

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0204 vom 9. Dezember 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Betonschraube BSZ

Betonschraube in den Größen 6, 8, 10, 12 und 14 mm zur Verankerung im Beton

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

MKT Werk 5, D

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 3: "Hinterschnittdübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU)

Nr. 305/2011, und Europäisches Bewertungsdokument

(EAD) 330011-00-0601, ausgestellt.

ETA-16/0204 vom 14. Juni 2016

Europäische Technische Bewertung ETA-16/0204

Seite 2 von 16 | 9. Dezember 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z77540.16 8.06.01-548/16

Europäische Technische Bewertung ETA-16/0204

Seite 3 von 16 | 9. Dezember 2016

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Betonschraube BSZ ist ein Dübel in den Größen 6, 8, 10, 12 und 14 mm aus galvanisch verzinktem bzw. zinklamellenbeschichtetem Stahl, aus nichtrostendem oder hochkorrosionsbeständigem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Widerstände für statische und quasi-statische Beanspruchungen	Siehe Anhang C 1 und C 2
Charakteristische Widerstände für die seismische Kategorie C1	Siehe Anhang C 3
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 5

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang C 4

3.3 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 001, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, und Europäisches Bewertungsdokument EAD 330011-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z77540.16 8.06.01-548/16

Europäische Technische Bewertung ETA-16/0204

Seite 4 von 16 | 9. Dezember 2016

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

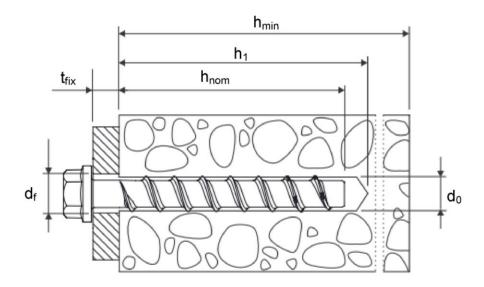
Ausgestellt in Berlin am 9. Dezember 2016 vom Deutschen Institut für Bautechnik

Andreas Kummerow i. V. Abteilungsleiter

Beglaubigt

Z77540.16 8.06.01-548/16

Produkt und Einbauzustand


Betonschraube BSZ

BSZ verzinkt

BSZ A4 BSZ HCR

 $\begin{array}{lll} d_0 & = & Bohrernenndurchmesser \\ h_{nom} & = & nominelle Einschraubtiefe \\ h_1 & = & Bohrlochtiefe \\ h_{min} & = & Mindestbauteildicke \\ t_{fix} & = & Dicke des Anbauteils \\ \end{array}$

d_f = Durchmesser Durchgangsloch im Anbauteil

Betonschraube BSZ

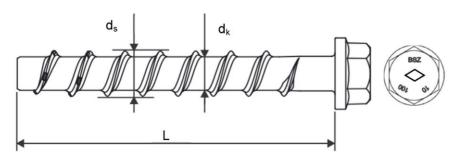
Produktbeschreibung Produkt und Einbauzustand

Anhang A1

Z77992.16

Tabelle A1:	Ausführungen und	Benennung
-------------	------------------	-----------

	Ausführung		BSZ -	Beschreibung
1	_	•	ВІ	Ausführung mit metrischem Anschlussgewinde und Innensechskant
2	= ==	0	В	Ausführung mit metrischem Anschlussgewinde und Sechskantantrieb
3			SUTX	Ausführung mit Sechskantkopf, angepresster Unterlegscheibe und TORX-Antrieb
4	—		SU	Ausführung mit Sechskantkopf und angepresster Unterlegscheibe
5	—	154 8, 0°	S	Ausführung mit Sechskantkopf
6	—	2000	SK	Ausführung mit Senkkopf und TORX-Antrieb
7	(LK	Ausführung mit Linsenkopf und TORX-Antrieb
8	(20,00	GLK	Ausführung mit großem Linsenkopf und TORX-Antrieb
9		•	BSK	Ausführung mit Senkkopf und metrischem Anschlussgewinde
10		•	BS	Ausführung mit Sechskantantrieb und metrischem Anschlussgewinde
11		0	М	Ausführung mit Innengewinde und Sechskantantrieb


