

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0107 of 22 March 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Bonded anchor for use in concrete

EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND

EJOT Herstellwerk 24

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0107

Page 2 of 20 | 22 March 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 22 March 2016

Specific Part

1 Technical description of the product

The "EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete" is a bonded anchor consisting of a cartridge with injection mortar MULTIFIX USF or MULTIFIX USF winter and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 / C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0107

Page 4 of 20 | 22 March 2016

English translation prepared by DIBt

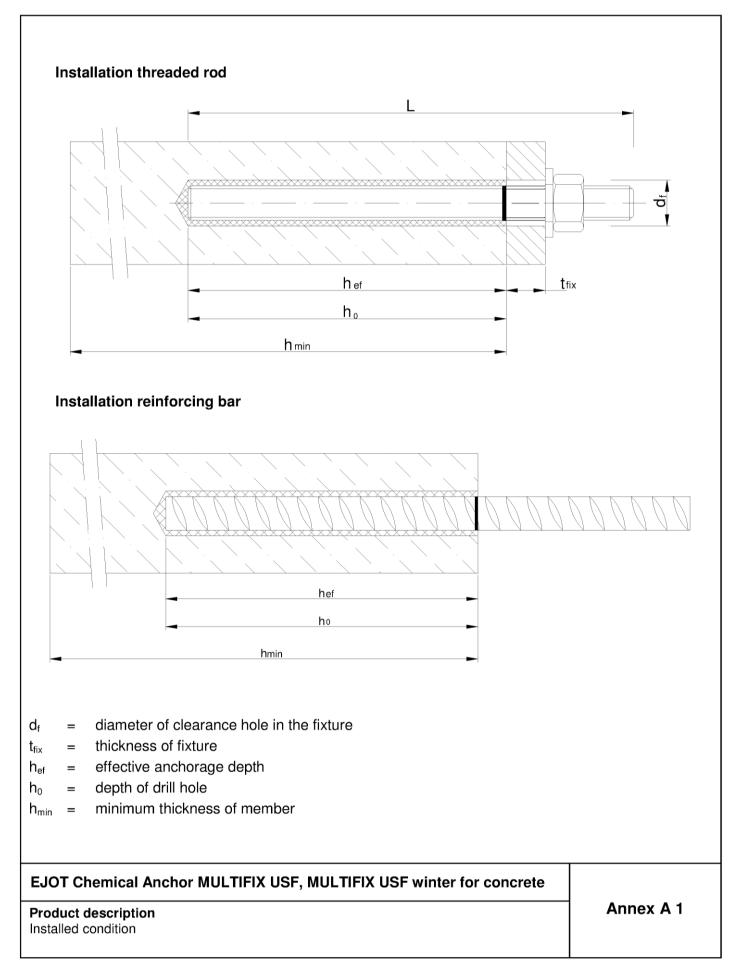
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

