

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0562 of 15 July 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Walraven Highload Anchor WHA1

Torque controlled expansion anchor for use in concrete

J. van Walraven Holding B.V. Industrieweg 5 3641 RK Mijdrecht NIEDERLANDE

Walraven factory A5

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0562

Page 2 of 20 | 15 July 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 15 July 2016

European Technical Assessment ETA-16/0562 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Walraven Highload Anchor WHA1 is an anchor made of galvanised steel or made of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type WHA1T with threaded bolt,
- Anchor type WHA1H with hexagon head screw,
- Anchor type WHA1C with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annex C1 to C5
Characteristic resistance for seismic performance category C1 and C2	See Annex C6 to C7
Displacements under tension and shear loads	See Annex C9 and C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Anchorages satisfy requirements for Class A1				
Resistance to fire	See Annex C8				

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0562

Page 4 of 20 | 15 July 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

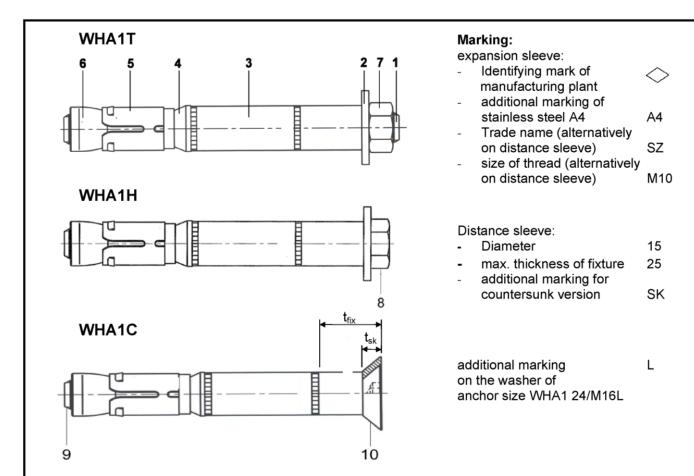
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 15 July 2016 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Lange



electronic copy of the eta by dibt: eta-16/0562

Page 6 of European Technical Assessment ETA-16/0562 of 15 July 2016

English translation prepared by DIBt

Table A1: Designation of anchor parts and materials

Part	Designation	Materials galvanised \ge 5 μ m, acc. to EN ISO 4042:1999	Stainless steel A4
1	Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
2	Washer	Steel, EN 10139:1997	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
3	Distance sleeve	Precision steel tubes DIN 2394/2393	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
4	Ring	Polyethylene	Polyethylene
5	Expansion sleeve	Steel, EN 10139:1997	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
6	Threaded cone	Steel, Strength class 8, EN ISO 898-2:2012	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
7	Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012	ISO 3506, strength class 70, stainless steel 1.4401 or 1.4571, EN 10088:2005
8	Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
9	Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
10	Countersunk washer	Steel, EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005

Walraven Highload Anchor WHA1

Product description Marking and materials Annex A2

10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20		
			~		1			
Seismic action (WHA1T and WHA1H) -		C1 + C2						
	R 30 R 120							
	12/M8	15/M10	18/M12	24/M16				
		· · ·	(1			
		C1 -	+ C2]			
		R30	. R120]			
	- -	-	- R 12/M8 15/M10	- C1 · R 30 … R 1	- C1 + C2 R 30 R 120 12/M8 15/M10 18/M12 24/M16 ✓ C1 + C2	✓ - C1 + C2 R 30 R 120 12/M8 15/M10 18/M12 24/M16 ✓ C1 + C2		

Base materials:

- Cracked and non-cracked concrete
- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