Betonschraube BSZ

Produktbeschreibung Ausführungen und Benennung Anhang A2

Tabelle A2: Abmessungen

Schr	Schraubengröße		BSZ 6		BSZ 8		BSZ 10			BSZ 12			BSZ 14		4		
	inelle chraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Schr	Schraubenlänge L ≤ [mm]			500													
Gewinde	Kern- durchmesser	d _k	[mm]	5	5,1		7,1			9,1		11,1			13,1		
Gew	Außen- durchmesser	ds	[mm]	7	,5		10,6			12,6			14,6			16,6	

Prägung

> oder TSM 10 100

◇ BSZ Dübelbezeichung (ggf. mit Herstelleroder kennung ♦) TSM

10 Schraubengröße

100 Schraubenlänge

zusätzliche Kennung für

nichtrostenden Stahl

HCR zusätzliche Kennung für

> hochkorrosionsbeständigen Stahl

Tabelle A3: Werkstoffe

Ausführung	Stahl, verzinkt BSZ	Hochkorrosions- beständiger Stahl BSZ HCR					
Material	Stahl EN 10263-4 galvanisch verzinkt nach EN ISO 4042 oder zinklamellenbeschichtet nach EN ISO 10683 (≥ 5μm) Stahl EN 10263-4 galvanisch 1.4401, 1.4404, 1.4571, 1.4578						
Nominelle charakteristische Streckgrenze f _{yk}	560 N/mm²						
Nominelle charakteristische Zugfestigkeit f _{uk}	700 N/mm²						
Bruchdehnung A _s	≤ 8%						

Betonschraube BSZ

Produktbeschreibung

Abmessungen, Prägungen und Werkstoffe

Anhang A3

Angaben zum Verwendungszweck

Beanspruchung der Verankerung:

- · statische und quasi-statische Beanspruchung,
- Verwendung für Verankerungen, bei denen Anforderungen an die Feuerwiderstandsdauer gestellt werden
- Verwendung für Verankerungen mit seismischer Beanspruchung der Kategorie C1, Größen 8-14 für die maximale Verankerungstiefe je Durchmesser

Verankerungsgrund:

- bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000-12,
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000-12,
- gerissener und ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Änmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

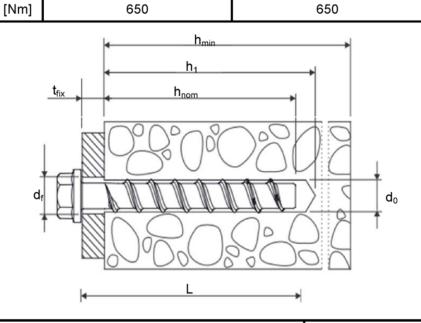
Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, usw.).
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C, Bemessungsverfahren A, Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A.
- Bemessung der Verankerungen unter Brandbeanspruchung nach:
 - EOTA Technischer Report TR 020, Ausgabe Mai 2004 oder
 - CEN/TS 1992-4:2009, Anhang D
 - (Es muss sichergestellt werden, dass keine lokalen Abplatzungen der Betonoberfläche auftreten)
- Bemessung der Verankerungen unter seismischer Beanspruchung nach:
 - EOTA Technischer Report TR 045, Ausgabe Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B. plastische Gelenke) der Betonkonstruktion anzuordnen.
 - Eine Abstandsmontage oder die Montage auf M\u00f6rtelschicht ist f\u00fcr seismische Einwirkungen nicht erlaubt.
- Das Bemessungsverfahren nach ETAG 001, Anhang C gilt auch für die in Anhang B2, Tabelle B1 angegebenen Durchmesser d_f des Durchgangslochs im Anbauteil.
- In CEN/TS 1992-4-1, Abschnitt 5.2.3.1 wird der 3. Anstrich wie folgt ersetzt: nur die ungünstigsten Dübel einer Gruppe nehmen Querlasten auf, wenn der Durchmesser d_f des Durchgangslochs im Anbauteil größer ist als die Werte nach CEN/TS 1992-4-1, Tabelle 1.
- Die Bedingung gemäß CEN/TS 1992-4-1, Abschnitt 5.2.3.3, Nr. 3) gilt auch für die in Anhang B2, Tabelle B1 angegebenen Durchmesser d_f des Durchgangslochs im Anbauteil als erfüllt.

