

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0241 vom 11. Mai 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

B+BTec Verbundanker VD-EA

Verbunddübel zur Verankerung im ungerissenen Beton

B+BTec Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

B+BTec Werk 1, NIEDERLANDE B+BTec Werk 2, NIEDERLANDE

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 1: "Dübel - Allgemeines", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-16/0241

Seite 2 von 14 | 11. Mai 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-16/0241

Seite 3 von 14 | 11. Mai 2016

Besonderer Teil

1 Technische Beschreibung des Produkts

Der B+BTec Verbundanker VD-EA ist ein Verbunddübel, der aus einer Glaspatrone VDP-EA und einer Ankerstange mit Sechskantmutter besteht. Die Ankerstange (einschließlich Mutter und Unterlegscheibe) besteht aus galvanisch verzinktem Stahl, feuerverzinktem Stahl, aus nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl.

Die Glaspatrone wird in ein Bohrloch gesetzt und die Ankerstange durch gleichzeitiges Schlagen und Drehen eingetrieben. Der Dübel wird durch Ausnutzung des Verbundes zwischen Ankerstange, Mörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand bei statischer und quasistatischer Belastung, Verschiebungen	Siehe Anhang C1 – C6

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Europäische Technische Bewertung ETA-16/0241

Seite 4 von 14 | 11. Mai 2016

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 11. Mai 2016 vom Deutschen Institut für Bautechnik

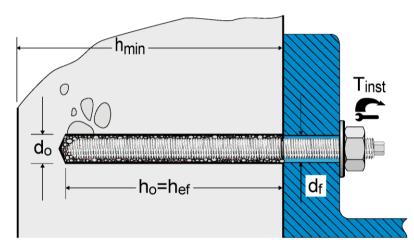
Uwe Bender Abteilungsleiter Beglaubigt:

Produkt und Einbauzustand

Mörtelpatrone VDP-EA:

Aufdruck Patrone

Hersteller:	B+BTec
Mörtelpatrone:	VDP-EA
Größe:	M


Ankerstange

Markierung Ankerstange

z.B.	B 1	6A
------	------------	----

Hersteller	В			
Größe	8, 10, 12, 16, 20, 24			
Werkstoff				
Stahl galvanisch	verzinkt, Festigkeitsklasse 5.8	Α	nichtrostender Stahl 1.4401, Festigkeitsklasse 70	С
Stahl galvanisch	verzinkt, Festigkeitsklasse 8.8	В	nichtrostender Stahl 1.4404, Festigkeitsklasse 70	K
Stahl feuerverzin	kt, Festigkeitsklasse 5.8	Н	nichtrostender Stahl 1.4529, Festigkeitsklasse 70	E
Stahl feuerverzin	kt, Festigkeitsklasse 8.8	1	nichtrostender Stahl 1.4565, Festigkeitsklasse 70	R
			nichtrostender Stahl 1.4571, Festigkeitsklasse 70	D
			nichtrostender Stahl 1.4401, Festigkeitsklasse 80	M
			nichtrostender Stahl 1.4404, Festigkeitsklasse 80	Р
			nichtrostender Stahl 1.4571, Festigkeitsklasse 80	0

