

Table A1: Marking

Anchor type	FIF-CN
Name and size of anchor	FIF-CN 8
Thickness of insulation material	60, 80, 100, 120,, 340
Example	FIF-CN 8/100 (optional) CE (optional) Ø 8 ABC


Table A2: Dimensions [mm]

Anchor type	Ancho	r sleeve	Sh	aft	Specific nail			nail Plastic cylinder		
	Ø d _d	h _{nom}	La	$L_{a1}+L_{a2}$	Ø d _n	Ln	Ø d₁	L ₁	$Ø d_2$	
FIF-CN 60-180	8	35	110-230	-	4,5	L _a - 4	8	40	1	
FIF-CN 200-340	8	35	-	250-390	4,5	$(L_{a1} + L_{a2}) - L_1 - 4$	-	157	8	


Table A3: Materials

Designation	Material
Anchor sleeve	PP colour: grey
Shaft (FIF-CN / 200-340)	PA6 GF colour: grey
Plastic cylinder (FIF-CN / 200-340)	PA6 GF nature
Specific compound nail (FIF-CN / 60-180) or specific nail (FIF-CN / 200-340)	PA6 GF with Steel gal Zn A2G or A2F acc. to EN ISO 4042:2001 Steel gal Zn A2G or A2F according to EN ISO 4042:2001
Anchor plate	PA6 GF colour: grey

Drawing of the slip-on plates

Slip-on plate	Ø D [mm]	Ø d _d [mm]	d [mm]	Material
DT 90	90	22,5	3,9	PA 6 GF
DT 110	110	22,5	3,9	PA 6 GF
DT 140	140	22,5	3,9	PA 6 GF

FIF - CN

Product descriptionMarking, dimensions, materials,
Slip-on plates combined with FIF-CN

Annex A 3

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C1.
- Solid masonry (use category B), according to Annex C1.
- Hollow or perforated masonry (use category C), according to Annex C1.
- For other base materials of the use categories A, B, C the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).

Design:

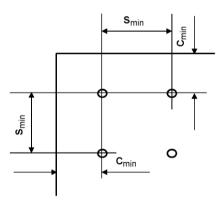
- The anchorages are designed in accordance with ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchors is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings for non-structural applications, according to ETAG 014 Edition February 2011.

Installation:

- Hole drilling by the drill modes according to Annex C1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering \leq 6 weeks.

FIF - CN	
Intended use Specifications	Annex B 1

English translation prepared by DIBt

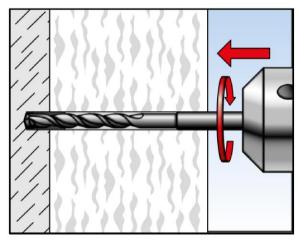

Table B1: Installation parameters

Anchor type				FIF-CN
Nominal drill hole diameter	d_0	=	[mm]	8
Cutting diameter of drill bit	\mathbf{d}_{cut}	≤	[mm]	8,45
Depth of drill hole to deepest point	h₁	≥	[mm]	45
Overall plastic anchor embedment depth in the base material	h_{nom}	>	[mm]	35

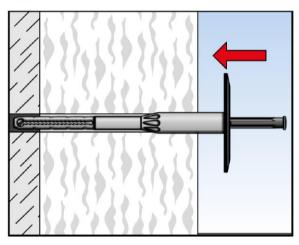
Table B2: Anchor distances and dimensions of members

Anchor type				FIF-CN
Thickness of member	h	≥	[mm]	100
Minimum spacing	S _{min}	=	[mm]	100
Minimum edge distance	C _{min}	=	[mm]	100

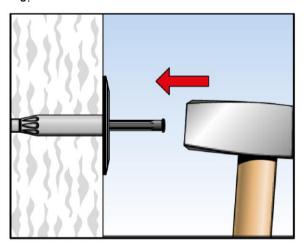
Scheme of distances and spacing



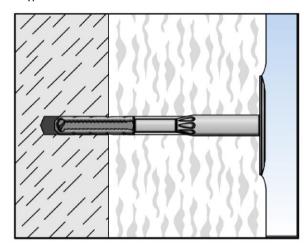
FIF - CN	
Intended use Installation parameters, minimum thickness of member, edge distances and spacings	Annex B 2


Installation instructions

1.


1. Drill hole by corresponding drilling method

2.


2. Set-in anchor manually

3.

3. Set anchor by hammer blows

4.

4. Correctly installed anchor

FIF - CN

electronic copy of the eta by dibt: eta-16/0818

Intended use

Installation instructions

Annex B 3

Z72851.16

Table C1: Characteristic resistance to tension loads N_{Rk} in concrete and masonry for a single anchor in kN

Base material	Bulk density class p [kg/dm ³]	Minimum compressive strength f _b [N/mm ²]	Remarks	Drill mode ¹⁾	Characteristic resistance FIF-CN 8 N _{Rk} [kN]
Concrete C16/20 - C50/60	-	-	EN 206-1:2000	Н	0,9
Clay bricks e.g. acc. to DIN 105-100:2012-01, EN 771-1:2011,Mz	≥ 2,0	12	Cross section reduced up to 15% by perforation vertically to the resting area	Н	0,9
Vertically perforated clay bricks e.g. acc. to DIN 105-100:2012-01, EN 771-1:2011, HLz	≥ 1,0	12	Cross section reduced up to 15% by perforation vertically to the resting area	R	0,6

¹⁾ H = Hammer drilling, R = Rotary drilling

Table C2: Point thermal transmittance acc. to EOTA Technical Report TR 025:2007-06

Anchor type	Thickness of insulation material h _D [mm]	Point thermal transmittance
FIF-CN / 60-180	60	0,001
	80 - 180	0,000
FIF-CN / 200-340	200 - 300	0,000
FIF-CN / 200-340	320 - 340	0,001

Table C3: Plate stiffness acc. to EOTA Technical Report TR 026:2007-06

Table Co. Flate Stilliess a	CC. LO EOTA TECHNICAL NE	poil in 020.2007-00	
Anchor type	Max. size of the anchor plate	Load resistance of the anchor plate	Plate stiffness
	[mm]	[kN]	[kN/mm]
FIF-CN	60	1,63	0,63

Table C4: Displacements

Base material	Bulk density class p [kg/dm³]	Minimum compressive strength f _b [N/mm ²]	Tension load N [kN]	Displacements δ_{m} [mm]
Concrete C16/20 - C50/60 (EN 206-1:2000)	-	-	0,30	0,3
Clay brick, Mz (e.g. acc. to DIN 105-100:2012-01, EN 771-1:2011)	≥ 2,0	12	0,30	0,5
Vertically perforated clay brick, HLz (e.g. acc. to DIN 105-100:2012-01, EN 771-1:2011)	≥ 1,0	12	0,20	0,2

FIF - CN	
Performances	Annex C 1
Characteristic resistance of the anchor	
Point thermal transmittance, plate stiffness and displacements	