Einbau:

- Bohrlocherstellung durch Hammerbohren,
- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters,
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Nach der Montage ist ein leichtes Weiterdrehen des Dübels nicht möglich, der Schraubenkopf liegt am Anbauteil an und ist nicht beschädigt,
- Das Bohrloch darf mit Injektionsmörtel MKT BSZ-FM gefüllt werden,
- Adjustierung nach Anhang B4, Größen 8-14, alle Verankerungstiefen.

Betonschraube BSZ	
Verwendungszweck Spezifikationen	Anhang B1


Tabelle B1: Montageparameter

Schraubengröße			BS	Z 6		BSZ 8			BSZ 10			
Nominelle Einschraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85		
Bohrernenndurchmesser	d_0	[mm]	(3		8			10			
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6	,4		8,45			10,45			
Bohrlochtiefe	h ₁ ≥	[mm]	45	60	55	65	75	65	85	95		
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	8		12			14				
Anbauteildicke	\mathbf{t}_{fix}	[mm]	t _{fix} = L				L - h _{nom}	h _{nom}				
Installationsmoment für Schrauben mit metrischem Anschlussgewinde	T _{inst} ≤	[Nm]	10		20			40				
Tangential-Schlagschrauber 1)	$T_{imp,max}$	[Nm]	16	30	300			400				
Schraubengröße				BS	SZ 12			BSZ 14				
Nominelle Einschraubtiefe	h _{nom}	[mm]	65	8	5	5 100		;	100	115		
Bohrernenndurchmesser	d ₀	[mm]		1	2	2			14			
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]		12	2,5			•	14,5			
Bohrlochtiefe	h₁ ≥	[mm]	75	9	5	110	85	5	110	125		
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	1		6			18				
Anbauteildicke	\mathbf{t}_{fix}	[mm]				t _{fix} =	L - h _{nom}					
Installationsmoment für Schrauben mit metrischem Anschlussgewinde	T _{inst} ≤	[Nm]		6	0			80				

 Einbau mit Tangential-Schlagschrauber mit maximaler Leistungsabgabe T_{imp,max} gemäß Herstellerangabe möglich.

 $T_{imp,max} \\$

Tangential-Schlagschrauber 1)

Betonschraube BSZ

Verwendungszweck Montageparameter Anhang B2

Tabelle B2: Mindestbauteildicke, minimale Achs- und Randabstände

Schraubengröße			BS	Z 6		BSZ 8		BSZ 10			
Nominelle Einschraubtiefe	h _{nom}	[mm]	40 55		45	55	55 65		55 75		
Mindestbauteildicke	h_{min}	[mm]	10	100		100	120	100	130	130	
Minimaler Achsabstand	S _{min}	[mm]	40		40	;	50	50			
Minimaler Randabstand	c _{min}	[mm]	40		40		50	50			
Schraubengröße			BSZ 12					BSZ 14			
Nominelle Einschraubtiefe	h _{nom}	[mm]	65	85	5	100	75	10	00	115	
Mindestbauteildicke	h _{min}	[mm]	120	13	0	150	130	1	50	170	
Minimaler	•	[mm]		50		70			70		

50

50

[mm]

[mm]

