

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0371 of 6 June 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

Bonded anchor for use in concrete

TRUTEK Fasteners Polska Sp z o.o Al. Krakowska 55, Sekocin Nowy 05-090 RASZYN POLEN

Factory Plant 1

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0371 English translation prepared by DIBt

Page 2 of 27 | 6 June 2016

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 27 | 6 June 2016

European Technical Assessment ETA-16/0371 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete" is a bonded anchor consisting of a cartridge with injection mortar TCM385RE, TCM585RE, TCM1000RE, TCM1400RE and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0371

Page 4 of 27 | 6 June 2016

English translation prepared by DIBt

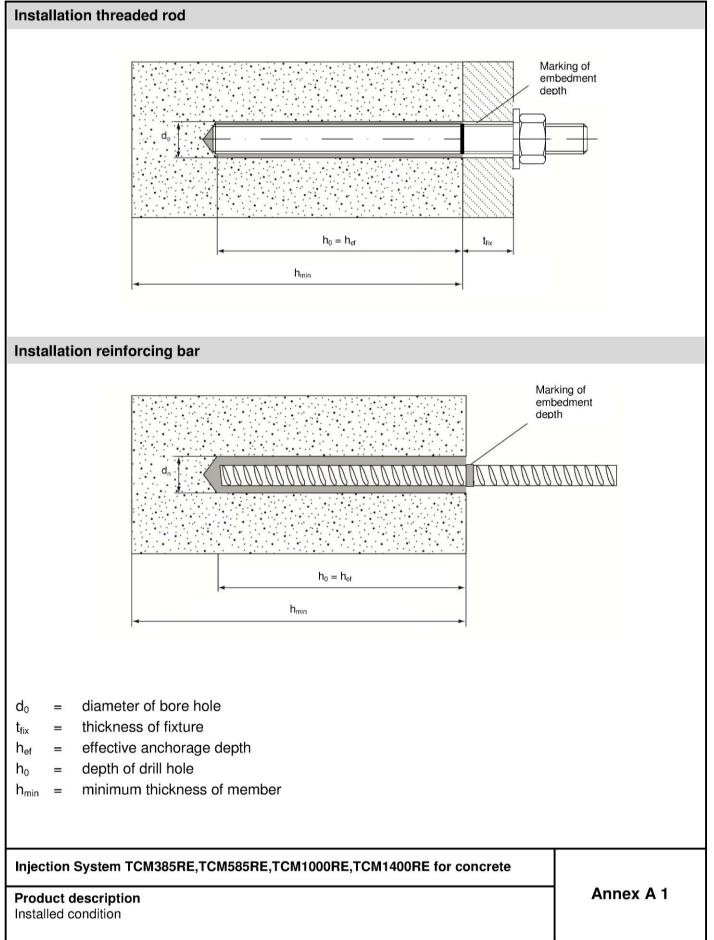
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

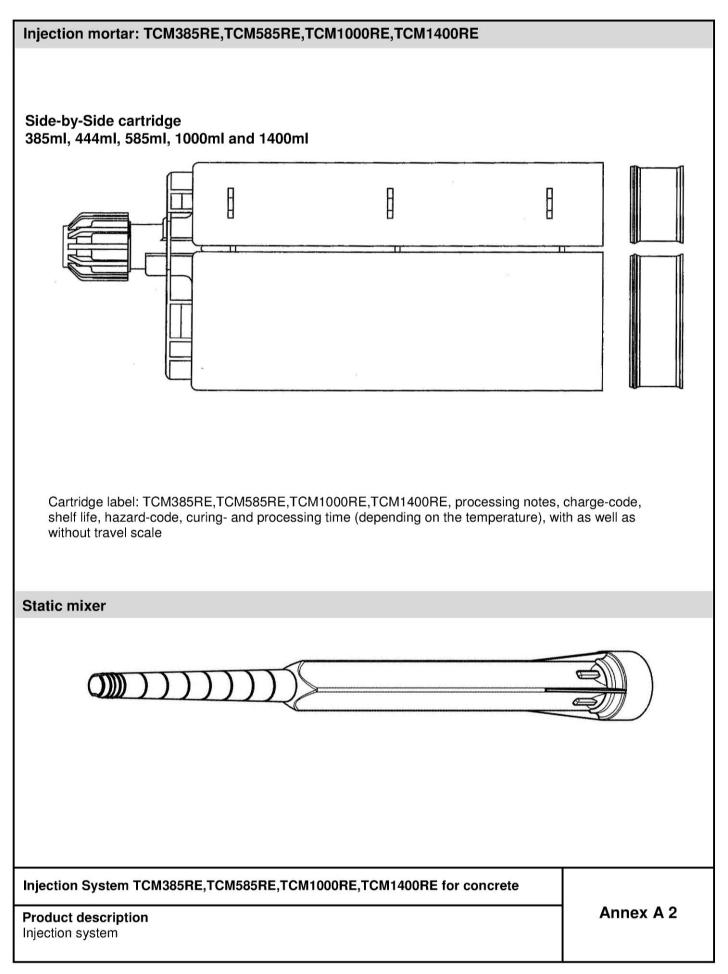
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