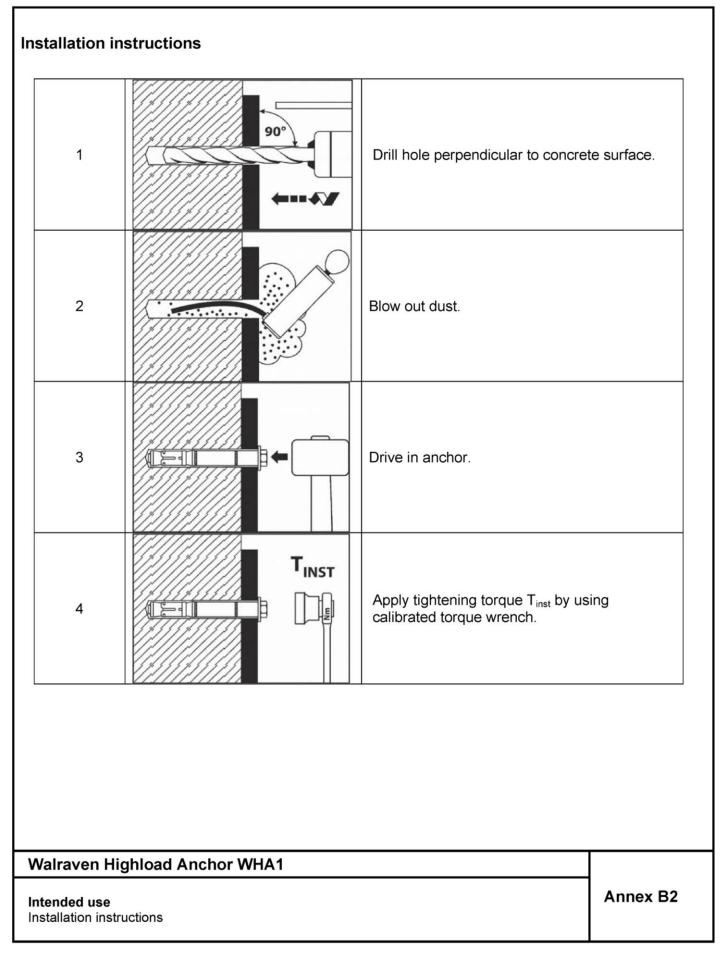
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4: 2009, Annex D
 - (It must be ensured that local spalling of the concrete cover does not occur)


Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured when the embedment mark of the anchor does no more exceed the concrete surface.

Walraven Highload Anchor WHA1

Intended use Specifications Annex B1

electronic copy of the eta by dibt: eta-16/0562

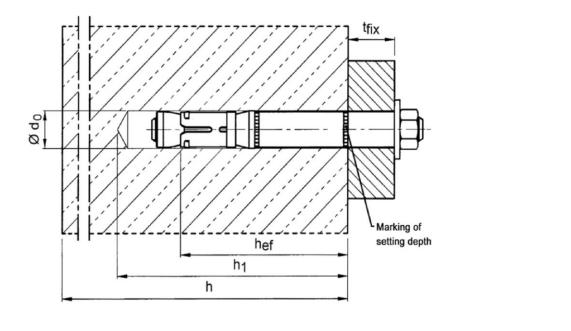

Deutsches Institut DIBt für Bautechnik

Table B1: Installation p	aramete	rs, ste	el zinc	plated					
Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Size of thread		[-]	M6	M8	M10	M12	M16	M16	M20
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125
Nominal diameter of drill bit	d ₀ =	[mm]	10	12	15	18	24	24	28
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55
Depth of drill hole	$h_1 \ge$	[mm]	65	80	95	105	130	145	160
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	12	14	17	20	26	26	31
Thickness of fixture	t _{fix min}	[mm]	0	0	0	0	0	0	0
WHA1T and WHA1H	t _{fix max}	[mm]	200	200	200	250	300	300	300
Thickness of fixture	t _{fix min} 2)	[mm]	8	10	14	18	-	-	-
WHA1C	t _{fix max}	[mm]	200	200	200	250	-	-	-
Thickness of countersunk washer WHA1C	t _{sk}	[mm]	4	5	6	7	-	-	-
Required T _{inst}	(WHA1T, WHA1H)	[Nm]	15	30	50	80	160	160	280
setting torqueT _{inst}	(WHA1C)	[Nm]	10	25	55	70	-	-	-
Minimum thickness of member	h _{min}	[mm]	100	120	140	160	200	230	250
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80	100	100	125
	for $c \ge$	[mm]	80	100	120	160	180	180	300
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	60	70	80	100	100	180
	for s \geq	[mm]	100	120	175	200	220	220	540