 \textbf{S}_{min}

 \mathbf{C}_{min}

70

70

50

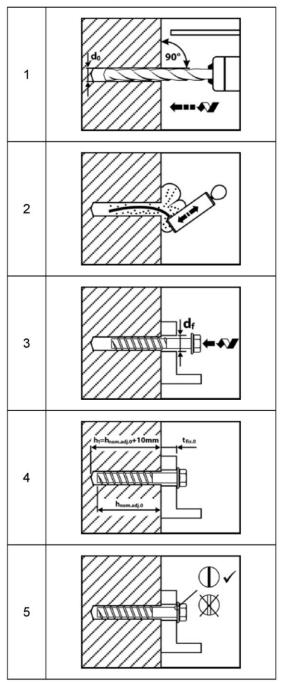
50

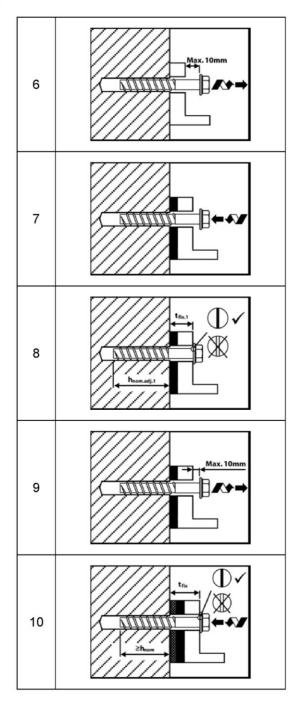
70

70

Montageanweisung

Achsabstand Minimaler


Randabstand


1	90°	Bohrloch senkrecht zur Oberfläche des Verankerungsgrundes erstellen.
2		Bohrloch vom Grund her ausblasen oder aussaugen.
3		Betonschraube eindrehen, z.B. mit Tangential-Schlagschrauber.
4		Der Schraubenkopf liegt am Anbauteil an und ist nicht beschädigt.

Betonschraube BSZ	
Verwendungszweck Mindestbauteildicke, minimale Achs- und Randabstände, Montageanweisung	Anhang B3

Montageanweisung bei Adjustierung M8-M14

- Der Dübel darf maximal zweimal adjustiert werden.
 Dabei darf der Dübel jeweils maximal um 10 mm zurück geschraubt werden.
- Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10 mm betragen.
- Die erforderliche Setztiefe h_{nom} muss nach der Adjustierung eingehalten werden (h_{nom} = L t_{fix}).

Betonschraube BSZ

Verwendungszweck

Montageanweisung bei Adjustierung

Anhang B4

Z77992.16

Tabelle C1:	Charakteristische Werte bei Zugbeanspruchung	

SchraubengrößeBSZ 6BSZ 8ENominelle Einschraubtiefe h_{nom} [mm]405545556555Montagesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-][-]1,0					
110111 2 2	BSZ 10				
Montagesicherheitsbeiwert $y_2 - y_{i-1}$ [-1]	75	85			
/Z = /INSt L]					
Stahlversagen					
Charakteristische Tragfähigkeit N _{Rk,s} [kN] 14 27	45				
Herausziehen					
Charakteristische gerissen N _{Rk,p} [kN] 2 4 5 9 12 9 Tragfähigkeit	1	1)			
im Beton C20/25 ungerissen N _{Rk,p} [kN] 4 9 7,5 12 16 12	20	25			
Erhöhungsfaktor für $N_{Rk,p}$ für Festigkeitsklassen > C20/25 Ψ_{C} [-] $\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$					
Betonausbruch					
Effektive Verankerungstiefe h _{ef} [mm] 31 44 35 43 52 43	60	68			
Achsabstand (Randabstand) $s_{cr,N}$ ($c_{cr,N}$) [mm] 3 h_{ef} (1,5 h_{ef})					
Faktor für Beton gerissen k _{cr} [-] 7,2					
(gemäß CEN/TS 1992-4) ungerissen k _{ucr} [-] 10,1					
Spalten					
Achsabstand s _{cr,sp} [mm] 120 160 120 140 150 140	180	210			
Randabstand c _{cr,sp} [mm] 60 80 60 70 75 70	90	105			
Schraubengröße BSZ 12 BSZ	BSZ 14				
Nominelle Einschraubtiefe h _{nom} [mm] 65 85 100 75 100	0	115			
nom L 1	0	115			
nom L 2	0	115			
Montagesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-] 1,0		115			
Montagesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-] 1,0 Stahlversagen		115			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		115			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		115			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		115			
Montagesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-] 1,0 Stahlversagen Charakteristische Tragfähigkeit $N_{Rk,s}$ [kN] 67 94 Herausziehen Charakteristische Zugtragfähigkeit ungerissen $N_{Rk,p}$ [kN] 12 1) Erhöhungsfaktor für $N_{Rk,p}$ [kN] 16 Erhöhungsfaktor für $N_{Rk,p}$ [-] V_{C} [-] $(f_{Ck,cube})^{0,5}$		115			
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		92			
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Montagesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-] 1,0 Stahlversagen Charakteristische Tragfähigkeit $N_{Rk,s}$ [kN] 67 94 Herausziehen Charakteristische gerissen $N_{Rk,p}$ [kN] 12 1) 1) 1) Erhöhungsfaktor für $N_{Rk,p}$ [kN] 16 Erhöhungsfaktor für $N_{Rk,p}$ [kN] 17 Festigkeitsklassen > C20/25 Betonausbruch Effektive Verankerungstiefe N_{ef} [mm] 50 67 80 58 79 Achsabstand (Randabstand) $N_{Cr,N}$ ($N_{Cr,N}$ [mm] 3 N_{ef} (1,5 N_{ef}) Faktor für Beton gerissen N_{Cr} [-] 7,2					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •				

