

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0637 of 22 November 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Highbond-Anchor FHB II Inject

Torque controlled bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0637

Page 2 of 20 | 22 November 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0637

Page 3 of 20 | 22 November 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Highbond-Anchor FHB II is a torque controlled bonded anchor consisting of a mortar cartridge with mortar fischer FIS HB and an anchor rod FHB II - A L or FHB II - A S with hexagon nut and washer.

The anchor rod is placed into a drilled hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under tension and shear load	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 and C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0637

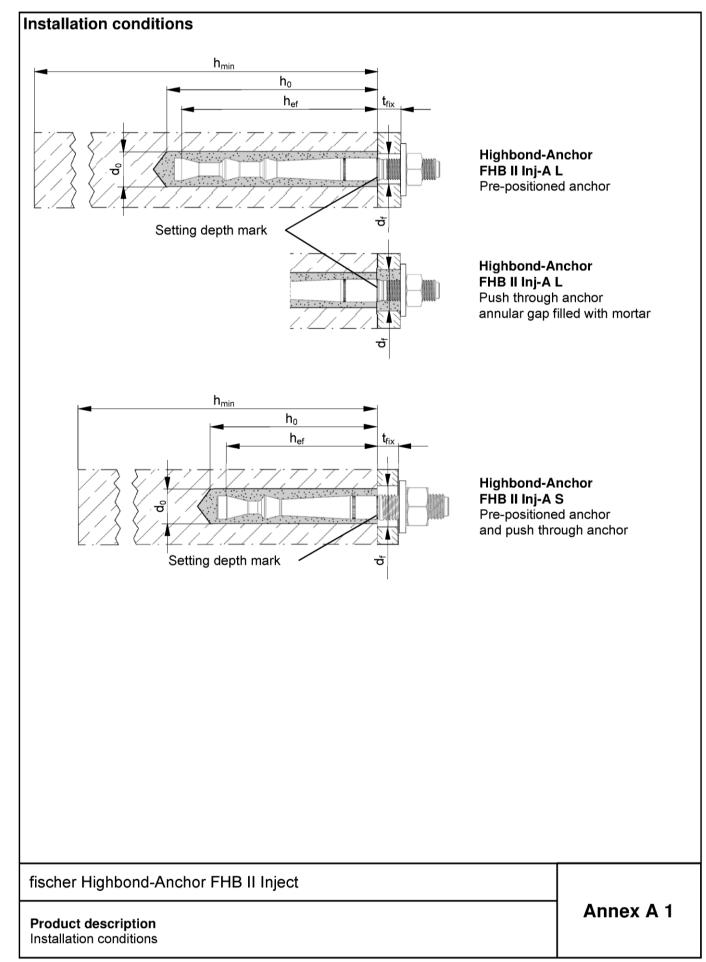
Page 4 of 20 | 22 November 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 22 November 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider

English translation prepared by DIBt

Table A1: Materials										
Part	Designation	Material								
1	Mortar cartridge	Mortar, hardener, filler								
	Steel grade	Steel, zinc plated	High corrosion resistant steel C							
2	fischer Highbond- Anchor rod FHB II Inj-A L or FHB II Inj-A S	Property class 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation						
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014						
4	Hexagon nut	Property class 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014						

fischer Highbond-Anchor FHB II Inject	
Product description Materials	Annex A 3

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages sub	ject to	fischer Injection mortar FIS HB with					
		FHB II	FHB II	II Inj-A S			
Hammer drilling with standard drill bit	E-800000000:		all s	izes			
Static or quasi	uncracked concrete	all sizes	Tables:	all sizes	Tables:		
static load, in	cracked concrete	all 51265	C1, C3, C5	all SIZES	C2, C4, C6		
Use category	dry or wet concrete	all sizes					
Kind of intallation	Pre- positioned anchor	d all sizes					
Intaliation	Push through anchor	311 81748					
Installation temp	erature	-5 °C to +40 °C					
In-service tempe	rature	-40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C)					

fischer Highbond-Anchor FHB II Inject

Intended Use
Specifications (part 1)