B+BTec Verbundanker VD-EA

Produktbeschreibung

Produkt und Einbauzustand

Anhang A 1

Tabelle A1: Werkstoffe

Teil	Bezeichnung	Werkstoff			
1	Ankerstange	Festigkeitskl. 5.8 bis 8.8		Nichtrostender Stahl 1.4401, 1.4404	Nichtrostender Stahl 1.4529 oder
		galvanisch verzinkt	feuerverzinkt EN ISO	oder 1.4571 Festigkeitskl.	1.4565
		≥ 5µm gemäß EN ISO	10684:2004+AC:2009 A ₅ > 8%	A4-70 oder A4-80 EN ISO	Festigkeitskl. 70
		4042:1999 A₅ > 8% Bruchdehnung	Bruchdehnung	3506-1:2009 A₅ > 8% Bruchdehnung	EN ISO 3506-1:2009 A ₅ > 8%
2	Unterlegscheibe		 Stahl	Nichtrostender	Bruchdehnung Nichtrostender
_	omenegeenelse	galvanisch verzinkt ≥ 5µm gemäß EN ISO 4042:1999	feuerverzinkt EN ISO 10684:2004+AC:2009	Stahl 1.4401, 1.4404 oder 1.4571	Stahl 1.4529 oder 1.4565
			 37:2006 oder EN ISO 70	 89:2000 bis EN ISC	7094:2000
3	Mutter	Festigke	Stahl eitskl. 5 bis 8 0 898-2:2012 feuerverzinkt	Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571	Nichtrostender Stahl 1.4529 oder 1.4565
		verzinkt ≥ 5µm gemäß EN ISO 4042:1999	EN ISO 10684:2004+AC:2009	Festigkeitskl. A4- 70 oder A4-80	Festigkeitskl. 70
			EN ISO 4032:2012 ode	 er FN ISO 4034·201:	3506-2:2009
4	Mörtelpatrone	Glas Quarz Harz Härter	Z.1.133 4332.2312 0dd	111100 4004.2011	-

Tabelle A2: Abmessungen

Teil	Bezeichnung			M8	M10	M12	M16	M20	M24
	Ankerstange	Da	[mm]	M8	M10	M12	M16	M20	M24
L '	Alikerstatige	$L_a \ge$	[111111]	95	100	120	140	190	235
2	Unterleggebeibe	s	[mm]	1,6	2,1	2,5	3,0	3,0	4,0
_	Unterlegscheibe	d	[mm]	16	21	24	30	37	44
3	Mutter	SW	[mm]	13	17	19	24	30	36
	Märtalnatrona	Dp	[mm]	9	11	13	17	22	24
4	Mörtelpatrone	L_p^{\cdot}	[mm]	80	80	95	95	175	210

B+BTec Verbundanker VD-EA	
	Anhang A 2
Produktbeschreibung	Aillially A 2
Werkstoffe	
Abmessungen	

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

• Statische und quasi-statische Lasten: alle Größen.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- Ungerissener Beton: alle Größen.

Temperaturbereich:

- I: 40 °C bis +40 °C (max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
- II: 40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume
- (verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen unter statischen und quasi-statischen Lasten erfolgt nach:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Fassung September 2010 oder
 - CEN/TS 1992-4:2009

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Trockener oder nasser Beton: alle Größen.
- Bohrlochherstellung durch Hammerbohren.
- Bohrlochlochreinigung:
 - vollständiges Entfernen von im Bohrloch eventuell vorhandenem Wasser und Reinigung des Bohrlochs durch mindestens 1x Blasen / 1x Bürsten / 1x Blasen / 1x Bürsten; Reinigen mit dem vom Hersteller gelieferten Reinigungsgeräten; vor dem Ausbürsten Säubern der Bürste und Überprüfung, ob der Bürstendurchmesser nach Anhang B 2, Tabelle B3 eingehalten ist. Beim Einführen der Stahlbürste in das Bohrloch muss ein deutlicher Widerstand spürbar sein. Andernfalls ist eine neue Stahlbürste oder eine mit größerem Durchmesser zu verwenden.
- Die Temperatur im Verankerungsgrund muss mindestens +5 °C betragen und darf während der Aushärtung des Verbunddübels –5 °C nicht unterschreiten.

