

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0373 of 23 September 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

SPIT TAPCON

Concrete screw of size 5 and 6 mm for multiple use for non-structural applications in concrete and in prestressed hollow core slabs

SPIT Route de Lyon 26500 BOURG-LÉS-VALENCE FRANKREICH

Plant 1

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 6: "Anchors for multiple use for non-structural applications", August 2010,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0373

Page 2 of 15 | 23 September 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0373

Page 3 of 15 | 23 September 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The concrete screw SPIT TAPCON in sizes of 5 and 6 mm is an anchor made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 3

3.3 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads as well as bending moments in concrete	See Annex C 1 and C 2
Edge distances and spacing	See Annex C 1

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-16/0373

Page 4 of 15 | 23 September 2016

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

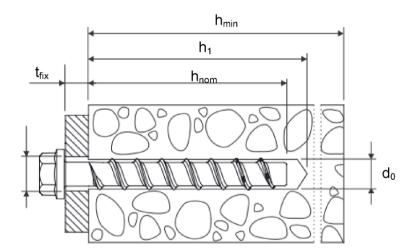
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 September 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p. p. Head of Department

beglaubigt: Tempel

product and installed condition


TAPCON

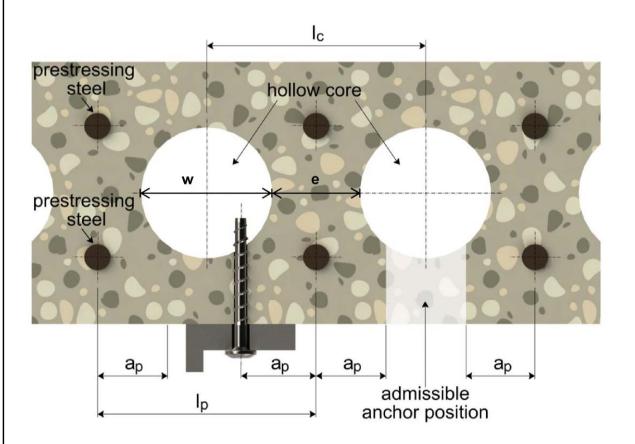
carbon steel

stainless steel A4 and HCR

 $\begin{array}{lll} d_0 & = & & \text{nominal drill bit diameter} \\ h_{\text{nom}} & = & & \text{nominal anchorage depth} \\ h_1 & = & & \text{depth of the drill hole} \end{array}$

h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture


SPIT concrete screw TAPCON

Product description
Installed condition

Annex A 1

installed condition in precast prestressed hollow core slabs

w / e ≤ 4,2

w core width

e web thickness

core distance $I_c \ge 100 \text{ mm}$ prestressing steel $I_p \ge 100 \text{ mm}$

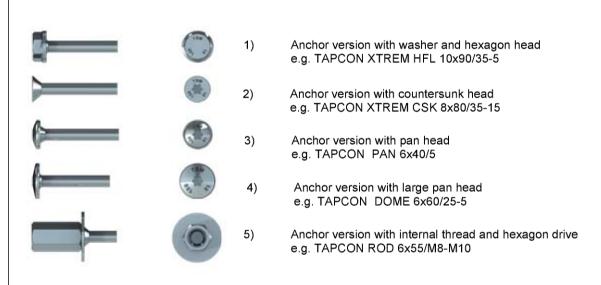
distance between anchor position

and prestressing steel $a_p \ge 50 \text{ mm}$

SPIT	concrete	screw	TAPCON
------	----------	-------	---------------

Product description

Installed condition


Annex A 2

electronic copy of the eta by dibt: eta-16/0373

Table A1: Materials and variants

part	name	Material						
1,	Concrete							
2,	screw	TAPCON	Steel EN 10263-4 galvanized acc. to EN ISO 4042 or					
3,			zinc flake coating	acc.	to EN ISO	10683 (≥ 5µm)		
J 3,		TAPCON A4	1.4401, 1.4404, 1.4571, 1.4578					
4,		TAPCON HCR	1.4529					
5			. TAPCON 1					
						TAPCON A4		
						TAPCON HCR		
		characteristic steel yield strength			[N/mm²]	560		
		characteristic steel ultimate strength elongation at rupture			[N/mm²]	700		
					[%]	≤ 8		