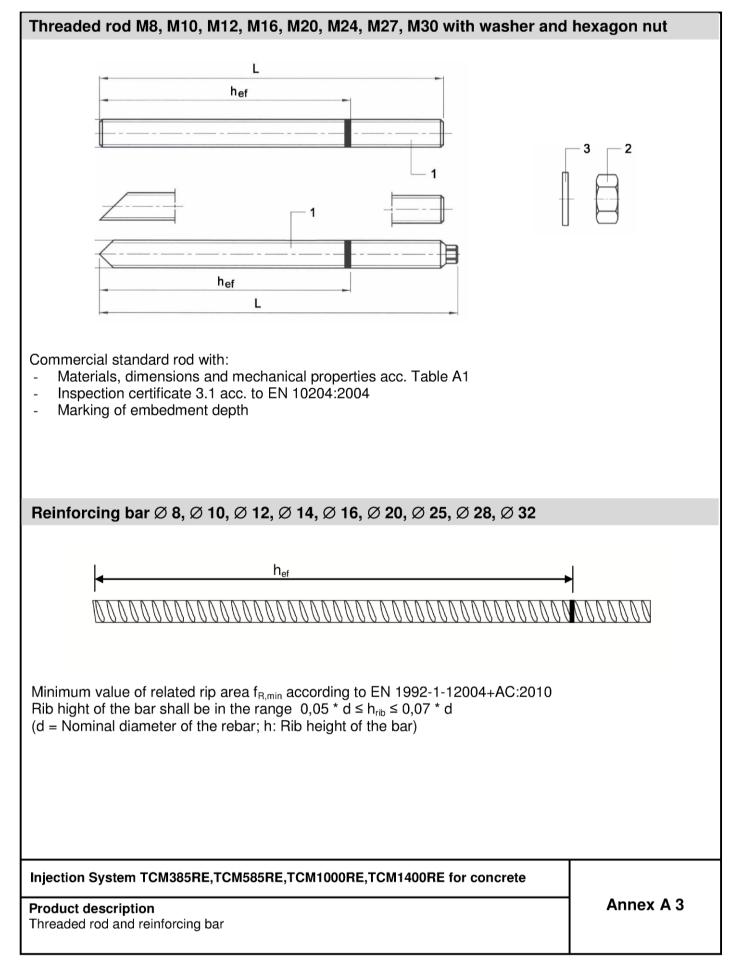
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 6 June 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-16/0371 of 6 June 2016


English translation prepared by DIBt



electronic copy of the eta by dibt: eta-16/0371

Table A1: Materials

Part	Designation	Material
	, zinc plated \ge 5 µm acc. to EN ISO 404	
not-d	Ip galvanised \geq 40 µm acc. to EN ISO 1	461:2009 and EN ISO 10684:2004+AC:2009
		Steel, EN 10087:1998 or EN 10263:2001
1	Anchor rod	Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009
		$A_5 > 8\%$ fracture elongation Steel acc. to EN 10087:1998 or EN 10263:2001
		Property class 4 (for class 4.6 rod) EN ISO 898-2:2012,
2	Hexagon nut, EN ISO 4032:2012	Property class 5 (for class 5.8 rod) EN ISO 898-2:2012,
		Property class 8 (for class 8.8 rod) EN ISO 898-2:2012,
	Washer, EN ISO 887:2006,	
3	EN ISO 7089:2000, EN ISO 7093:2000	Steel, zinc plated or hot-dip galvanised
-	or EN ISO 7094:2000	,
Stain	less steel	
		Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005,
	A mathematical	> M24: Property class 50 EN ISO 3506-1:2009
1	Anchor rod	≤ M24: Property class 70 EN ISO 3506-1:2009
		$A_5 > 8\%$ fracture elongation
		Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005,
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009
		\leq M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
	Washer, EN ISO 887:2006,	
3	EN ISO 7089:2000, EN ISO 7093:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005
	or EN ISO 7094:2000	
High	corrosion resistance steel	
		Material 1.4529 / 1.4565, EN 10088-1:2005,
1	Anchor rod	> M24: Property class 50 EN ISO 3506-1:2009
		≤ M24: Property class 70 EN ISO 3506-1:2009
		$A_5 > 8\%$ fracture elongation
_		Material 1.4529 / 1.4565 EN 10088-1:2005,
2	Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009
	Western EN 100 007 0000	≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
0	Washer, EN ISO 887:2006,	Meterial 1 4520 / 1 4565 EN 10080 1:2005
3	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005
Roinf	forcing bars	
nenn		
	Rebar EN 1992-1-1:2004+AC:2010,	Bars and de-coiled rods class B or C
1	Annex C	fyk and k according to NDP or NCL of EN 1992-1-1/NA:2013
		$f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Product description Materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- · Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