B+BTec Verbundanker VD-EA	
B-B-ec verbandanker vb-LA	
	Ambana D.4
Verwendungszweck	Anhang B 1
Spezifikationen	
opozimation -	

Tabelle B1: Montagekennwerte

Dübelgröße			M8	M10	M12	M16	M20	M24
Bohrernenndurchmesser	d_0	[mm]	10	12	14	18	25	28
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	10,5	12,5	14,5	18,5	25,5	28,5
Bohrlochtiefe	h ₀	[mm]	80	90	110	125	170	210
Effektive Verankerungstiefe	h_{ef}	[mm]	80	90	110	125	170	210
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	9	12	14	18	22	26
Stahlbürstendurchmesser	D	[mm]	11	13	16	20	27	30
Montagedrehmoment	T_{inst}	[Nm]	10	20	40	80	120	180

Stahlbürste

Montageanleitung

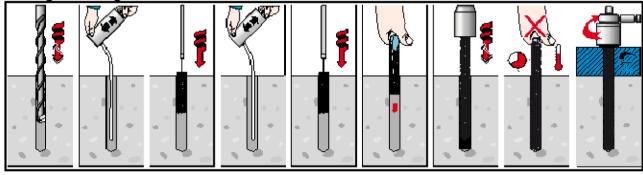


Tabelle B2: Mindestbauteildicke, Achs- und Randabstand

Dübelgröße			M8	M10	M12	M16	M20	M24
Mindestbauteildicke	h_{min}	[mm]	110	120	140	160	220	260
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65	85	105
Minimaler Achsabstand	S _{min}	[mm]	40	45	55	65	85	105

Tabelle B3: Aushärtezeiten

Temperatur im Bohrloch	Min. Aushärtezeit im trockenen Beton	Min. Aushärtezeit im feuchten Beton
≥ - 5°C	5 Std.	10 Std.
≥ + 5°C	1 Std.	2 Std.
≥ +20°C	20 Min.	40 Min.
≥ +30°C	10 Min.	20 Min.

B+BTec Verbundanker VD-EA

Verwendungszweck

Montagekennwerte, Mindestbauteildicke, minimaler Achs- und Randabstand, Aushärtezeiten Anhang B 3

Teile aus galvanisiertes verzinktem oder feuerverzinktem Stahl

Tabelle C1: Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen								
Charakteristische Zugtragfähigkeit Festigkeitsklasse 5.8	$N_{Rk,S}$	[kN]	18	29	42	78	123	177
Charakteristische Zugtragfähigkeit Festigkeitsklasse 8.8	$N_{Rk,S}$	[kN]	29	46	67	126	196	282
Kombiniertes Versagen dur	ch Herausz	iehen ι	und Bet	onausb	ruch			
Charakteristische Tragfähigke	eit im ungeris	ssenen	Beton C	20/25 b	is C50/6	0		
Temperaturbereich I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120
Temperaturbereich II	$N^0_{Rk,p}$	[kN]	20	30	40	50	75	90
Faktor gemäß CEN/TS			10,1					
1992-4-5 Kapitel 6.2.2.3	k ₈	[-]			10), 1		
Betonausbruch								
Faktor gemäß CEN/TS					10	١ 1		
1992-4-5 Kapitel 6.2.3.1	k_{ucr}	[-]			10),1		
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}		
Achsabstand	S _{cr,N}	[mm]			3	h _{ef}		
Spalten ²⁾								
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}					
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef} 2 h _{ef}					
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]			1	,2		

Tabelle C2: Verschiebungen unter Zuglast

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	N	[kN]	8	12	16	20	30	38
Verschiebung	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N\infty}$	[mm]			0	,5		

B+BTec Verbundanker VD-EA	
Leistungen Charakteristische Werte bei Zugbeanspruchung Verschiebungen	Anhang C 1

 $au_{Rk} = N^0_{Rk,p}/(h_{ef} \cdot D_a \cdot \pi)$, D_a siehe Tabelle A2 Beim Nachweis gegen Spalten ist $N^0_{Rk,c}$ durch $N^0_{Rk,p}$ zu ersetzen