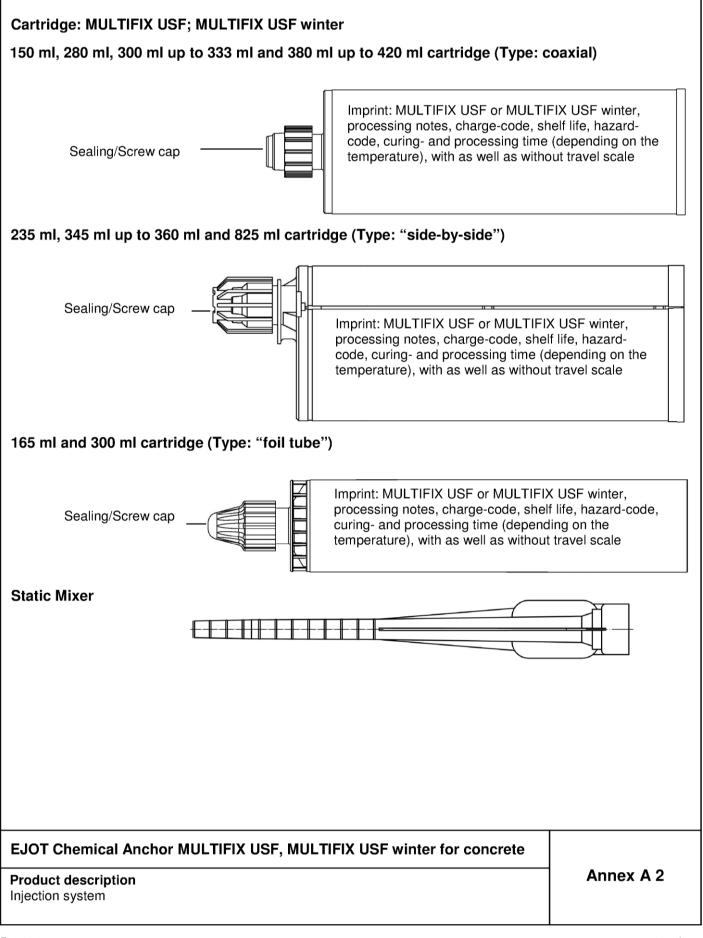
The system to be applied is: 1

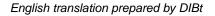
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 22 March 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider


Page 5 of European Technical Assessment ETA-16/0107 of 22 March 2016


English translation prepared by DIBt

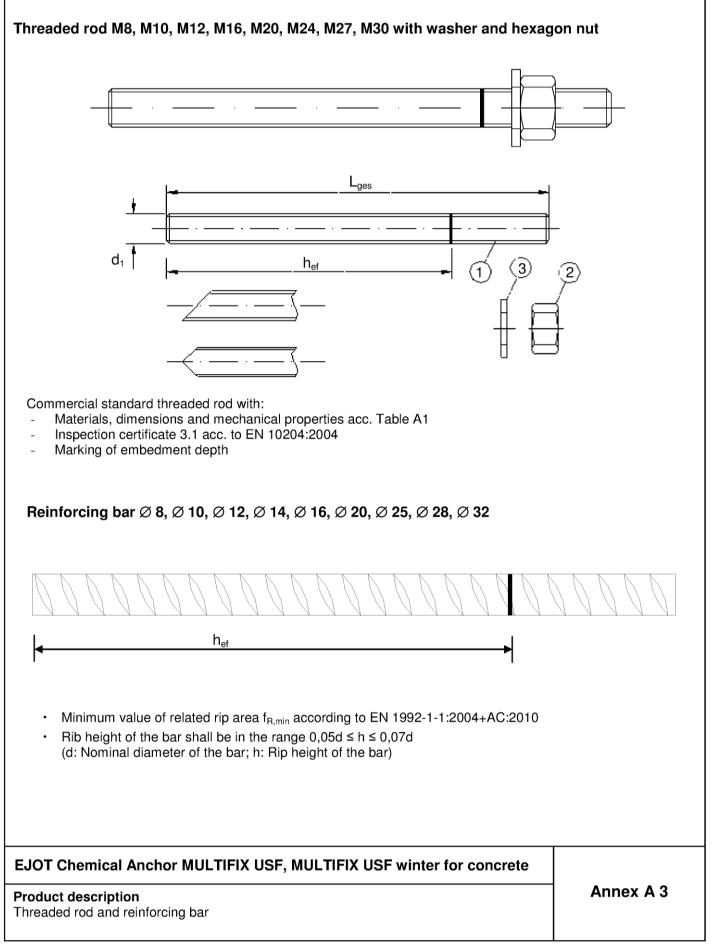


Table A1: Materials

Part	Designation	Material						
	zinc plated ≥ 5 μm acc. to EN ISO 4042:19							
Steel,	, hot-dip galvanised ≥ 40 μm acc. to EN IS							
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.8, 8.8, EN 1993 $A_5 > 8\%$ fracture elongation						
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 1026 Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.8 rod) EN IS6 Property class 8 (for class 8.8 rod) EN IS6	EN ISO 898-2:2012, O 898-2:2012,					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised						
Stain	less steel							
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 \leq M24: Property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation						
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 100 > M24: Property class 50 (for class 50 roc \leq M24: Property class 70 (for class 70 roc	d) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005						
High	corrosion resistance steel							
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:200 > M24: Property class 50 EN ISO 3506-1 \leq M24: Property class 70 EN ISO 3506-1: A ₅ > 8% fracture elongation	:2009					
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:200 > M24: Property class 50 (for class 50 roc ≤ M24: Property class 70 (for class 70 roc	d) EN ISO 3506-2:2009					
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:200	05					
Reinf	orcing bars							
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA:2013					
	T Chemical Anchor MULTIFIX USF, M luct description	ULTIFIX USF winter for concrete	Annex A 4					

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- · Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Intended Use Specifications