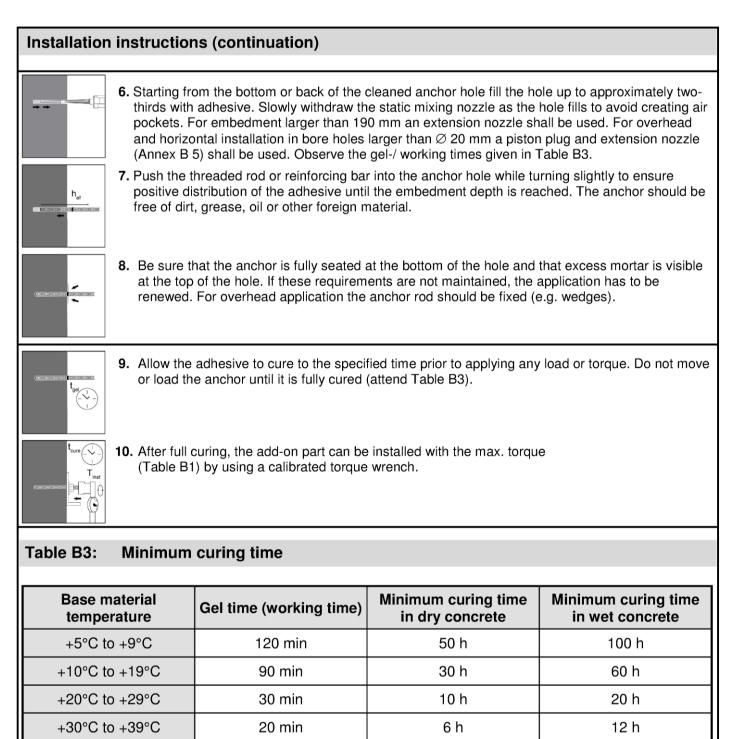
Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Table B1: Installation	parameters for	or threa	aded ro	d					
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective encharges donth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >				()			
Thickness of fixture	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]		_{∍f} + 30 m ≥ 100 mn				h _{ef} + 2d ₀		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size	Rebar size			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40		
Effective encharge depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128		
Effective anchorage depth	$h_{ef,max} [mm] =$	96	120	144	168	192	240	300	336	384		
Diameter of steel brush	d _⊳ [mm] ≥	14	16	18	20	22	26	34	37	41,5		
Minimum thickness of member	h _{min} [mm]	-	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160		
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160		


Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Intended Use Installation parameters Annex B 2

Installation instructions	
1. Drill with hammer drill a hole into the base material to the size and er by the selected anchor (Table B1 or Table B2).	nbedment depth required
Attention! Standing water in the bore hole must be removed befor	e cleaning.
 2a. Starting from the bottom or back of the bore hole, blow the hole clear (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If reached an extension shall be used. 	
or The hand-pump can be used for anchor sizes up to bore hole diamet	er 20 mm.
For bore holes larger then 20 mm or deeper 240 mm, compressed at used.	r (min. 6 bar) <u>must</u> be
 2b. Check brush diameter (Table B4) and attach the brush to a drilling m screwdriver. Brush the hole with an appropriate sized wire brush > d_t of two times. If the bore hole ground is not reached with the brush, a shall be used (Table B4). 	_{,min} (Table B4) a minimum
 2c. Finally blow the hole clean again with compressed air or a hand pum of two times. If the bore hole ground is not reached an extension sha The hand-pump can be used for anchor sizes up to bore hole diamet For bore holes larger then 20 mm or deeper 240 mm, compressed air used. 	ll be used. er 20 mm.
or After cleaning, the bore hole has to be protected against re-component appropriate way, until dispensing the mortar in the bore hole. If repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.	
 3. Attach a supplied static-mixing nozzle to the cartridge and load the cart	_
4. Prior to inserting the anchor rod into the filled bore hole, the position shall be marked on the anchor rods.	of the embedment depth
 5. Prior to dispensing into the anchor hole, squeeze out separately a min and discard non-uniformly mixed adhesive components until the mort colour. 	
Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete	
Intended Use Installation instructions	Annex B 3

4 h

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

12 min

Intended Use Installation instructions (continuation) Curing time

+40 °C

Annex B 4

8 h

Table B4: Param	neter clear	ning and se	etting tools		
Anchor	Size (mm)	Nominal drill bit diameter d₀ (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
		2		ann an	
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not necessary
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
-	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
1999,1991,1991,1993,1993,1993,1993,1993	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d_0): 10 mm to 40 mm

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Intended Use Cleaning and setting tools Annex B 5