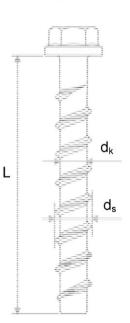
SPIT concrete screw TAPCON	
Product descriptions	Annex A 3
Materials and variants	

Table A2: Dimensions and markings

Anchorsize TAPCON			5	6
Length of the anchor	L≤	[mm]	20	00
Diameter of shaft	d_k	[mm]	4,0	5,1
Diameter of thread	ds	[mm]	6,5	7,5

Marking: TAPCON

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100


TAPCON A4

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: A4

TAPCON HCR

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: HCR

electronic copy of the eta by dibt: eta-16/0373

Marking "k" or "x" for anchors with connection thread and $h_{\text{nom}} = 35 \ \text{mm}$

SPIT concrete screw TAPCON

Product descriptions

Dimensions and markings

Annex A 4

Intended use

Anchorages subject to:

- static and quasi static loads
- Used only for multiple use for non structural application acc. to ETAG 001, Part 6: sizes 5 and 6
- Used for anchorages in prestressed hollow core slabs: size 6
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 6

Base materials:

- reinforced and unreinforced concrete according to EN 206-1:2000-12
- strength classes C20/25 to C50/60 according to EN 206-1:2000-12
- cracked and uncracked concrete

Use conditions (Environmental conditions):

- The anchor may only be used in dry internal conditions: All screw types
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4 sst
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR

Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with:
 - ETAG 001, Annex C, Edition August 2010
 - CEN/TS 1992-4:2009.
- Anchorages under fire exposure are designed in accordance with
 - EOTA Technical Report TR 020, Edition May 2004
 - CEN/TS 1992-4:2009, Annex D (it must be ensured that local spalling of the concrete cover does not occur).
- The design method according to ETAG 001, Annex C also applies for the specified diameter d_f of clearance hole
 in the fixture in Annex B2, Table B1.
- The design method according to CEN/TS 1992-4 applies for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.
- In CEN/TS 1992-4-1, section 5.2.3.1 the 3. indent will be replaced as follow: only the most unfavorable anchors
 of an anchor group take up shear loads, if diameter of the clearance hole d_f is larger than given in
 CEN/TS 1992-4-1, Table 1.
- The condition according to CEN/TS 1992-4-1, Section 5.2.3.3, no. 3) is also fulfilled for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.

Installation:

- Hammer drilling only.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

SPIT concrete screw TAPCON	A
Intended use	Annex B 1
Specifications	

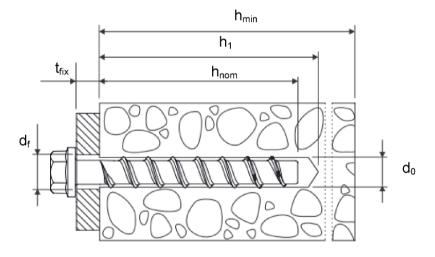
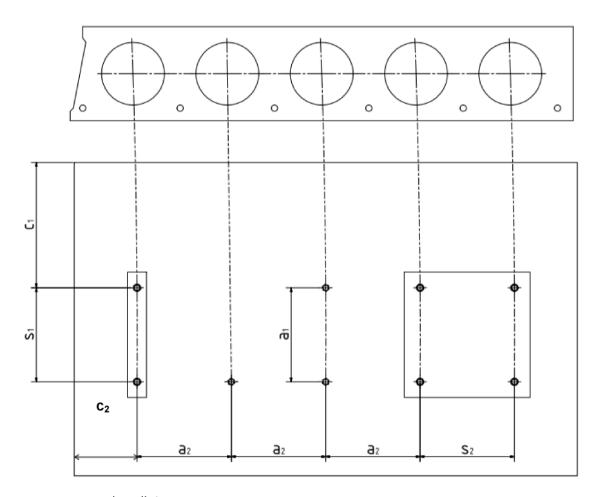