Teile aus nichtrostendem Stahl 1.4401, 1.4404 oder 1.4571

Bemessungsverfahren A Tabelle C3: Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			М8	M10	M12	M16	M20	M24
Stahlversagen								
Charakteristische Zugtragfähigkeit Festigkeitsklasse A4-70	$N_{Rk,S}$	[kN]	26	40	59	110	172	247
Charakteristische Zugtragfähigkeit Festigkeitsklasse A4-80	$N_{Rk,S}$	[kN]	29	46	67	126	196	282
Kombiniertes Versagen dur	ch Herausz	iehen ı	und Bet	onausb	ruch			
Charakteristische Tragfähigke	eit im ungeri	ssenen	Beton C	20/25 b	is C50/6	0		
Temperaturbereich I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120
Temperaturbereich II	$N^0_{Rk,p}$ 1)	[kN]	20	30	40	50	75	90
Faktor gemäß CEN/TS					10	\ 1		
1992-4-5 Kapitel 6.2.2.3	k ₈	[-]			10),1		
Betonausbruch								
Faktor gemäß CEN/TS					4.0	\ 1		
1992-4-5 Kapitel 6.2.3.1	k_{ucr}	[-]			10),1		
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}		
Achsabstand	S _{cr,N}	[mm]			3	h _{ef}		
Spalten ²⁾								
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}					
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef} 2 h _{ef}					
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{\rm inst}$	[-]			1	,2		

Tabelle C4: Verschiebungen unter Zuglast

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	N	[kN]	8	12	16	20	30	38
Verschiebung	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N\infty}$	[mm]			0,	5		

B+BTec Verbundanker VD-EA	
Leistungen Charakteristische Werte bei Zugbeanspruchung Verschiebungen	Anhang C 2

 $au_{Rk} = N^0_{Rk,p}/(h_{ef} \cdot D_a \cdot \pi)$, D_a siehe Tabelle A2 Beim Nachweis gegen Spalten ist $N^0_{Rk,c}$ durch $N^0_{Rk,p}$ zu ersetzen

Teile aus nichtrostendem Stahl 1.4529 oder 1.4565

Tabelle C5: Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen								
Charakteristische Zugtragfähigkeit Festigkeitsklasse 70	$N_{Rk,S}$	[kN]	26	40	59	110	172	247
Kombiniertes Versagen durch Herausziehen und Betonausbruch								
Charakteristische Tragfähigke	eit im ungeri	ssenen	Beton C	20/25 b	is C50/6	0		
Temperaturbereich I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120
Temperaturbereich II	$N^0_{Rk,p}$	[kN]	20	30	40	50	75	90
Faktor gemäß CEN/TS			40.4					
1992-4-5 Kapitel 6.2.2.3	k ₈	[-]	10,1					
Betonausbruch								
Faktor gemäß CEN/TS					10),1		
1992-4-5 Kapitel 6.2.3.1	k_{ucr}	[-]			10	7, 1		
Randabstand	$C_{cr,N}$	[mm]			1,5	h_{ef}		
Achsabstand	S _{cr,N}	[mm]			3	h _{ef}		
Spalten ²⁾								
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}					
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef} 2 h _{ef}					
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]			1	,2		

Tabelle C6: Verschiebungen unter Zuglast

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	N	[kN]	8	12	16	20	30	38
Verschiebung	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N\infty}$	[mm]			0,	5		

B+BTec Verbundanker VD-EA	
Leistungen	Anhang C 3
Charakteristische Werte bei Zugbeanspruchung	
Verschiebungen	

 $au_{Rk} = N^0_{Rk,p}/(h_{ef} \cdot D_a \cdot \pi)$, D_a siehe Tabelle A2 Beim Nachweis gegen Spalten ist $N^0_{Rk,c}$ durch $N^0_{Rk,p}$ zu ersetzen