Annex B 1

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

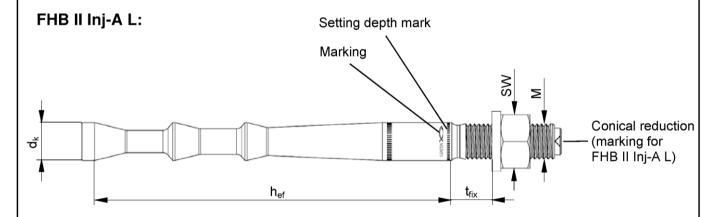
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- · Anchorages under static or quasi-static actions are designed in accordance with
- EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4:2009

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- · Observe the effective anchorage depth
- · Overhead installation is allowed

fischer Highbond-Anchor FHB II Inject

Intended Use
Specifications (part 2)


Annex B 2

1500

Table B2: Installation parameters for fischer Highbond-Anchor rods FHB II Inj-A L												
				M8	M10	M	12		M16		M20	M24
Size FHB II Inj-A L				x	x	x	x	x	x	X	x	x
				60	95	100	120	125	145	160	210	210
Cone diameter		d_k		9,4	10,7	12	,5		16,8		23	,0
Width across flats		SW		13	17	1	9		24		30	36
Nominal drill bit diame	eter	d_0		10	12	1-	4	18		18 25		5
Drill hole depth		h ₀		66	101	106	126	131 151 166		166	216	
Effective anchorage depth		h _{ef}		60	95	100	120	125	145	160	21	10
Minimum spacing and minimum edge distan		S _{min} = C _{min}	[mm]	4	0	5	0	55 60 70		9	0	
	positioned anchorage	d _f ≤		9	12	1-	4		18		22	26
in the fixture ¹⁾ pu	sh through anchorage	d _f ≤		11	14	1	6		20		2	6
Minimum thickness of concrete member		\mathbf{h}_{min}		100	14	40	17	70	190	220	28	30
Installation torque		T_{inst}	[Nm]	15	20	4	0		60		10	00

¹⁾ For larger clearance holes in the fixture see EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4-:2009

Marking:

Thickness of fixure

Work symbol, size of anchor, setting depth. e. g.: M10x95

 $t_{fix} \leq$

[mm]

For stainless steel additional **A4**. For high corrosion resistant steel additional **C.** For high corrosion resistant steel additional marking **C** also on the face.

fischer Highbond-Anchor FHB II Inject	
Intended Use Installation parameters fischer Highbond-Anchor rod FHB II Inj-A L	Annex B 3

English translation prepared by DIBt

of concrete member Installation torque

Thickness of fixure

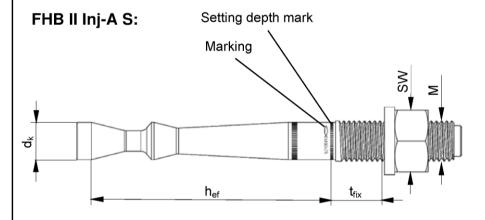
Table Ber me	tallation param		101 1100			1	1		
				M	10	M12	M16	M20	M24
Size FHB II Inj-A	A S			X	X	X	x	x	x
				60	75	75	95	170	170
Cone diameter		d _k		9	,4	11,3	14,5	23	3,0
Width across flat	s	SW		1	7	19	24	30	36
Nominal drill bit	diameter	do		10 12		12	16	25	
Drill hole depth		ho		66	81	81	101	176	
Effective anchorage depth	1	h _{ef}		60 75 75		75	95	1	70
Minimum spacin minimum edge d		S _{min} = C _{min}	[mm]	40		50	8	0	
Diameter of	pre-positioned anchorage	d _f ≤		1	2	14	18	22	26
clearance hole in the fixture ¹⁾	push through anchorage	d _f ≤		1	2	14	18	2	:6
Minimum thickne	ess	h ·		100	1'	20	150	2	4 0

15

100

120

30


1500

150

50

240

100

 h_{min}

 $\mathsf{T}_{\mathsf{inst}}$

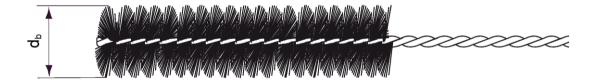
 $t_{\text{fix}} \leq$

[Nm]

[mm]