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Anchor Size						IVI 20	111 24		IN 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharge depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]		_{ef} + 30 m ≥ 100 mn				h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Intended Use

Installation parameters

Steel brush

Table B3: Parameter cleaning and setting tools

Threaded Rod	Repar		- Repar		d₀ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)		
M8		10	12	10,5			
M10	8	12	14	12,5			
M12	10	14	16	14,5	No		
	12	16	18	16,5	piston plug required		
M16	14	18	20	18,5			
	16	20	22	20,5			
M20	20	24	26	24,5	# 24		
M24		28	30	28,5	# 28		
M27	25	32	34	32,5	# 32		
M30	28	35	37	35,5	# 35		
	32	40	41,5	40,5	# 38		

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm – uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 40 mm

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Intended Use

Cleaning and setting tools

Installation inst	ructions
	1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar
	Attention! Standing water in the bore hole must be removed before cleaning.
4x	2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.
or	The hand-pump can only be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm.
4x	Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.
<u>₩₩₩₩₩₩₩₩₩</u> ₩₩	 2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).
or	2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand-pump can only be used for anchor sizes in uncracked concrete up to bore hole diameter 20mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.
4x	After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.
	3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working time (Table B4 or B5) as well as for new cartridges, a new static-mixer shall be used.
	4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.
EJOT Chemical A	nchor MULTIFIX USF, MULTIFIX USF winter for concrete

Intended Use Installation instructions

Installation inst	ructions (continuation)
	6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4 or B5.
	Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
+20°C	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 or B5).
	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Intended Use Installation instructions (continuation)

			time				
e temp	erature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾				
to	-6°C	90 min ²⁾	24 h ²⁾				
to	-1°C	90 min	14 h				
to	+4°C	45 min	7 h				
to	+9°C	25 min	2 h				
to	+19°C	15 min	80 min				
to	+29°C	6 min	45 min				
to	+34°C	4 min	25 min				
to	+39°C	2 min	20 min				
+ 40 °0	0	1,5 min	15 min				
e temp	erature	+5°C to +40°C					
temper	ature must l aximum \	be at min. +15°C. Working time and minimum curing	time				
e temp	erature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾				
to	-16°C	75 min	24 h				
to	-11°C	55 min	16 h				
	to to to to to to to to to e temp crete t e temp crete t m M	MULTIFIX (to -6°C to -1°C to -1°C to +4°C to +9°C to +9°C to +9°C to +29°C to +29°C to +34°C to +39°C + 40 °C e temperature crete the curing time temperature must for the momentum of the temperature to the temperature to -16°C	MULTIFIX USF e temperature Gelling- / working time to -6°C 90 min ²) to -1°C 90 min to +4°C 45 min to +9°C 25 min to +9°C 15 min to +9°C 6 min to +39°C 2 min to +34°C 4 min to +39°C 2 min + 40 °C 1,5 min - e temperature +5°C to crete the curing time must be doubled. temperature must be at min. +15°C. Maximum Working time and minimum curing MULTIFIX USF winter e temperature Gelling- / working time to -16°C 75 min				

Concre	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete ¹⁾
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 Min
+	10 °C		6 min	60 Min
Cartrido	ge tem	perature	-20°C to	9 +10°C

¹⁾ In wet concrete the curing time must be doubled.