¹⁾ Herausziehen ist nicht maßgebend.

Betonschraube BSZ

Leistung

Charakteristische Werte bei Zugbeanspruchung

Anhang C1

Tabelle C2:	Charakteristische	Werte bei	Querbeans	pruchung
-------------	-------------------	-----------	-----------	----------

Schraubengröße			BSZ (ô		BSZ 8			BSZ 1	0
Nominelle Einschraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85
Montagesicherheitsbeiwert	Iontagesicherheitsbeiwert $\gamma_2 = \gamma_{inst}$ [-]					1,	0			
Stahlversagen ohne Hebelar	m									
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]	7		1	3,5	17	22,5	3	34
Duktilitätsfaktor gemäß CEN/TS 1992-4	k ₂	[-]				0,8	3			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment	$M^0_{\ Rk.s}$	[Nm]	10,9			26			56	
Betonausbruch auf der lasta	bgewand	ten Seit	е							
Faktor k gemäß ETAG 001, Anhang C oder k₃ gemäß CEN/TS 1992-4	k ₍₃₎	[-]	1,0			1,0		1,0	2,0	
Betonkantenbruch										
Wirksame Dübellänge	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68
Wirksamer Außendurchmesser	\mathbf{d}_{nom}	[mm]	6		8				10	
Schraubengröße				BSZ	Z 12			BSZ	Z 14	
Nominelle Einschraubtiefe	h_{nom}	[mm]	65	8	5	100	75	10	00	115
						1,	^			
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]				1,	U			
Stahlversagen ohne Hebelar		[-]				1,	U			
Stahlversagen ohne Hebelar Charakteristische Tragfähigkeit		[-]	33,5		42	,	<u> </u>	56	S	
Stahlversagen ohne Hebelar Charakteristische	m		33,5		42	0,8		56)	
Stahlversagen ohne Hebelard Charakteristische Tragfähigkeit Duktilitätsfaktor gemäß CEN/TS 1992-4 Stahlversagen mit Hebelarm	$\begin{matrix} \textbf{m} \\ \textbf{V}_{\text{Rk,s}} \\ \textbf{k}_2 \end{matrix}$	[kN]	33,5		42			56	S	
Stahlversagen ohne Hebelar Charakteristische Tragfähigkeit Duktilitätsfaktor gemäß CEN/TS 1992-4	$V_{Rk,s}$ k_2	[kN]	33,5	11				18		
Stahlversagen ohne Hebelard Charakteristische Tragfähigkeit Duktilitätsfaktor gemäß CEN/TS 1992-4 Stahlversagen mit Hebelarm Charakteristisches Biegemoment Betonausbruch auf der lasta	$V_{Rk,s}$ k_2 $M^0_{Rk,s}$	[kN] [-] [Nm]		11						
Stahlversagen ohne Hebelard Charakteristische Tragfähigkeit Duktilitätsfaktor gemäß CEN/TS 1992-4 Stahlversagen mit Hebelarm Charakteristisches Biegemoment	$V_{Rk,s}$ k_2 $M^0_{Rk,s}$	[kN] [-] [Nm]		11		0,8				
Stahlversagen ohne Hebelard Charakteristische Tragfähigkeit Duktilitätsfaktor gemäß CEN/TS 1992-4 Stahlversagen mit Hebelarm Charakteristisches Biegemoment Betonausbruch auf der lasta Faktor k gemäß ETAG 001, Anhang C oder	$V_{Rk,s}$ k_2 $M^0_{Rk.s}$ bgewand	[kN] [-] [Nm] ten Seit	e	11	3	0,8	3		5	
Stahlversagen ohne Hebelard Charakteristische Tragfähigkeit Duktilitätsfaktor gemäß CEN/TS 1992-4 Stahlversagen mit Hebelarm Charakteristisches Biegemoment Betonausbruch auf der lasta Faktor k gemäß ETAG 001, Anhang C oder k3 gemäß CEN/TS 1992-4	$V_{Rk,s}$ k_2 $M^0_{Rk.s}$ bgewand	[kN] [-] [Nm] ten Seit	e		3	0,8	3	18	5	92