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis Steel, property class 5.8	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resis Steel, property class 8.8	tance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) ai	۲, `	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and co	oncrete cone failure										
Characteristic bond resistar	nce in non-cracked co	ncrete C2	0/25								
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
flooded bore hole		$\tau_{\text{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
		C30/37					1,0	04			
Increasing factors for concr Ψ_c	ete	C40/50					1,	08			
		C50/60 1,10					10				
Splitting failure				1		h	h _{ef} 7				
			h / h _{ef} ≥ 2,0	1	,0 h _{ef}						
	-	0.0	h/h . 10	4.0.1	105	_ 2	,0				
Edge distance	_	2,0 >	$n / n_{ef} > 1,3$	4,6 h _{ef} - 1,8 h		1,3					
			h / h _{ef} ≤ 1,3	2,	26 h _{ef}						C _{cr,sp}
Axial distance		6	[mm]				2.0	1,0 ⋅ h	_{ef} 2,2	26∙h _{ef}	
Installation safety factor (dr	v and wat concrete)	S _{cr,sp}	[iiiii]			,2	20	cr,sp	1	,4	
Installation safety factor (flo	· ·	γ ₂				,2	1	,4		,4	
	oded bore note)	γ2						,-			

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to TR 029

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30
Steel failure									
Characteristic tension re Steel, property class 4.6	,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	34	63	98	141	184	224
Characteristic tension re Steel, property class 5.8	esistance,	$N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$	[kN]	42	78	122	176	230	280
Characteristic tension re Steel, property class 8.8	esistance,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	67	125	196	282	368	449
Characteristic tension re Stainless steel A4 and H property class 50 (>M24	esistance, HCR,	$N_{Rk,s} = N_{Rk,s,seis}$	[kN]	59	110	171	247	230	281
	d concrete cone failure)			•			•	
Characteristic bond resi	stance in cracked concr	ete C20/25							
		$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,2	No Pe	rformance I	Determined	(NPD)
40°Ċ/24°C		$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	2,4	2,1	No Pe	rformance I	Determined	(NPD)
		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Performance Determined (NPD			
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\text{Rk,sels,C2}}$	[N/mm²]	1,4	1,4	No Pe	rformance I	Determined	(NPD)
		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	$\tau_{\text{Rk,sels,C1}}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:		$\tau_{\text{Rk,sels,C2}}$	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)
72°C/43°C		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,3	1,2	No Pe	rformance I	Determined	(NPD)
Increasing factors for co	oncrete	C30/37				1,0)4		
(only static or quasi-stat	tic actions)	C40/50				1,0)8		
Ψc		C50/60				1,1			
Installation safety factor	(dry and wet concrete)	γ2	1,2 1,4				,4		

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045

Table C3:Characteristic values of resistance for threaded rods under shear loads in
cracked and non-cracked concrete (Design according to TR 029 and TR
045)

045)										r	
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s,seis,C1}$	[kN]	No Perfo		14	27	42	56	72	88	
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	13	25	No Per	formance I	Determined	(NPD)	
	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfo		18	34	53	70	91	111	
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	17	31	No Per	formance I	Determined	(NPD)	
.	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfo		30	55	85	111	145	177	
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	27	50	No Per	formance I	Determined	(NPD)	
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	$V_{Rk,s,seis,C1}$	[kN]		ormance	26	48	75	98	91	111	
property class 50 (>10/24) and 70 (≥ 10/24)	$V_{Rk,s,seis,C2}$	[kN]	Determined (NPD)		24	44	No Per	o Performance Determined (NP			
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
Characteristic bending moment, Steel, property class 4.6	$M^0_{Rk,s,seis,C1}$	[Nm]									
	$M^0_{Rk,s,seis,C2}$	[Nm]	1		No Per	formance [Determined	(NPD)			
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123	
	$M^0_{Rk,s,seis,C1}$	[Nm]	No Performance Determined (NPD)								
	$M^0_{Rk,s,seis,C2}$	[Nm]	No Performance Determined (NPD)								
	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Characteristic bending moment, Steel, property class 8.8	$M^0_{\rm Rk,s,seis,C1}$	[Nm]			No Dov						
	$M^0_{Rk,s,seis,C2}$	[Nm]	1		No Per	formance [Jetermined	I (NPD)			
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
Stainless steel A4 and HCR,	$M^0_{\rm Rk,s,seis,C1}$	[Nm]			Nie Der						
property class 50 (>M24) and 70 (\leq M24)	$M^0_{Rk,s,seis,C2}$	[Nm]	1		No Per	formance [Jetermined	I (NPD)			
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors						2	,0				
Installation safety factor	γ2					1,	,0				
Concrete edge failure			•								
See section 5.2.3.4 of Technical Report TR 0.	29 for the desig	n of Bond	led Ancho	ors							
Installation safety factor	γ2					1,	,0				
Injection System TCM385RE,TCM Performances Characteristic values of resistance for the							ked	An	nex C	3	