Table B1: Installation parameters

Anchorsize TAPCON			5	6		
Nominal embedment depth				h _{nom} = 35 mm	h _{nom} = 35 mm	h _{nom} = 55 mm
nominal drill bit diameter	d_0		[mm]	5	6	6
cutting diameter opf drill bit	d_cut	<u>\</u>	[mm]	5,40	6,40	
depth of drill hole	h ₁	2	[mm]	40	40	60
Nominal embedment depth	h_{nom}	2	[mm]	35	35	55
diameter of clearing hole in the fixture	d_{f}	≤	[mm]	7	8	
Installation torque for Version with connection thread	T _{inst} :	≤	Nm	8 10		0
Impact screw driver [Nm		[Nm]	Max. torque according to ma instructions		anufacturer's	
				140	16	30

<u>Table B2: Minimum thickness of member, minimum edge distance and minimum spacing</u>


Anchorsize TAPCON			5	(3
Nominal embedmenth depth			h _{nom} = 35 mm	h _{nom} = 35 mm	h _{nom} = 55 mm
minimum thickness of member	\mathbf{h}_{min}	[mm]	80	80	100
minimum edge distance	C _{min}	[mm]	35	35	40
minimum spacing	S _{min}	[mm]	35	35	40

SPIT concrete screw TAPCON	A
Intended use	Annex B 2
Installation parameters	

Installation parameters for anchorages in precast prestressed hollow core slabs

c₁, c₂ edge distance

 s_1, s_2 anchor spacing

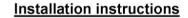
a₁, a₂ distance between anchor groups

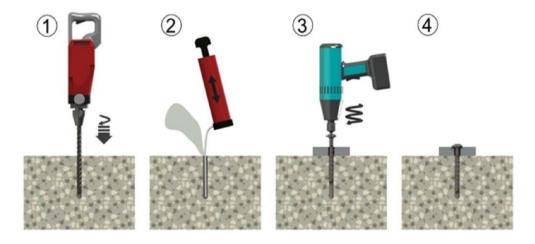
Minimum edge distance $c_{min} \ge 100 \text{ mm}$

Minimum anchor spacing $s_{min} \ge 100 \text{ mm}$

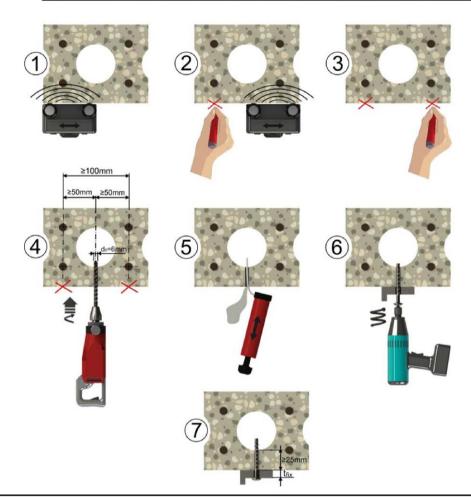
Minimum distance between anchor groups $a_{min} \ge 100 \text{ mm}$

SPIT concrete screw TAPCON


Intended use


Installation parameters for anchorages in precast prestressed hollow slabs

Annex B3


English translation prepared by DIBt

Installation instructions for anchorages in prestressed hollow slabs

SPIT concrete screw TAPCON

Intended use

Installation instructions

Annex B4

electronic copy of the eta by dibt: eta-16/0373

<u>Table C1: Characteristic values for design method A according to ETAG 001, Annex C</u> <u>or CEN/TS 1992-4</u>