¹⁾ Intermediate values by linear interpolation

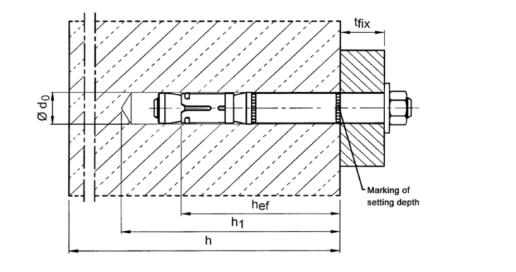
²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

 $^{3)}$ For fire exposure from more than one side c ≥ 300 mm or c_{min} ≥ 300 mm applies.

Walraven Highload Anchor WHA1

Intended use

Installation parameters, steel zinc plated


Annex B3

Deutsches Institut DIBt für Bautechnik

Table B2: Installation para	meters, stainle	ess ste	el A4			
Anchor size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Nominal diameter of drill bit	d ₀ =	[mm]	12	15	18	24
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	$h_1 \ge$	[mm]	80	95	105	130
Diameter of clearance hole in the fix	ture d _f ≤	[mm]	14	17	20	26
Thickness of fixture	t _{fix min}	[mm]	0	0	0	0
WHA1T and WHA1H	t _{fix max}	[mm]	200	200	250	300
Thickness of fixture	t _{fix min} 2)	[mm]	10	14	18	-
WHA1C	t _{fix max}	[mm]	200	200	250	-
Thickness of countersunk washer W	/HA1C t _{sk}	[mm]	5	6	7	-
	T _{inst} (WHA1T)	[Nm]	35	55	90	170
Required setting torque	T _{inst} (WHA1H)	[Nm]	30	50	80	170
	T _{inst} (WHA1C)	[Nm]	17,5	42,5	50	-
Minimum thickness of member	h _{min}	[mm]	120	140	160	200
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
cracked concrete	for c \geq	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	60	70	80
cracked concrete	for s \geq	[mm]	80	120	160	200
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
non-cracked concrete	for c \geq	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	85	70	180
non-cracked concrete	for s \geq	[mm]	80	185	160	80

1) Intermediate values by linear interpolation

²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side c ≥ 300 mm or $c_{min} \ge$ 300 mm applies.

Walraven Highload Anchor WHA1

Intended use

Installation parameters, stainless steel A4

Annex B4

	under static or quasi-static action, steel zinc plated												
Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0							
Steel failure													
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196				
Partial safety factor	γ́Ms	[-]				1,5							
Pull-out failure													
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	12	16	1)	1)	1)	1)				
Increasing factor for $N_{\mbox{\scriptsize Rk},\mbox{\scriptsize p}}$	Ψc	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$							
Concrete cone failure													
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125				
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]				7,2							
4)													

¹⁾ Pull-out is not decisive.

Table C2:Characteristic values for tension load, cracked concrete
under static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16			
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1	,0				
Steel failure									
WHA1T									
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110			
Partial safety factor	γ́Ms	[-]		1	,5				
WHA1H and WHA1C									
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110			
Partial safety factor	γMs	[-]	1,87						
Pull-out failure									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	1)	1)			
Increasing factor for $N_{Rk,p}$	Ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$						
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100			
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]		7	,2				

¹⁾ Pull-out is not decisive.

Walraven Highload Anchor WHA1

Performance

Characteristic values for tension load in cracked concrete under static or quasi-static action

Table C3: Characteristic values for tension load in non-cracked concrete, under static or quasi-static action, steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196
Partial safety factor	γMs	[-]				1,5			
Pull-out failure									
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	1)	20	30	1)	1)	1)	1)
Splitting failure (The higher res	sistance of	Case 1 a	and Case 2	may be a	oplied.)				
Case 1									
Characteristic resistance in concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	12 ²⁾	16 ²⁾	25 ²⁾	30 ²⁾	40 ²⁾	70	50 ²⁾
Spacing	S _{cr,sp}	[mm]				3 h _{ef}			
Edge distance	C _{cr,sp}	[mm]				1,5 h _{ef}			
Case 2 (acc. to ETAG 001, Annex	C, equation	on (5.3))	_						
Spacing	S _{cr,sp}	[mm]			5 h _{ef}			3 h _{ef}	5 h _{ef}
Edge distance	C _{cr,sp}	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}
Increasing factor for $N_{Rk,p}$ and $N^{0}_{Rk,sp}$	Ψc	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$			
Concrete cone failure									
Effective Anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125
Factor acc. to CEN/TS 1992-4		[-]				10,1			

¹⁾ Pull-out is not decisive.