•	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resis	stance	N _{Rk,s}	[kN]					$A_{s} \ge f_{uk}$				
Combined pull-out and c	oncrete cone failure	<u> </u>	_									
Characteristic bond resista	ance in non-cracked co	ncrete C20	/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37	_					1,04				
Increasing factors for conc Ψ_c	prete	C40/50						1,08				
Ψ¢		C50/60					1,10					
Splitting failure		I										
		ŀ	n / h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} ↑					
	-	117 Tiet = 2,0		.,			2,0 -					
Edge distance	-	2,0 > 1	n / h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -					
		I	h / h _{ef} ≤ 1,3	2	2,26 h _{ef}		+				,	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}	1,0 ∙h _{ef}	2,26	nef	
	ry and wet concrete)					1,2		01,00		1	,4	
stallation safety factor (dry and wet concrete) γ_2 stallation safety factor (flooded bore hole) γ_2				1,2								

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029 $\,$

electronic copy of the eta by dibt: eta-16/0371

	racteristic val ked concrete							oads i	n		
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure											
Characteristic tension res	istance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]		$A_s \times f_{uk}$						
Combined pull-out and	concrete cone failure										
Characteristic bond resist	ance in cracked concre	ete C20/25									
	dry and wet	$ au_{Rk,cr}$	[N/mm ²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5	
Temperature range I:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
40°C/24°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
		$\tau_{Rk,seis,C1}$	[N/mm ²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0	
	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5	
Temperature range II:		$\tau_{Rk,seis,C1}$	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5	
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0	
	flooded bore hole	$\tau_{Rk,seis,C1}$	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0	
	dry and wet	$\tau_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
Temperature range III:	concrete	$\tau_{Rk,seis,C1}$	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
72°C/43°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
	nooded bore noie	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
		C30/37	·				1,04				
Increasing factors for con- (only static or quasi-static	actions)	C40/50					1,08				
Ψc		C50/60					1,10				
Installation safety factor (γ2			1,2			1	,4		
Installation safety factor (f	flooded bore hole)	γ2					1,4				

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Performances

Z35254.16

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
	V _{Rk,s}	[kN]				0,9	50 x A _s x	f _{uk}				
Characteristic shear resistance	[kN]	No Performance 0,44 x A _s x f _{uk} Determined (NPD)										
Steel failure with lever arm												
	[Nm]	1.2 ⋅W _{el} ⋅ f _{uk}										
Characteristic bending moment	M ⁰ Rk,s,seis,C1	[Nm]			1.2 ·W _{el} · f _{uk} No Performance Determined (NPD)							
Concrete pry-out failure												
Factor k in equation (5.7) of Technical Repo TR 029 for the design of bonded anchors	rt						2,0					
Installation safety factor	γ2						1,0					
Concrete edge failure												
See section 5.2.3.4 of Technical Report TR	029 for the de	esign of I	Bonded A	nchors								
Installation safety factor	γ2						1,0					

Annex C 6

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to TR 029 and TR 045

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	м зо	
Steel failure												
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Characteristic tension resis	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
Steel, property class 5.8 Characteristic tension resis	tance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
Steel, property class 8.8 Characteristic tension resis	tance,		1									
Stainless steel A4 and HCF property class 50 (>M24) at		$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281	
Combined pull-out and co												
Characteristic bond resistar	nce in non-cracked concre	te C20/25										
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	15	15	14	13	12	12	12	
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
60°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperature range III:	dry and wet concrete	$ au_{\mathrm{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C	flooded bore hole	$ au_{\mathrm{Rk},\mathrm{ucr}}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
Increasing factors for concr	ete	C30/37					,	04				
Ψc		C40/50 C50/60		1,08								
Factor according to CEN/TS	S 1992-4-5 Section 6.2.2.3		[-]									
Concrete cone failure								.,.				
Factor according to CEN/TS	5 1992-4-5 Section 6.2.3.1	k _{ucr}	[-]				10),1				
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}				
Splitting failure												
			h / h _{ef} ≥ 2,0	1,0) h _{ef}		2,0 -					
Edge distance		2,0 >	h / h _{ef} > 1,3	4,6 h _e	_f - 1,8 h		1,3					
		h / h _{ef} ≤ 1,3	2,2	8 h _{ef}			1,0∙h _e	h _{ef} 2,26 h _{ef}				
Axial distance		S _{cr,sp}	[mm]				2 C _{cr,sp}					
nstallation safety factor (dr	y and wet concrete)	γ inst		1,2 1,4								
Installation safety factor (flo	oded bore hole)	γinst		1,4								