Marking:

Work symbol, size of anchor, setting depth. e. g.: M10x75


For stainless steel additional **A4**. For high corrosion resistant steel additional **C.** For high corrosion resistant steel additional marking **C** also on the face.

fischer Highbond-Anchor FHB II Inject	
Intended Use Installation parameters fischer Highbond-Anchor rod FHB II Inj-A S	Annex B 4

¹⁾ For larger clearance holes in the fixture see EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4-:2009

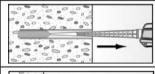
Table B4: Parameters of steel brush FIS BS								
Drill bit diameter	d ₀	[mm]	10	12	14	16	18	25
Steel brush diameter	d_{b}	[mm]	11	13	16	2	0	27

Table B5: Maximum processing time of the mortar **FIS HB** and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

System temperature	Maximum processing time	Minimum curing time ¹⁾
[°C]	t _{work} [minutes]	t _{cure} [minutes]
-5 to ±0		6 hours
> +1 to +5		3 hours
> +6 to +10	15	90
> +11 to +20	6	35
> +21 to +30	4	20
> +31 to +40	2	12

¹⁾ In wet concrete the curing times must be doubled

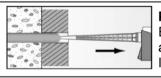
fischer Highbond-Anchor FHB II Inject	
Intended Use	Annex B 5
Parameters of steel brush Processing times and curing times	



Installation instruction part 1 Installation with injection mortar FIS HB Drilling and cleaning the hole Drill the hole with hammer drill. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3 Blow out the drill hole twice. If necessary, remove standing water out of the bore hole. min. 2x 2 For drill hole diameter For drill hole diameter $d_0 < 25$ mm with hand $d_0 = 25 \text{ mm}$ with oil-free blowout or oil-free compressed air (p ≥ 6 bar) compressed air Use a cleaning nozzle. Brush the bore hole twice. 3 Corresponding brushes see Table B4 min. 2x Blow out the drill hole twice. min. 2x 4 For drill hole diameter For drill hole diameter d_0 < 25 mm with hand $d_0 = 25 \text{ mm with oil-free}$ b compressed air (p ≥ 6 bar) blowout or oil-free compressed air Use a cleaning nozzle. Preparing the cartridge Remove the sealing cap 5 Screw on the static mixer (the spiral in the static mixer must be clearly visible) 6 Place the cartridge into the dispenser Extrude approximately 10 cm of material until the 7 resin is evenly grey in colour. Do not use mortar that is not uniformly grey Observe the processing If the processing time is exceeded, use a new static time, twork mixer and if necessary remove encrusted material in see Table B5 the cartridge mouth. fischer Highbond-Anchor FHB II Inject Annex B 6 Intended use Installation instruction part 1

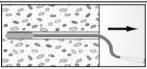
Z73234.16

Installation instruction part 2


Injection of the mortar

Fill approximately 2/3 of the drill hole with mortar. Exact quantity of mortar (travel scale on the cartridge) see instruction sheet.

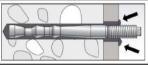
Fill the drill hole with mortar, always begin from the bottom of the hole to avoid bubbles


8

Push-through installation:

By using Highbond-Anchor rods **FHB II Inj-A L** the drill hole in the fixture must be also filled with mortar.

If Highbond-Anchor rods FHB II Inj-A S are used, this is this not necessary.



For drill hole depth ≥ 170 mm use an extension tube

Installation Highbond-Anchor rod FHB II Inj-A L and FHB II Inj-A S

9

Only use clean and oil-free anchor rods. Push the anchor rod down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor rod, excess mortar must be emerged around the anchor rod

10

For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges)