Teile aus galvanisch verzinktem oder feuerverzinktem Stahl

Tabelle C7: Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit Festigkeitsklasse 5.8	$V_{Rk,S}$	[kN]	9	14	21	39	61	88
Charakteristische Quertragfähigkeit Festigkeitsklasse 8.8	$V_{Rk,S}$	[kN]	15	23	33	63	98	141
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂	[-]	0,8					
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment Festigkeitsklasse 5.8	$M^0_{Rk,S}$	[Nm]	19	37	65	166	325	561
Charakteristisches Biegemoment Festigkeitsklasse 8.8	M ⁰ _{Rk,S}	[Nm]	30	60	105	266	519	898
Betonbruch auf der lastabgewa	ndten Se	eite						
Faktor in k₃ Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3 Faktor k gemäß ETAG 001, Anhang C	k ₍₃₎	[-]	2,0					
Montagesicherheitsbeiwert n	$\gamma_2 = \gamma_{\rm inst}$	[-]			1	,0		
Betonkantenbruch								
Effektive Ankerlänge	ℓ_{f}	[mm]	80	90	110	125	170	210
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	14	18	25	28
Montagesicherheitsbeiwert 7	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		

Tabelle C8: Verschiebungen unter Querlast

Dübelgröße			M8	M10	M12	M16	M20	M24
Querlast	V	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V^{\infty}}$	[mm]	4	5	5	6	7	7

B+BTec Verbundanker VD-EA	
Leistungen Charakteristische Werte bei Querbeanspruchung Verschiebungen	Anhang C 4

Teile aus nichtrostendem Stahl 1.4401, 1.4404 oder 1.4571

Tabelle C9: Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit Festigkeitsklasse A4-70	$V_{Rk,S}$	[kN]	13	20	29	55	86	124
Charakteristische Quertragfähigkeit Festigkeitsklasse A4-80	$V_{Rk,S}$	[kN]	15	23	33	62	98	141
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂	[-]	0,8					
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment Festigkeitsklasse A4-70	M ⁰ _{Rk,S}	[Nm]	26	52	92	233	454	785
Charakteristisches Biegemoment Festigkeitsklasse A4-80	M ⁰ _{Rk,S}	[Nm]	30	60	105	266	519	898
Betonbruch auf der lastabgewa	ndten Se	eite						
Faktor in k₃ Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3 Faktor k gemäß ETAG 001, Anhang C	k ₍₃₎	[-]	2,0					
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{\text{inst}}$	[-]	1,0					
Betonkantenbruch								
Effektive Ankerlänge	ℓ_{f}	[mm]	80	90	110	125	170	210
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	14	18	25	28
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		

Tabelle C10: Verschiebungen unter Querlast

Dübelgröße			M8	M10	M12	M16	M20	M24
Querlast	V	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V^{\infty}}$	[mm]	4	5	5	6	7	7

B+BTec Verbundanker VD-EA	
Leistungen Charakteristische Werte bei Querbeanspruchung Verschiebungen	Anhang C 5

Teile aus nichtrostendem Stahl 1.4529 oder 1.4565

Tabelle C11: Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24	
Stahlversagen ohne Hebelarm									
Charakteristische Quertragfähigkeit Festigkeitsklasse 70	$V_{Rk,S}$	[kN]	13	20	29	55	86	124	
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂	[-]	0,8						
Stahlversagen mit Hebelarm									
Charakteristisches Biegemomen Festigkeitsklasse 70	t M ⁰ _{Rk,S}	[Nm]	26	52	92	233	454	785	
Betonbruch auf der lastabgewa	Betonbruch auf der lastabgewandten Seite								
Faktor in k₃ Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3 Faktor k gemäß ETAG 001, Anhang C	k ₍₃₎	[-]	2,0						
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{\text{inst}}$	[-]	1,0						
Betonkantenbruch									
Effektive Ankerlänge	ℓ_{f}	[mm]	80	90	110	125	170	210	
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	14	18	25	28	
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1	,0			

Tabelle C12: Verschiebungen unter Querlast

Dübelgröße			M8	M10	M12	M16	M20	M24
Querlast	V	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V^{\infty}}$	[mm]	4	5	5	6	7	7

B+BTec Verbundanker VD-EA

Leistungen
Charakteristische Werte bei Querbeanspruchung
Verschiebungen