Betonschraube BSZ	
Leistung Charakteristische Werte bei Querbeanspruchung	Anhang C2

Tabelle C3: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1

		BSZ 8	BSZ 10	BSZ 12	BSZ 14
h _{nom}	[mm]	65	85	100	115
γ ₂	[-]		1,	,0	
$N_{\text{Rk,s.seis}}$	[kN]	27	45	67	94
$N_{Rk,p,seis}$	[kN]	12		1)	
h _{ef}	[mm]	52	68	80	92
S _{cr,N}	[mm]		3	h _{ef}	
C _{cr,N}	[mm]		1,5	h _{ef}	
$V_{Rk,s.seis}$	[kN]	8,5	15,3	21,0	22,4
ndten Seite	e (pry-o	ut)			
k	[-]	1,0		2,0	
$I_f = h_{ef}$	[mm]	52	68	80	92
d_{nom}	[mm]	8	10	12	14
	$\begin{array}{c} \gamma_2 \\ \\ N_{Rk,s.seis} \\ \\ N_{Rk,p,seis} \\ \\ N_{Rk,p,seis} \\ \\ C_{cr,N} \\ \\ C_{cr,N} \\ \\ \\ V_{Rk,s.seis} \\ \\ \\ M_{f} = h_{ef} \\ \end{array}$	$\begin{array}{c c} \gamma_2 & [\text{-}] \\ \hline N_{Rk,s.seis} & [kN] \\ \hline N_{Rk,p.seis} & [kN] \\ \hline \\ N_{Rk,p.seis} & [kN] \\ \hline \\ N_{Rk,p.seis} & [mm] \\ \hline \\ N_{Rk,s.seis} & [kN] \\ \hline \\ N_{Rk,s.seis} & [kN] \\ \hline \\ N_{Rk,s.seis} & [kN] \\ \hline \\ N_{Rk,s.seis} & [mm] \\ \hline \\ N_{Rk,s.seis} & [mm] \\ \hline \end{array}$	h _{nom} [mm] 65 γ ₂ [-] N _{Rk,s.seis} [kN] 27 N _{Rk,p,seis} [kN] 12 h _{ef} [mm] 52 s _{cr,N} [mm] C _{cr,N} [mm] V _{Rk,s.seis} [kN] 8,5 ndten Seite (pry-out) k [-] 1,0 I _f = h _{ef} [mm] 52	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h _{nom} [mm] 65 85 100 γ ₂ [-] 1,0 N _{Rk,s,seis} [kN] 27 45 67 N _{Rk,p,seis} [kN] 12 1) h _{ef} [mm] 52 68 80 s _{cr,N} [mm] 3 h _{ef} c _{cr,N} [mm] 1,5 h _{ef} V _{Rk,s,seis} [kN] 8,5 15,3 21,0 ndten Seite (pry-out) k [-] 1,0 2,0

¹⁾ Herausziehen ist nicht maßgebend.