 $^{2)}$ For the proof against splitting failure, $N^0_{\ Rk,c}$ has to be has to be replaced by $N^0_{\ Rk,sp}$

Walraven Highload Anchor WHA1

Performance

Characteristic values for **tension load** in **non-cracked concrete**, under static or quasi-static action, **steel zinc plated**

Table C4: Characteristic values for tension load in non-cracked concrete under static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0					
Steel failure		· · · · · · · · · · · · · · · · · · ·						
WHA1T								
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110		
Partial safety factor	γ́Ms	[-]		1	,5			
WHA1H and WHA1C								
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110		
Partial safety factor	γ́Ms	[-]	1,87					
Pull-out failure								
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	16	25	35	1)		
Increasing factor for $N_{Rk,p}$	Ψc	[-]		$\left(\frac{f_{ck,cu}}{25}\right)$	$\left(\frac{be}{5}\right)^{0,5}$			
Splitting failure								
Spacing	S _{cr,sp}	[mm]	360	470	530	600		
Edge distance	C _{cr,sp}	[mm]	180	235	265	300		
Concrete cone failure		· · · · ·				·		
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100		
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]		. 10),1	-		

¹⁾ Pull-out is not decisive.

Walraven Highload Anchor WHA1

Performance

Characteristic values for **tension loads** in **non-cracked concrete** under static or quasi-static action, **stainless steel A4**

Table C5: Characteristic values of shear load under static or quasi-static action, steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Steel failure without lever a	rm								
WHA1T									
Characteristic resistance	$V_{Rk,s}$	[kN]	16	25	36	63	91	91	122
Ductility factor	k ₂	[-]				1,0			
Partial safety factor	γms	[-]				1,25			
WHA1H and WHA1C									
Characteristic resistance	$V_{Rk,s}$	[kN]	18	30	48	73	126	126	150
Ductility factor	k ₂	[-]	0,8						
Partial safety factor	γ _{Ms}	[-]	1,25						
Steel failure with lever arm									
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	266	266	519
Partial safety factor	γMs	[-]				1,25			
Concrete pry-out failure									
Factor k acc. to ETAG 001, Annex C or k ₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1,8			2	,0		
Concrete edge failure									
Effective length of anchor in shear loading	۱ _f	[mm]	50	60	71	80	100	115	125
Outside diameter of anchor	d_{nom}	[mm]	10	12	15	18	24	24	28

Walraven Highload Anchor WHA1

Characteristic values for **shear load** under static or quasi-static action, **steel zinc plated**

Deutsches Institut für Bautechnik

Table C6: Characteristic values for shear load under static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16	
Steel failure without lever arm							
WHA1T							
Characteristic resistance	$V_{Rk,s}$	[kN]	24	37	62	92	
Ductility factor	k ₂	[-]		1	,0		
Partial safety factor	γ _{Ms}	[-]		1,	25		
WHA1H and WHA1C							
Characteristic resistance	$V_{Rk,s}$	[kN]	24	37	62	92	
Ductility factor	k ₂	[-]	0,8				
Partial safety factor	γ _{Ms}	[-]	1,36				
Steel failure with lever arm							
WHA1T							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	
Ductility factor	k ₂	[-]	1,0				
Partial safety factor	γ _{Ms}	[-]		1,	25		
WHA1H and WHA1C							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	232	
Ductility factor	k ₂	[-]		0	,8		
Partial safety factor	γ _{Ms}	[-]		1,	56		
Concrete pry-out failure							
Factor k acc. to ETAG 001, Annex C or k ₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	2,0				
Concrete edge failure							
Effective length of anchor in shear loading	l _f	[mm]	60	71	80	100	
Outside diameter of anchor	d_{nom}	[mm]	12	15	18	24	