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resist Steel, property class 4.6	tance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	34	63	98	141	184	224
Characteristic tension resist	tance,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resist	tance,	$N_{\text{Bk,s}} = N_{\text{Bk,seis}}$	[kN]	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resist	lance.	NRK,S = NRK,Seis	[גוא]	07	125	190	202	300	449
Stainless steel A4 and HCF property class 50 (>M24) ar	<u></u> ,	$N_{Rk,s} = N_{Rk,seis}$	[kN]	59	110	171	247	230	281
Combined pull-out and co									
Characteristic bond resistar	nce in cracked concrete C2	20/25							
		$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,2	No Per	ormance [Determine	d (NPD)
40°C/24°C		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{Rk,seis,C1}$	[N/mm²]	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	2,4	2,1	No Per	iormance [Determine	d (NPD)
		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	$\tau_{Rk,seis,C1}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Per	ormance [Determine	d (NPD
60°C/43°C		$ au_{\mathrm{Rk,cr}}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	$\tau_{Rk,seis,C1}$	[N/mm²]	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{\text{Rk,seis,C2}}$	[N/mm²]	1,4	1,4	No Per	ormance [Determine	d (NPD
		$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	dry and wet concrete	$\tau_{Rk,seis,C1}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
Temperature range III:		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,3	1,2	No Per	ormance [Determine	d (NPD
72°C/43°C		$ au_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\rm Rk,seis,C2}$	[N/mm²]	1,3	1,2	No Per	ormance [Determine	d (NPD)
ncreasing factors for concr	ete	C30/37				1,	04		
only static or quasi-static a		C40/50				1,	08		
Ψc		C50/60				1,	10		
Factor according to CEN/TS 6.2.2.3	6 1992-4-5 Section	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 6.2.3.1	S 1992-4-5 Section	k _{cr}	[-]	7,2					
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}		
Installation safety factor (dr	y and wet concrete)	γinst		1,2		1,4			
	Yinst Yinst		1,2		1,4				

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Annex C 8

electronic copy of the eta by dibt: eta-16/0371

Table C9: Characteristic valu cracked and non-o (Design according	racked c	oncre	te			ds un	der sh	ear lo	ads ir	ı
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
-	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	14	27	42	56	72	88
	$V_{Rk,s,seis,C2}$	[kN]	Determin		13	25	No Per	formance D	Determined	I (NPD)
	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s,seis,C1}$	[kN]	No Perfe	ormance	18	34	53	70	91	111
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	17	31	No Per	formance D	Determined	I (NPD)
	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s,seis,C1}$	[kN]		ormance	30	55	85	111	145	177
	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	27	50	No Per	formance E	Determined	I (NPD)
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR,	$V_{Rk,s,seis,C1}$	[kN]		ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 (\leq M24)	$V_{Rk,s,seis,C2}$	[kN]	Determin	ed (NPD)	24	44	No Per	formance E	Determined	(NPD)
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine			
	M ⁰ _{Rk,s,seis,C2}	[Nm]								
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	$M^0_{\rm Rk,s,seis,C1}$	[Nm]			No Perfo	rmance [Determine	d (NPD)		
	$M^0_{\rm Rk,s,seis,C2}$	[Nm]			1101 0110					
	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	rmance [Determine	d (NPD)		
	M ⁰ _{Rk,s,seis,C2}									
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ Rk,s,seis,C1	[Nm]			No Perfo	rmance [Determine	d (NPD)		
property class 50 (>IVI24) and 70 (> IVI24)	$M^0_{Rk,s,seis,C2}$	[Nm]						,u (, ,, _,		
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,	0			
Installation safety factor	γinst					1,	0			
Concrete edge failure										
Effective length of anchor	lt	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})			1
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,	0			
Injection System TCM385RE,TCM58	35RE,TCM1	000RE,	TCM14	00RE fo	or conc	rete		Δηι	nex C	9

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Table C10: Char crack	acteristic value ked concrete (D								n load	ds in	non	
Anchor size reinforcing ba	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resist	ance	N _{Rk,s}	[kN]					$A_{s} \ge f_{uk}$				
Combined pull-out and co	ncrete failure											
Characteristic bond resistan	ice in non-cracked concr	ete C20/2	25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37		1,04								
ncreasing factors for concrete	C40/50		1,08									
Frates a constants		C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Section 6	5.2.2.3	k ₈	[-]	10,1								
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	5.2.3.1	k _{ucr}	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure												
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}					
							2,0					
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -					
		h	/ h _{ef} ≤ 1,3	2	,26 h _{ef}		1		1,0∙h _{ef}	2,26	h _{ef}	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}	er er			
Installation safety factor (dry and wet concrete)			1	1,2 1,4						,4		
Installation safety factor (flo	oded bore hole)	γinst		1,4								
				-								

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										
Characteristic tension res	istance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				$A_{s} \ge f_{uk}$			
Combined pull-out and	concrete failure	· • • • • • • • • • • • • • • • • • • •								
Characteristic bond resist	ance in cracked concre	ete C20/25								
	dry and wet	$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C		$\tau_{\rm Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet	$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	5,5 5,5 4,5 3,5 3,5 3,5 3,5 3,0 3,0 3,0 3,0 3,0	3,5	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	4,1	3,7	3,8	3,3	3,5 3,5	3,5	3,0
	dry and wet	$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	flooded bare bala	$ au_{Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\rm Rk,seis,C1}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
Increasing factors for con	crete	C30/37					1,04			
(only static or quasi-static	actions)	C40/50					1,08			
Ψc		C50/60					1,10			
Factor according to CEN/TS 1992-4-5 Section	n 6.2.2.3	k ₈	[-]				7,2			
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Sectior	1 6.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}			
Installation safety factor (dry and wet concrete)	γinst			1,2			1	,4	
Installation safety factor (flooded bore hole)	γinst					1,4			