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Intended Use

Annex B 6

Curing time

electronic copy of the eta by dibt: eta-16/0107

Table C1: Cha	aracteristic valu	les of resis	tance ι	Inder	tensi	on loa	nds					
Anchor size threaded r	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30	
Steel failure												
Characteristic tension re	esistance	N _{Rk,s} =N _{Rk,s,seis}	[kN]				As	• f _{uk}				
Combined pull-out and	l concrete failure											
Characteristic bond resis	stance in non-cracked co	ncrete C20/25										
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9	
40°Ċ/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5		not adr	nissible		
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5	
80°C/50°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5		not adr	nissible		
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0	
120°C/72°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible		
Characteristic bond resis	stance in cracked concre	te C20/25				_	_	_	_			
	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]			5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,seis}}$	[N/mm ²]	not adr	niecihlo	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C	flooded bore hole	$ \begin{array}{ c c c c c c c } \mbox{matrix} & [kN] & & & & & & & & & & & & & & & & & & &$										
		$\tau_{\text{Rk,seis}}$	[N/mm ²]			3,7	3,7		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
	dry and wet concrete	$\tau_{\rm Rk,cr}$	· · ·			4,0	4,0	4,0	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4,5		
Temperature range II:	ary and wet concrete	$ au_{Rk,seis}$	[N/mm ²]	not adr	M 8 M 10 M 12 M 16 M 20 M24 M27 As $\cdot f_{ikk}$ Image: Second	3,1						
80°C/50°C	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	lioraa		4,0	4,0		1110not admissible $8,5$ 7,5not admissible $6,5$ 5,5not admissible $5,5$ $6,5$ $3,8$ $4,5$ not admissible $4,0$ $4,5$ $2,8$ $3,1$ not admissible $3,0$ $3,5$ $2,1$ $2,4$ not admissiblenot admissible $3,0$ $3,5$ $2,1$ $2,4$ not admissiblenot admissible 100 $1,5$ $2,1$ $2,4$ 100 $1,5$ $2,1$ $2,4$ $1,5$ $1,2,4$ $1,5$ $1,2,4$ $1,5$ $1,2,4$ $1,5$ $1,5,5$ $2,1$ $2,4$ $1,5$ $1,5,5,5$ $1,5,5$ $1,5,5,5,5,5$ $1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5$			
		$ au_{Rk,seis}$					2,7		not adr	nissible	e 3,5 2,4	
	dry and wet concrete	$\tau_{Rk,cr}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,5	3,5							
Temperature range III: 120°C/72°C		$ au_{Rk,seis}$		not adr	nissible	2,0	-	,= , ,			2,4	
	flooded bore hole	$ au_{Rk,cr}$	· ·									
						2,0	,		not adr	nissible		
Increasing factors for co	ncrete											
	haracteristic tension resistance ombined pull-out and concrete failure haracteristic bond resistance in non-cracked emperature range I: 0°C/24°C flooded bore hole emperature range III: 0°C/50°C flooded bore hole emperature range III: 0°C/72°C flooded bore hole haracteristic bond resistance in cracked concrete flooded bore hole haracteristic bond resistance in cracked concrete flooded bore hole flooded bore hole dry and wet concrete flooded bore hole flooded bore hole		-									
Ψ_{c}			-				,					
		C50/60	0									
Factor according to	Non-cracked concrete	1.										
Section 6.2.2.3	Cracked concrete	- K ₈	[[-]				7	,2				
Concrete cone failure			1									
Factor according to	Non-cracked concrete	k _{ucr}	[-]				10	D,1				
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7	,2		11 10 not admissible 8,5 7,5 not admissible 6,5 5,5 not admissible 5,5 6,5 3,8 4,5 not admissible side not admissible side side		
Edge distance		C _{cr,N}	[mm]				1,5	5 h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}				
Splitting												
Edge distance		C _{cr,sp}	[mm]		1,0	$\cdot h_{ef} \le 2$	$2 \cdot h_{ef} \left(2 \right)$.5 – —) ≤ 2,4 ·	h _{ef}		
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp				
Installation safety factor	(dry and wet concrete)	$\gamma_2 = \gamma_{inst}$		1,0				1,2				
Installation safety factor	(flooded bore hole)	$\gamma_2 = \gamma_{inst}$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
EJOT Chemical	Anchor MULTIFI	X USF. MUL	TIFIX U	SF wir	nter fo	or cond	crete					

Performances

Characteristic values of resistance under tension loads

Annex C 1

nchor size threaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
teel failure without lever arm										
	V _{Rk,s}	[kN]					A₅ ∙ f _{uk}			
haracteristic shear resistance	$V_{Rk,s,seis}$	[kN]	not adr	nissible			0,35 ·	A₅ ∙ f _{uk}		
Ductility factor according to EN/TS 1992-4-5 Section 6.3.2.1	k ₂	1				0	,8			
teel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]				1.2 • V	V _{el} ∙ f _{uk}			
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[Nm]			No Perfo	ormance [Determine	d (NPD)		
concrete pry-out failure										
actor k₃in equation (27) of EN/TS 1992-4-5 Section 6.3.3 actor k in equation (5.7) of echnical Report TR 029	k ₍₃₎	K ₍₃₎				2	,0			
nstallation safety factor	$\gamma_2=\gamma_{inst}$	1,0								
concrete edge failure										
ffective length of anchor	l _t	[mm]				l _f = min(h	l _{ef} ; 8 d _{nom})			
Dutside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
nstallation safety factor	$\gamma_2 = \gamma_{inst}$					1	,0			