12

11

electronic copy of the eta by dibt: eta-16/0637

Wait for the specified curing time

t_{cure} see Table B5

Mounting the fixture T_{inst} see

Tables B2 and B3

fischer Highbond-Anchor FHB II Inject

Intended use

Installation instruction part 2

Annex B 7

Z73234.16

				M8	M10	М	12		M16		M20	M24
Size FHB II Inj-A L				x	x	×	x	x	x	×	x	х
-				60	95	100	120	125	145	160	210	210
Bearing capacity und	ler tensile lo	ad, ste	el fail	ure								
	Steel, zinc	plated		25,1	34,4	49	9,8		96,6		13	7,6
Characteristic resistance	Stainless s	teel A4	[kN]									
N _{Rk,s}	High co resistant			25,1	34,4	49	9,8		96,6		13	7,6
Partial safety factors1)												
D #1 5 4	Steel, zinc	plated						1,5 ¹⁾				
Partial safety factor	Stainless s	teel A4	[-]					1,5 ¹⁾				
γмs,N	High corrosion resistant steel 0							1,5 ¹⁾				
Pullout failure in crack	ked concrete	C20/25	5									
Characteristic resistanc	е	$N_{Rk,p}$	[kN]					2)				
Pullout and splitting fa	ailure in uncr	acked	concr	ete C20	/25							
Characteristic resistanc	е	$N_{Rk,p}$	[kN]					2)				
Edge distance		C _{cr,sp}	[mm]	300	476	380	600	375	500	580	63	30
Spacing		S _{cr,sp}	[,,,,,	150	238	190	300	188	250	290	31	15
Pullout and splitting fa	ailure in uncr	acked	concr	ete C20	/25							
Characteristic resistanc	е	$N_{Rk,p}^{3)}$	[kN]	20	35	40	50	2)	75	95		2)
Edge distance		$C_{cr,sp}$	[mm]					1,5 h _{ef}				
Spacing		$\mathbf{S}_{cr,sp}$	[]					$3,0\ h_{\text{ef}}$				
Factors for the compr	essive strenç	gth of c	oncre	te > C2	0/25							
	C25/30							1,10				
	C30/37							1,22				
Increasing factor	C35/45	Ψ_{c}	[-]	1,34								
for $N_{Rk,p}$	C40/50	1 C		1,41								
_	C45/55							1,48				
	C50/60							1,55				
Factors acc. to CEN/T	S 1992-4:200	9 Secti	on 6.2	.2.3								
Uncracked concrete		k _{ucr}	[-]					10,1				
Cracked concrete		k _{cr}	.,					7,2				
Concrete cone failure							-					
Effective anchorage de	anth	h_{ef}	[mm]	60	95	100	120	125	145	160	21	10

¹⁾ In absence of other national regulations

fischer Highbond-Anchor FHB II Inject Annex C₁ **Performances** Characteristic values under static or quasi-static tension load for fischer Highbond-Anchor FHB II Inj-A L (uncracked or cracked concrete)

²⁾ Not decisive (proof of splitting failure acc. ETAG 001, Annex C)
³⁾ Proof of splitting failure acc. ETAG 001, Annex C, (Section 5.3). Instead of N⁰_{Rk,c} use N_{Rk,p}.

 $^{^{4)}}$ γ_2 = 1,0 is included

				М	10	M12	M16	M20	M24		
Size FHB II Inj-A S				x	x	x	x	x	x		
•				60	75	75	95	170	170		
Bearing capacity unde	er tensile load,	stee	el failu	ıre							
	Steel, zinc pla	ted		25	5,1	34,4	61,6	128	3,5		
Characteristic resistance	Stainless steel	A4									
N _{Rk,s}	High corros resistant stee	ion	[KIN]	25	5,1	34,4	61,6	128	3,5		
Partial safety factors1)											
	Steel, zinc pla	ted				1,	5 ¹⁾				
Partial safety ————————————————————————————————————	Stainless steel	A4	[-]	1,51)							
	High corros		[-]			1,5 ¹⁾					
Pullout failure in cracke	ed concrete C2	0/25									
Characteristic resistance	N _R	Rk,p	[kN]				- ²⁾				
Pullout and splitting fai	lure in uncrack	ked c	oncre	te C20/25							
Characteristic resistance	N_{R}	k,p	[kN]	2)							
Edge distance	C _{cr}	,sp r	[mm]		300		340	51	0		
Spacing	S _{cr}	,sp	[111111]		150		170	25	55		
Pullout and splitting fai	ilure in uncrack	ced c	oncre	te C20/25							
Characteristic resistance	N_{Rk}	3) (,p	[kN]	20	2	25	40		.2)		
Edge distance	C _{cr}	,sp r	[mm]			1,5	,5 h _{ef}				
Spacing	S _{cr}	,sp L	[]	3,0 h _{ef}							
Factors for the compre	ssive strength	of co	ncret	e > C20/25							
	C25/30					1,	10				
	C30/37			1,22							
Increasing factor	С35/45	,	[-]	1,34							
for N _{Rk,p}	C40/50	С	.,	1,41							
	C45/55			1,48							
	C50/60				1,55						
Factors acc. to CEN/TS			n 6.2.	2.3							
Uncracked concrete		ucr	[-]),1				
Cracked concrete	k	cr	.,			7	,2				
Concrete cone failure											
Effective anchorage de	oth h	ef [[mm]	60	7	' 5	95	17	' 0		
Partial safety factor 1)4)		ЛС	[-]	1,5			1,5				