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm	_										
	$V_{Rk,s}$	[kN]				0,5	50 x A _s x	: f _{uk}			
Characteristic shear resistance	$V_{\text{Rk},s,\text{seis},\text{C1}}$	[kN]	Perfor Deter	lo mance mined PD)			0,4	14 x A _s x	: f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂ 0,8										
Steel failure with lever arm											
Ob	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	l _f	[mm]				$I_f = m$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor	γinst						1,0				

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Anchor Size thre	aded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked co	ncrete C20/25 unde	r static and qu	asi-stati	ic actio	n					
1000/0400	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,14
0000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
72°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Cracked concre	te C20/25 under sta	itic, quasi-stati	c and se	eismic (C1 actio	n				
	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,037	0,042	0,048	0,053	0,05
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	1		0,21	0,21	0,21	0,21	0,21	0,2
0000/4000	δ_{N0} – factor	[mm/(N/mm ²)]		ormance	0,037	0,043	0,049	0,055	0,061	0,06
60°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,24
7000/1000	δ_{N0} – factor	[mm/(N/mm ²)]	1		0,037	0,043	0,049	0,055	0,061	0,06
72°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]	1		0,24	0,24	0,24	0,24	0,24	0,24
Cracked concre	te C20/25 under sei	smic C2 action	1						•	
4000/0400	$\delta_{N,seis(DLS)}$ – factor	[mm/(N/mm ²)]			0,03	0,05				
40°C/24°C	$\delta_{\text{N},\text{seis}(\text{ULS})} - \text{factor}$	[mm/(N/mm ²)]	1		0,06	0,09				
60°C/43°C	$\delta_{N,seis(DLS)}$ – factor	[mm/(N/mm ²)]	Determined		0,03	0,05				
60°C/43°C	$\delta_{\text{N},\text{seis}(\text{ULS})} - \text{factor}$	[mm/(N/mm ²)]			0,06	0,09	No Pert	ormance	Determine	ed (NPL
	$\label{eq:delta_N,seis(ULS)} \begin{split} & \overline{\delta_{\text{N,seis}(\text{ULS})} - \text{factor}} \\ & \overline{\delta_{\text{N,seis}(\text{DLS})} - \text{factor}} \end{split}$	[mm/(N/mm ²)] [mm/(N/mm ²)]			0,06 0,03	0,09 0,05		ormance	Determine	ed (NPL
72°C/43°C	$\frac{\delta_{N,seis(DLS)} - factor}{\delta_{N,seis(ULS)} - factor}$ he displacement	[mm/(N/mm ²)] [mm/(N/mm ²)]	(NI		-	-		ormance	Determine	
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor [able C14: []	$ \begin{array}{c c} \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline he displacement \\ \cdot \tau; & \delta_{N,seis(} \\ r \cdot \tau; & \delta_{N,seis(} \\ \end{array} $	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $ULS) = \delta_{N,seis(ULS)}-fa$	(Ν ctor · τ; ctor · τ; oad ¹⁾ (1	PD) (τ: act thread	0,03 0,06 iion bonc ed roc	0,05 0,09 strength	1)			
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14:	$ \begin{array}{c c} \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline he displacement \\ \cdot \tau; & \delta_{N,seis(} \\ r \cdot \tau; & \delta_{N,seis(} \\ \hline \textbf{Displacements u} \\ \hline \textbf{eaded rod} \\ \end{array} $	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $uLS) = \delta_{N,seis(ULS)}-fa$ nder shear l	(Ν ctor · τ; ctor · τ; oad ¹⁾ (1 M 8	PD) (τ: act thread M 10	0,03 0,06 iion bonc ed roc M 12	0,05 0,09 strength I) M 16	n) M 20	M24	M 27	
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14:		$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $uLS) = \delta_{N,seis(ULS)}-fa$ $nder shear la$ $C20/25 under$	(Ν ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 static, q	PD) (τ: act thread M 10 uasi-sta	0,03 0,06 ion bonc ed roc M 12 atic and	0,05 0,09 strength) M 16 seismi	n) M 20 c C1 ac	M24	M 27	M 3
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14: E Anchor size three Non-cracked and	$ \begin{array}{c} \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline he displacement \\ \tau; & \delta_{N,seis(} \\ \hline r \ \tau; & \delta_{N,seis(} \\ \hline \textbf{Displacements u} \\ \hline \textbf{eaded rod} \\ \hline \textbf{d cracked concrete} \\ \hline \delta_{V0} - factor \\ \hline \end{array} $	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $nder \ shear \ lage c20/25 \ under$ $[mm/(kN)]$	(Ν ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 static, q	PD) (τ: act thread M 10 uasi-sta 0,06	0,03 0,06 ion bonc ed roc M 12 atic and 0,05	0,05 0,09 strength) M 16 seismi 0,04	M 20 ic C1 ac 0,04	M24 ction	M 27	M 3
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14: E Anchor size three Non-cracked and All temperatures		$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $nder shear la$ $c20/25 under$ $[mm/(kN)]$ $[mm/(kN)]$	(Ν ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	PD) (τ: act thread M 10 uasi-sta	0,03 0,06 ion bonc ed roc M 12 atic and	0,05 0,09 strength) M 16 seismi	n) M 20 c C1 ac	M24	M 27	M 3
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14: E Anchor size three Non-cracked and All temperatures Cracked concre	$ \frac{\delta_{N,seis(DLS)} - factor}{\delta_{N,seis(ULS)} - factor} $ he displacement $\tau; \delta_{N,seis(}$ Displacements u eaded rod d cracked concrete $\frac{\delta_{V0} - factor}{\delta_{V\infty} - factor}$ te C20/25 under seit	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $nder shear la$ $c20/25 under$ $[mm/(kN)]$ $[mm/(kN)]$	(ΝΙ ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09	PD) (τ: acl thread M 10 uasi-sta 0,06 0,08	0,03 0,06 ion bonc ed roc M 12 atic and 0,05 0,08	0,05 0,09 strength) M 16 seismi 0,04 0,06	M 20 ic C1 ac 0,04 0,06	M24 ction 0,03 0,05	M 27 0,03 0,05	M 3 (0,03
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Fable C14: E Anchor size three Non-cracked and An temperatures	$ \begin{array}{c} \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline he displacement \\ \hline \tau; & \delta_{N,seis(} \\ \hline \textbf{Displacements u} \\ \hline \textbf$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $nder shear laction $ $[mm/(kN)]$ $[mm/(kN)]$ $smic C2 action$	(Ν ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09 No Perfor Deter	PD) (τ: acl thread M 10 uasi-sta 0,06 0,08	0,03 0,06 ion bonc ed roc M 12 atic and 0,05	0,05 0,09 strength) M 16 seismi 0,04	M 20 ic C1 ac 0,04 0,06	M24 ction	M 27 0,03 0,05	M 30
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C14: E Anchor size three Ion-cracked and It temperatures Cracked concre	$ \begin{array}{c c} \hline \delta_{N,seis(DLS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline \delta_{N,seis(ULS)} - factor \\ \hline he displacement \\ \hline \tau; & \delta_{N,seis(} \\ \hline \textbf{Displacements u} \\ \hline \textbf{Displacements u} \\ \hline \textbf{Displacements u} \\ \hline \textbf{d cracked concrete} \\ \hline \hline \delta_{V0} - factor \\ \hline \delta_{V,seis(DLS)} - factor \\ \hline \textbf{d cracked concrete} \\ \hline \hline \delta_{V,seis(DLS)} - factor \\ \hline \hline \delta_{V,seis(ULS)} - factor \\ \hline \hline \textbf{b concrete} \\ \hline \textbf{concrete} \\ \hline co$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,seis(DLS)}-fa$ $nder shear la$ $c220/25 under$ $[mm/(kN)]$ $[mm/(kN)]$ $smic C2 action$ $[mm/kN]$	(ΝΙ ctor τ; ctor τ; oad ¹⁾ (1 M 8 static, q 0,06 0,09 No Perfe Deter (ΝΙ	PD) (τ: acl thread M 10 Uasi-sta 0,06 0,08 ormance mined PD)	0,03 0,06 ion bond ed roc M 12 atic and 0,05 0,08	0,05 0,09 strength) M 16 seismi 0,04 0,06 0,1 0,1	M 20 ic C1 ac 0,04 0,06	M24 ction 0,03 0,05	M 27 0,03 0,05	M 3 (0,03)