Anchorsize TAPO	5	5 6					
Nominal embedment depth				h _{nom} = 35 mm	h _{nom} = 35 mm	h _{nom} = 55 mm	
steel failure for te	ension- and shea	r load					
		N _{Rk,s}	[kN]	8,7	14,	0	
characteristic load		$V_{Rk,s}$	[kN]	4,4	7,0)	
		k ₂ 1)	[-]	0,8	0,8	3	
		M ⁰ _{Rk,s}	[Nm]	5,3	10,	9	
pull-out failure							
characteristic tensi cracked and uncra concrete C20/25		$N_{Rk,p}$	[kN]	1,5	1,5	7,5	
			C30/37		1,22		
increasing factor concrete for $N_{Rk,p}$		Ψ_{c}	C40/50	1,41			
			C50/60	1,55			
concrete cone an	d splitting failure						
effective anchorag	e depth	h _{ef}	[mm]	27	27	44	
factor for	cracked	k _{cr} ¹⁾	[-]	7,2			
	uncracked	k _{ucr} 1)	[-]		10,1		
concrete cone	spacing	S _{cr,N}	[mm]		3 x h _{ef}		
failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}		
splitting failure	spacing	S _{cr,Sp}	[mm]	120	120	160	
Splitting failure	edge distance	C _{cr,Sp}	[mm]	60	60	80	
installation safety factor		$\gamma_2^{(2)} = \gamma_{inst}^{(1)}$	[-]	1,2	1,2	1,0	
concrete pry out failure (pry-out)							
k-Factor		$k^{2} = k_3^{1}$	[-]	1,0			
concrete edge fai	lure						
effective length of	anchor	I _f = h _{ef}	[mm]	27 27 44			
outside diameter of anchor d _{nom} [-] 5 6							

¹⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

SPIT concrete screw TAPCON	
Performances	Annex C 1
Characteristic values for design method A	

²⁾ Parameter relevant only for design according to ETAG 001, Annex C

<u>Table C2: Characteristic values of resistance in precast prestressed hollow core slabs</u> <u>C30/37 to C50/60</u>

Anchorsize TAPCON		6			
bottom flange thickness d _b	[mm]	≥ 25	≥ 30	≥ 35	
characteristic resistance F ⁰ _{Rk}	[kN]	1	2	3	
installation safety factor $\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]		1,2		

¹⁾ Parameter relevant only for design according to ETAG 001, Annex C

SPIT concrete screw TAPCON	
Performances	Annex C 2
Characteristic values for anchorages in precast prestressed hollow core slabs	

²⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

Table C3: Characteristic values of resistance to fire exposure 1)

Anchor size TAPCON			6				
				TAP	CON	TAPCON A4 / HCR	
Nominal embedment depth			h _{nom,1} = 35 mm	h _{nom2} = 55 mm	h _{nom,2} = 35 mm	h _{nom,2} = 55 mm	
Steel failure fo	r tension- and she	ear load (F _{Rk,s,f}	i = N _{Rk,s}	$_{s,fi} = V_{Rk,s,fi}$			
Fire resistance class							
R30	Characteristic resistance	F _{Rk,s,fi30}	[kN]	0,9		1,2	
R60		F _{Rk,s,fi60}	[kN]	0,8		1,2	
R90		F _{Rk,s,fi90}	[kN]	0,6		1,2	
R120		F _{Rk,s,fi120}	[kN]	0	,4	0	,8
R30	Characteristic resistance	M ⁰ Rks,,fi30	[Nm]	0,7		0,9	
R60		M ⁰ _{Rk,s,fi60}	[Nm]	0,6		0,9	
R90		M ⁰ _{Rk,s,fi90}	[Nm]	0,5		0,9	
R120		M ⁰ Rks,,fi120	[Nm]	0	,3	0	,6
Edge distance			<u> </u>				
R30 bis R120		C _{cr, fi}	[mm]	2 x h _{ef}			
Spacing							
R30 bis R120		S _{cr, fi}	[mm]	4 x h _{ef}			

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure shall be calculated according to TR 020 or CEN/TS 1992-4.

SPIT concrete screw TAPCON	A
Performances Characteristic values of resistance under fire exposure	Annex C 3

¹⁾ Not for using in prestressed hollow core slabs