Walraven Highload Anchor WHA1

Performance

Characteristic values for **shear load** under static or quasi-static action, **stainless steel A4**

Anchor size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Tension load								
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Steel failure								
Characteristic tension resistance category C1	$N_{Rk,s,seis,C1}$	[kN]	29	46	67	126	126	196
Characteristic tension resistance category C2	$N_{Rk,s,seis,C2}$	[kN]	29	46	67	126	126	196
Partial safety factor	γMs,seis	[-]			1	,5		
Pull-out failure								
Characteristic tension resistance category C1	$N_{Rk,p,seis,C1}$	[kN]	12	16	25	36	44,4	50,3
Characteristic tension resistance category C2	$N_{Rk,p,seis,C2}$	[kN]	5,4	16,4	22,6	29,0	41,2	43,6
Increasing factor for $N_{Rk,p,seis}$	Ψ_{c}	[-]			1	,0		
Shear load								
Steel failure without lever arm								
WHA1T								
Characteristic shear resistance category C1	$V_{Rk,s,seis,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4
Characteristic shear resistance category C2	$V_{Rk,s,seis,C2}$	[kN]	12,7	20,5	31,5	50,1	50,1	67,1
WHA1H								
Characteristic shear resistance category C1	$V_{Rk,s,seis,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4
Characteristic shear resistance category C2	$V_{Rk,s,seis,C2}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1
Partial safety factor	$\gamma_{Ms,seis}$	[-]			1,	25		
Steel failure with lever arm								
Characteristic resistance	$M^0_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	[Nm]			norformon	ce determi	ned	

Walraven Highload Anchor WHA1

Performance

Characteristic values for seismic action, steel zinc plated

Table C8:Characteristic values for seis stainless steel A4	mic action	, Cate	gory C1	and C2,				
Anchor size			12/M8	15/M10	18/M12	24/M16		
Tension load								
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0					
Steel failure								
Characteristic tension resistance, category C1	$N_{Rk,s,seis,C1}$	[kN]	26	41	60	110		
Characteristic tension resistance, category C2	$N_{Rk,s,seis,C2}$	[kN]	26	41	60	110		
Partial safety factor WHA1T	[-]	1,5						
Partial safety factor WHA1H	[-]	1,87						
Pull-out failure								
Characteristic tension resistance, category C1	$N_{Rk,p,seis,C1}$	[kN]	9	16	26	36		
Characteristic tension resistance, category C2	$N_{Rk,p,seis,C2}$	[kN]	4,8	16,5	24,8	44,5		
Increasing factor for N _{Rk,p,seis}	[-]	1,0						
Shear load								
Steel failure without lever arm								
Characteristic shear resistance, category C1	$V_{Rk,s,seis,C1}$	[kN]	9,6	13,3	25,4	75,4		
Characteristic shear resistance, category C2	$V_{Rk,s,seis,C2}$	[kN]	9,7	14,0	18,0	32,2		
Partial safety factor WHA1T	[-]	1,25						
Partial safety factor WHA1H	γMs,seis	[-]		1,	36			
Steel failure with lever arm								
Characteristic resistance	$M^0_{Rk,s,seis}$	[Nm]	no	performan	ce determir	ned		