Anchor size	reinforcing b	bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked	concrete C2	20/25 under sta	tic and	quasi-s	tatic act	ion					
40°C/24°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°0/24°0	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked con	crete C20/25	under static,	quasi-st	atic and	l seismi	c C1 act	tion				
4000/0400	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]	1		0,21	0,21	0,21	0,21	0,21	0,21	0,21
0000/4000	δ_{N0} – factor	[mm/(N/mm ²)]		ormance	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N\infty}-factor$	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,24	0,24
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]			0,24	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \tau; \qquad (\tau: \text{ action bond strength})$

 $\delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \tau;$

Table C16: Displacement under shear load¹⁾ (rebar)

Anchor size r	einforcing b	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
For concrete C20/25 under static, quasi-static and seismic C1 action													
All	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03		
temperatures $\delta_{V_{\infty}}$ – factor [mm/(kN)]		0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04			

¹⁾ Calculation of the displacement

 $\begin{array}{l} \delta_{V0} = \delta_{V0} - factor \cdot V; \\ \delta_{V\infty} = \delta_{V\infty} - factor \cdot V; \end{array} (V: action shear load) \\ \delta_{V\infty} = \delta_{V\infty} - factor \cdot V; \end{array}$

Injection System TCM385RE,TCM585RE,TCM1000RE,TCM1400RE for concrete

Annex C 14

Performances Displacements (rebar)