fischer Highbond-Anchor FHB II Inject Annex C 2 **Performances** Characteristic values under static or quasi-static tension load for fischer Highbond-Anchor FHB II Inj-A S (uncracked or cracked concrete)

 ¹⁾ In absence of other national regulations
 2) Not decisive (proof of splitting failure acc. ETAG 001, Annex C)
 3) Proof of splitting failure acc. ETAG 001, Annex C, (Section 5.3). Instead of N⁰_{Rk,c} use N_{Rk,p}.

 $^{^{4)}}$ $\gamma_2 = 1.0$ is included

1,5

fi	_			M8 M10		M12		M16			M20	M24
Size FHB II Inj-A L				x	x	x	x	x	x	x	x	x
					95	100	120	125	145	160	210	210
Bearing capac	city under shear lo	ad, stee	el failu	re								
without lever	arm											
	Steel, zinc plated			14,6	23,2	33	3,7		62,7		97,9	124,5
Characteristic resistance	Stainless steel A4 and High corrosion resistant steel C	$V_{Rk,s}$	[kN]	14,6	23,2	33	33,7 62,7		62,7		97,9	124,5
with lever arm	1											
	Steel, zinc plated			30	60	10	05		266		519	896
Characteristic bending moment	Stainless steel A4 and High corrosion resistant steel C	$M^0_{Rk,s}$	[Nm]	30	60	10	05		266		519	896
Partial safety	factors											
Partial safety fa	actor 1)	γMs,∨	[-]					1,25				
	acc. to CEN/TS Section 6.3.2.1	k ₂	[-]					1,0				
Concrete pry-	out failure											
Factor k acc. TR029 Section 5.2.3.3 or k ₃ acc.CEN/TS 1992-4-5:2009 Section 6.3.3		k ₍₃₎	[-]					2,0				
Partial safety fa	actors ¹⁾	γмср						1,5				
Concrete edge	e failure											
Effective length	n of anchor	I _f	[60	95	100	112	125	14	14	20	00
Calculation dia	meter	d	[mm]	10	12	1	4		18		2	25

¹⁾ In absence of other national regulations

Partial safety factor¹⁾

fischer Highbond-Anchor FHB II Inject	
Leistungen Charakteristische Werte für statische oder quasi-statische Querzugbelastung von fischer Highbond- Ankern FHB II – A L (ungerissener oder gerissener Beton)	Annex C 3

[-]

1,5

	haracteristic valu scher Highbond							d concret	te)	
				M.	10	M12	M16	M20	M24	
Size FHB II Inj	-A S			x	x	x	x	x	x	
			60	75	75	95	170	170		
Bearing capac	city under shear loa	ad, stee	el failu	re						
without lever	arm									
	Steel, zinc plated			23	,2	33,7	62,7	97,9	124,5	
Characteristic	Stainless steel A4									
resistance	and High corrosion resistant steel C	$V_{Rk,s}$	[kN]	23	,2	33,7	62,7	97,9	124,5	
with lever arm	1									
	Steel, zinc plated			60		105	266	519	896	
Characteristic bending moment	Stainless steel A4 and High corrosion resistant steel C	$M^0_{Rk,s}$	[Nm]	6	0	105	266	519	896	
Partial safety	factors					l				
Partial safety fa	actor 1)	γ̃Ms,∨	[-]	1,25						
	acc. to CEN/TS Section 6.3.2.1	k ₂	[-]	1,0						
Concrete pry-	out failure									
Factor k acc. TR029 Section 5.2.3.3 or k ₃ acc.CEN/TS 1992-4-5:2009 Section 6.3.3		k ₍₃₎	[-]	2,0						
Partial safety factors ¹⁾ γ _{Mcp} [-]			[-]	1,5						
Concrete edge	e failure									
Effective length	n of anchor	I _f	[mm]	60	7	'5	95	17	70	
Calculation diameter		d	Liiiiii	1	0	12	16	2	25	