Walraven Highload Anchor WHA1

Performance Characteristic values for seismic action, stainless steel A4

		n-cia	cked con	crete C2	20/25 to 0	50/60				
			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	
ed										
R30			1,0	1,9	4,3	6,3	1	1,6	18,3	
R60	-		0,8			4,6		-	13,5	
R90	– N _{Rk,s,fi}	[kN]	0,6			3,0	5,0		7,7	
R120	_		0,4				3,1		4,9	
A4			,	,	,	,		,	,	
R30			-	6.1	10.2	15.7	29.2	-	-	
R60	_		-	-			20,6	-	-	
	− N _{Rk,s,fi}	[kN]	-			,	,	-	-	
R120	_		-					-	-	
		II		- , -	_,_	- / -	.,.			
ithout leve	r arm									
			1.0	1.9	4.3	6.3	11.6		18,3	
	_	s,fi [kN]	-	-		,	8,6		13,5	
	 V_{Rk,s,fi} 		-				,		7,7	
	-			-		-			4,9	
			•, ·	0,0	.,•	2,0		,.	.,•	
			-	14.3	22.7	32.8	61.0	_	_	
	_		-		-			-	_	
	 V_{Rk,s,fi} 	יי [kN] - -	-					_	-	
	_		-			-		_	_	
	m			0,0	10,0	14,0	21,2			
			0.8	20	5.6	97	2	4 8	42,4	
	-								29,8	
	– M ⁰ _{Rk,s,fi}	[Nm]	,		-			-	17,1	
	-			-	-				-	10,7
			0,0	0,0	1,5	0,1		,0	10,7	
			-	6.2	13.2	24.4	61.8	_	_	
	_		-						-	
	− M ⁰ _{Rk,s,fi}	[Nm]							-	
1130	_		-	1,8	3,6	6,4	16,2		-	
	R60 R90 R120 I A4 R30 R60 R90 R120 ithout leve ed R30 R60 R90 R120 ithout leve ed R30 R60 R90 R120 I A4 R30 R60 R90 R120	R30 R60 NRK.s.fi R90 R120 NRK.s.fi R30 R60 NRK.s.fi R90 R120 VRK.s.fi R30 R60 VRK.s.fi R120 VRK.s.fi NRK.s.fi R30 R60 VRK.s.fi R120 M ⁰ RK.s.fi NRK.s.fi R30 R60 N ⁰ RK.s.fi R120 M ⁰ RK.s.fi N ⁰ RK.s.fi	R30 R60 NRk.s.fi [kN] R90 NRk.s.fi [kN] R120 NRk.s.fi [kN] R30 NRk.s.fi [kN] R60 NRk.s.fi [kN] R120 NRk.s.fi [kN] R120 NRk.s.fi [kN] R30 NRk.s.fi [kN] R60 VRk.s.fi [kN] R120 VRk.s.fi [kN] R44 [kN] [kN] R120 VRk.s.fi [kN] R120 VRk.s.fi [kN] R120 IM [kN] R120 M ⁰ Rk.s.fi [Nm]	R30 $1,0$ R60 $0,8$ R90 $N_{Rk,s,fi}$ $[KN]$ R30 $0,6$ R120 $0,6$ R30 $0,6$ R60 $0,4$ R30 $-$ R60 $0,6$ R90 $N_{Rk,s,fi}$ $-$ R120 $ -$ ithout lever arm $ -$ ed $ -$ R60 $V_{Rk,s,fi}$ $[KN]$ $-$ R60 $V_{Rk,s,fi}$ $ -$ R60 $V_{Rk,s,fi}$ $ -$ R120 $V_{Rk,s,fi}$ $ -$ R60 $V_{Rk,s,fi}$ $ -$ ith lever arm $ -$ ed $ -$ R60 $M^0_{Rk,s,fi}$ $0,8$ $0,6$ R90 $M^0_{Rk,s,fi}$ $ -$ ith lever arm $ -$ ed $ -$	ed 1,0 1,9 R60 NRk.s.fi [KN] 0,8 1,5 0,6 1,0 0,4 0,8 R120 NRk.s.fi [KN] - 6,1 R60 NRk.s.fi [KN] - 6,1 R60 NRk.s.fi [KN] - 4,4 R90 NRk.s.fi [KN] - 1,8 ithout lever arm - 1,8 - 1,8 ithout lever arm [KN] 0,8 1,5 0,6 1,0 R60 VRk.s.fi [KN] 0,8 1,5 0,6 1,0 R30 VRk.s.fi [KN] - 14,3 - 1,1 - - 7,9 - 6,3 - 1,1 - - - 6,3 - 1,1 - - - - - 1,1 -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R30 NRK.8.ft [KN] 1,0 1,9 4,3 6,3 R60 R90 NRK.8.ft [KN] 0,8 1,5 3,2 4,6 R120 0,4 0,8 1,5 3,2 4,6 0,6 1,0 2,1 3,0 0,4 0,8 1,5 2,0 A4 - 6,1 10,2 15,7 - 4,4 7,3 11,1 - 2,6 4,3 6,4 - 1,8 2,8 4,1 ithout lever arm - 1,8 2,8 4,1 - - 1,8 2,8 4,1 ithout lever arm [KN] 1,0 1,9 4,3 6,3 0,6 1,0 2,1 3,0 R60 V _{Rk,8,ft} [KN] [KN] - 14,3 22,7 32,8 R60 V _{Rk,8,ft} [KN] - 14,3 22,7 32,8 R60 V _{Rk,8,ft} [KN] -	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