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Performances Characteristic values of resistance under shear loads Annex C 2

Table C3: Ch	aracteris	stic valu	les of r	esistan	ce un	der te	ensio	n Ioad	ds					
Anchor size reinforcin	g bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure														
Characteristic tension re	esistance	N _{Rk}	s = N _{Rk,s,seis}	[kN]					$A_{s} \boldsymbol{\cdot} f_{uk}$					
Combined pull-out and	d concrete fa													
Characteristic bond resi	stance in non	-cracked co	ncrete C20	/25										
Temperature range I:	dry and wet	concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	10	12	12	12	12	12	11	10	8,5	
40°C/24°C	flooded bore	e hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible		
Temperature range II:	dry and wet	concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0	
80°C/50°C	flooded bore	e hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5		not adr	nissible		
Temperature range III:	dry and wet	concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
120°C/72°C	flooded bore	e hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	4,0	5,0	5,0	5,0	5,0		not adr	nissible		
Characteristic bond resi	stance in crac	cked concre	te C20/25											
	dry and wet	concrete	$\tau_{\rm Rk,cr}$	[N/mm²]			5,5	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:	ary and wet	concrete	$\tau_{\text{Rk,seis}}$	[N/mm²]	not adr	niccihlo	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C	flooded bore	e hole	$\tau_{Rk,cr}$	[N/mm ²]	not au	11331010	5,5	5,5	5,5		not adr	nissible		
			$\tau_{\text{Rk,seis}}$	[N/mm ²]			3,7	3,7	3,7		not adr	nissible		
	dry and wet	concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]			4,0	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range II:			$\tau_{\text{Rk,seis}}$	[N/mm ²]	not adr	nissible	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C	flooded bore	e hole	$\tau_{\rm Rk,cr}$	[N/mm ²]			4,0	4,0	4,0			nissible		
			$\tau_{\text{Rk,seis}}$	[N/mm ²]			2,7	2,7	2,7		1	nissible		
	dry and wet	concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	-		3,0	3,0	3,0	3,0	3,0	3,5	3,5	
Temperature range III: 120°C/72°C			$\tau_{\text{Rk,seis}}$	[N/mm ²]	not adr	nissible	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
120 0/12 0	flooded bore	e hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	-		3,0	3,0	3,0		not admissible			
			τ _{Rk,seis}	[N/mm²] 5/30			2,0	2,0	2,0 1,02		not adr	nissible		
				0/37					1,02					
Increasing factors for co				5/45					1,07					
(only static or quasi-stat ψ_c	ic actions)		C4	0/50					1,08					
				5/55					1,09					
			C5	0/60					1,10					
Factor according to CEN/TS 1992-4-5	Non-cracked	d concrete	- k ₈	[-]					10,1					
Section 6.2.2.3	Cracked cor	ncrete							7,2					
Concrete cone failure														
Factor according to CEN/TS 1992-4-5	Non-cracked	d concrete	k _{ucr}	[-]					10,1					
Section 6.2.3.1	Cracked cor	ncrete	k _{cr}	[-]					7,2					
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}					
Axial distance			S _{cr,N}	[mm]					3,0 h _{ef}					
Splitting														
Edge distance			C _{cr,sp}	[mm]			1,0 · h _{ef}	≤2·h _e	ef (2,5 -	$\left(\frac{h}{h_{ef}}\right) \leq$	2,4 · h _{ef}			
Axial distance			S _{cr,sp}	[mm]					2 c _{cr,sp}					
Installation safety factor	(dry and wet	concrete)	$\gamma_2 = \gamma_{inst}$		1,0				1	,2				
Installation safety factor	(flooded bore	e hole)	$\gamma_2=\gamma_{inst}$				1,4				not adr	nissible		
EJOT Chemical Performances Characteristic values					IX USI	= wint	er for	conci	rete		Anne	ex C 3	3	

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	V _{Rk,s}	[kN]				0,	50 • A _s •	f _{uk}			
Characteristic shear resistance	$V^0_{Rk,s,seis}$	[kN]		ot ssible			0,3	35 • A _s •	f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm	·										
	M ⁰ _{Rk,s}	[Nm]				1.	2 • W _{el} •	f _{uk}			
Characteristic bending moment	M ⁰ _{Rk,s} [Nm] 1.2 · W _{el} · f _{uk} M ⁰ _{Rk,s,seis} [Nm] No Performance Determined (NPD						(NPD)				
Concrete pry-out failure	·										
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎						2,0				
Installation safety factor	$\gamma_2 = \gamma_{inst}$						1,0				
Concrete edge failure											
Effective length of anchor	I _f	[mm]				$I_f = m$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	γ2 = γinst						1,0				-