Betonschraube BSZ	
Leistung Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1	Anhang C3

Tabelle C4: Charakteristische Werte bei Brandbeanspruchung

Schrau	Schraubengröße BSZ 6						BSZ 8			BSZ 10			BSZ 12			BSZ 14		
Nomine Einschr	lle aubtiefe	h _{nom}	[mm]	40	40 55		55	65	55	75	85	65	85	100	75	100	115	
Stahlversagen (Zug- und Quertragfähigkeit)																		
<u>o</u>	R30		0,9		9		2,4			4,4			7,3			10,3		
stisch	R60	$N_{\text{Rk},\text{s},\text{fi}}$	[[[]	0,	8		1,7			3,3			5,8			8,2		
Charakteristische Tragfähigkeit	R90	$V_{Rk,s,fi}$	[kN]	0,	6	1,1		2,3			4,2			5,9				
Char	R120			0,	4		0,7			1,7			3,4			4,8		
Stahlve	rsagen m	it Hebela	rm															
sec	R30			0,	7		2,4		5,9		12,3			20,4				
istisch nent	R60	N 4 O	[NIm]	0,	6		1,8		4,5		9,7			15,9				
Charakteristisches Biegemoment	R90	$M^0_{Rk,s,fi}$	[Nm]	0,	5		1,2			3,0		7,0			11,6			
Cha	R120			0,	3		0,9			2,3			5,7		9,4			
Achsa	bstand	S _{cr,fi}	[mm]							4	h _{ef}	•						
Randa	abstand	$C_{\text{cr,fi}}$	[mm]							2	h _{ef}							

Die charakteristischen Tragfähigkeiten für Herausziehen, Betonausbruch, Betonausbruch auf der lastabgewandten Seite und Betonkantenbruch können nach TR 020 bzw. CEN/TS 1992-4 berechnet werden. Wenn kein Wert für $N_{Rk,p}$ angegeben ist, muss in Gleichung 2.4 und 2.5, TR 020 (bzw. in Gleichung D.1 und D.2, CEN/TS 1992-4) $N_{Rk,p}$ durch den Wert von $N_{Rk,c}^0$ ersetzt werden.

Betonschraube BSZ	
Leistung Charakteristische Werte bei Brandbeanspruchung	Anhang C4

Tabelle C5: Verschiebung bei Zugbeanspruchung

Schraubengröße				BS	Z 6		BSZ 8		BSZ 10			
Nominelle Einschraubtiefe h _{nom}		h_{nom}	[mm]	40 55		45	55	65	55	75	85	
	Zuglast	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Gerissener Beton	Verschiebung	δ_{N0}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
	verschiedung	$\delta_{N\infty}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
	Zuglast	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
Ungerissener Beton	Verschiebung	δ_{N0}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
	Beton Verschiebung		[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
Schraubengröße												
Schraubengrö	Ве				BSZ	12			BSZ	14		
Schraubengrö Nominelle Eins		h _{nom}	[mm]	65		12	100	75		14	115	
Nominelle Eins		h _{nom}		65 5,7	8		100	75 7,6	10		115 15,1	
Nominelle Eins Gerissener	chraubtiefe Zuglast		[kN]		9	5			10	00		
Nominelle Eins	chraubtiefe	N	[kN] [mm]	5,7	9	5	12,3	7,6	12	2,0	15,1	
Nominelle Eins Gerissener Beton	chraubtiefe Zuglast	N δ _{N0}	[kN] [mm] [mm]	5,7 0,9	9 0 1	5 ,4 ,5	12,3 1,0	7,6 0,5	10 12 0	2,0	15,1 0,7	
Nominelle Eins Gerissener	chraubtiefe Zuglast Verschiebung	$\frac{N}{\delta_{\text{N0}}}$	[kN] [mm] [mm]	5,7 0,9 1,0	8 9 0 1 13	5 ,4 ,5 ,2	12,3 1,0 1,2	7,6 0,5 0,9	10 12 0 1 16	2,0	15,1 0,7 1,0	

Tabelle C6: Verschiebung bei Querbeanspruchung

Schraubengröße			BS	Z 6	BSZ 8			BSZ 10			BSZ 12			BSZ 14		
Nominelle Einschraubtiefe	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Querlast	V	[kN]	3	,3	8,6		16,2		20,0			30,5				
\/avaabiabaa	δ_{V0}	[mm]	1,	1,55		2,7		2,7		4,0			3,1			
Verschiebung	$\delta_{V^{\infty}}$	[mm]	3	,1		4,1			4,3			6,0			4,7	

Betonschraube BSZ

Leistung
Verschiebungen

Anhang C5