to TR020 / CEN/TS 1992-4.

Walraven Highload Anchor WHA1

Performance

Characteristic values for tension and shear loads under fire exposure

Deutsches Institut DIBt für Bautechnik

Anchor size	10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20		
Steel, zinc plated									
Tension load in cracked concrete	Ν	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24
Displacement	δ _{N0}	[mm]	0,5	0,5	0,5	0,7	0,8	0,7	0,9
	δ _{N∞}	[mm]	2,0	2,0	1,3	1,3	1,3	1,3	1,4
Tension load in non-cracked concrete	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34
Displacement	δ_{N0}	[mm]	0,8	1,0	1,0 1,1			1,3	0,3
δ _{N∞}		[mm]	3	3,4		1,7			1,4
Seismic action C2									
Displacement for DLS	$\delta_{\text{N,seis,C2(DLS)}}$	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0
Displacement for ULS	$\delta_{\text{N,seis,C2(ULS)}}$	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8
Stainless steel A4									
Tension load in cracked concrete	Ν	[kN]	-	4,3	7,6	12,1	17,0	-	-
Displacement	δ_{NO}	[mm]	-	0,5	0,5	1,3	0,5	-	-
	δ _{N∞}	[mm]	-	1,2	1,6	1,8	1,6	-	-
Tension load in non-cracked concrete	Ν	[kN]	-	7,6	11,9	16,7	24,1	-	-
Displacement	δ _{N0}	[mm]	-	0,2	0,3	1,2	1,5	-	-
	δ _{N∞}	[mm]	-		1	,1		-	-
Seismic action C2									
Displacement for DLS	$\delta_{\text{N},\text{seis},\text{C2(DLS)}}$	[mm]	-	4,7	4,5	4,3	4,9	-	-
Displacement for ULS	$\delta_{\text{N,seis,C2(ULS)}}$	[mm]	-	13,3	12,7	9,7	10,1	-	-

Walraven Highload Anchor WHA1

Performance Displacements under tension load

Anchor size	10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20		
Steel, zinc plated									
WHA1T									
Shear load in cracked and non-cracked concrete	V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77
Displacement	δ_{V0}	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3
	δ_{V^∞}	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5
Seismic action C2									
Displacement for DLS $\delta_{V,seis}$,C2(DLS)	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6
Displacement for ULS $\delta_{V,seis}$,C2(ULS)	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8
WHA1H and WHA1C									
Shear load in cracked and non-cracked concrete	V	[kN]	10,1	17,1	27,5	41,5	72	72	77
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3
	δ_{V^∞}	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5
Seismic action C2 (WHA1H)									
Displacement for DLS $\delta_{V,seis}$,C2(DLS)	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6
Displacement for ULS $\delta_{V,seis}$,C2(ULS)	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8
Stainless steel A4									
Shear load in cracked and non-cracked concrete	V	[kN]	-	13,9	21,1	34,7	50,8	-	-
Displacement	δ_{V0}	[mm]	-	3,4	4,9	4,8	6,7	-	-
	δ _{V∞}	[mm]	-	5,1	7,4	7,1	10,1	-	-
Seismic action C2									
Displacement for DLS $\delta_{V,seis}$	C2(DLS)	[mm]	-	2,8	3,1	2,6	3,3	-	-
	C2(ULS)	[mm]	-	5,6	5,8	5,0	6,9	-	-

Walraven Highload Anchor WHA1

Performance Displacements under shear load