EJOT Chemical Anchor MULTIFIX USF, MULTIFIX USF winter for concrete

Performances

Annex C 4

Characteristic values of resistance under shear loads

Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]					0,0)70		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]					0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]					0,1	70		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	· ·				0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]					0,1	70		
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]					0,2	245		

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \ \cdot \ \tau;$

Displacements under shear load¹⁾ (threaded rod) Table C6:

Anchor size thre	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	d concrete C2	0/25								
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked con	crete C20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]			0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]		-	0,17	0,15	0,14	0,13	0,12	0,10
$\delta_{V0} = \delta_{V0}$ -facto $\delta_{V\infty} = \delta_{V\infty}$ -facto		V: action shear loa								
EJOT Chemic	al Anchor M	ULTIFIX USF, M	ULTIFIX US	SF wint	er for o	concre	te			
Performances								An	nex C	5

Displacements (threaded rods)

electronic copy of the eta by dibt: eta-16/0107

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°Cັ	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,07
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]						0,070			
40°C/24°Cັ	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	-					0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]						0,170			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]]	-				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]						0,170			
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	1					0,245			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: D	·τ; ·τ;	nent τ: action bond nent under si			ebar)						
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C8: D	τ; τ; isplacen	τ: action bond	hear lo	ad ¹⁾ (r	-	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C8: D Anchor size reinfor	τ; τ; isplacen prcing bar	τ: action bond			ebar) Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C8: D Anchor size reinfo	τ; τ; prcing bar crete C20/2	τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø10	Ø 12						Ø 3
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C8: D Anchor size reinfor	τ; τ; brcing bar crete C20/2 δ _{vo} -factor	τ: action bond	hear lo Ø 8 0,06	oad ¹⁾ (r Ø 10 0,05	-	0,04	0,04	0,04	Ø 25 0,03 0,05	0,03	0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-} \text{factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-} \text{factor} \end{split}$ Table C8: D Anchor size reinfor Non-cracked concord All temperature	τ; isplacen prcing bar crete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor	τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø10	Ø 12				0,03		Ø 3 0,03 0,04
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C8: D Anchor size reinfor Non-cracked conc All temperature ranges Cracked concrete	τ; isplacen prcing bar crete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor	τ: action bond	hear lo Ø 8 0,06	oad ¹⁾ (r Ø 10 0,05	Ø 12	0,04	0,04	0,04	0,03	0,03	0,03
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-}\text{factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-}\text{factor} \end{split}$ Table C8: D Anchor size reinfor Anchor size reinfor Non-cracked conc All temperature Cracked concrete Cracked concrete Cracked concrete Concrete	τ; τ; isplacen prcing bar crete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor C20/25 $δ_{V0}$ -factor $δ_{V\infty}$ -factor $δ_{V\infty}$ -factor ne displacen V;	<pre> τ: action bond nent under s 25 [mm/(kN)] [mm/(kN)] [mm/(kN)]</pre>	hear lo Ø 8 0,06 0,09	oad ¹⁾ (r Ø 10 0,05	Ø 12 0,05 0,08	0,04	0,04	0,04	0,03	0,03	0,0
$ δ_{N0} = δ_{N0}$ -factor $ δ_{N\infty} = δ_{N\infty}$ -factor Table C8: D Anchor size reinfor Non-cracked conc All temperature ranges Cracked concrete All temperature ranges ¹⁾ Calculation of th	τ; τ; isplacen prcing bar crete C20/2 $δ_{V0}$ -factor $δ_{V\infty}$ -factor C20/25 $δ_{V0}$ -factor $δ_{V\infty}$ -factor $δ_{V\infty}$ -factor ne displacen V;	<pre> τ: action bond nent under s 25 [mm/(kN)] [mm/(kN)] [mm/(kN)] ment</pre>	hear lo Ø 8 0,06 0,09	oad ¹⁾ (r Ø 10 0,05	Ø 12 0,05 0,08 0,11	0,04 0,06 0,11	0,04 0,06 0,10	0,04 0,05 0,09	0,03 0,05 0,08	0,03 0,04 0,07	0,0

Displacements (rebar)