¹⁾ In absence of other national regulations

Partial safety factor¹⁾

fischer Highbond-Anchor FHB II Inject	
Performances	Annex C 4
Characteristic values under static or quasi-static shear load for	
fischer Highbond-Anchor FHB II Inj-A S (uncracked and cracked concrete)	

Z73234.16 8.06.01-206/16

[-]

		М8	M10	М	12		M16		M20	M24
Size FHB II Inj-A L		x	x	x x		x	x			x
60 95					120	125	145	160	210	210
Displacemen	t under te	ension loa	ad							
Cracked cond	crete									
Tension load	[kN]	6,6	15,9	17,1	22,5	24,0	30,0	34,7	52,2	52,2
δ_{N0}	[0	,8				0,6		
$\delta_{N^{\infty}}$	[mm]					1,7				
Uncracked co	oncrete									
Tension load	[kN]	9,3	22,3	24,0	31,6	33,6	42,0	48,7	73,2	73,2
δ_{N0}	[mm]	0,2	0,2 0,4 0,6							
$\delta_{N^{\infty}}$	[mm]	1,7								
Displacemen	t under s	hear load								
Uncracked or	cracked	concrete								
Steel zinc pla	ted									
Shear load	[kN]	7,8	11,9	17	7,3		32,2		50,2	72,5
δ_{V0}	[mm]	1	,2			1,3			3	5
$\delta_{V^{\infty}}$	[mm]	1	,8			2,0			5	3
Stainless stee	el A4									
Shear load	[kN]	8,7	13,3	19	9,3		35,8			80,6
δ_{V0}	[mm]	1	1,0 1,1 2,2 3,5							5
$\delta_{V\infty}$	[mm]	1	1,5 1,7 3,3 5,3							3
High corrosic	n resista	nt steel (;							
Shear load	[kN]	8,7	13,3	19	9,3		35,8		55,9	80,6
δ_{V0}	[mm]	1	,2	1	,3	2,4			3,7	5,0
				2,0 3,6						

fischer Highbond-Anchor FHB II Inject	
Performances Displacement for fischer Highbond-Anchor FHB II Inj-A L	Annex C 5

8.06.01-206/16

Z73234.16

		M10		M12	M16	M20	M24		
Size FHB II Inj-A S		x		x	x	x	x		
		60	75	75	95	170	170		
Displacement	under te	nsion load							
Cracked cond	rete								
Tension load	[kN]	6,6	1	1,1	15,9	3	8,0		
δ_{N0}	[]	0,8	(0,3	0,4	C),6		
$\delta_{N^{\infty}}$	[mm]	·			1,7				
Uncracked co	ncrete								
Tension load	[kN]	9,3	5,6	22,3	53,3				
δ_{N0}	[]	0,2 0,5							
$\delta_{N\infty}$	[mm]	1,7							
Displacement	under sl	near load							
Uncracked or	cracked	concrete							
Steel zinc pla	ted								
Shear load	[kN]	11,3		12,7	29,0	45,9	65,3		
δ_{V0}	[mm]	1,2			1,5	2	2,8		
$\delta_{V\infty}$	[111111]	1,8			2,3	4	4,2		
Stainless stee	el A 4								
Shear load	[kN]	13,8		19,3	35,8	55,9	71,1		
δ_{V0}	[mm]	1,0 1,1 2,2 3,5					3,5		
$\delta_{V^{\infty}}$	[mm]	1,5 1,7 3,3 5,3							
High corrosio	n resista	nt steel C							
Shear load	[kN]	13,8		19,3	35,8	55,9	80,6		
δ_{V0}	[mm]	1,2		1,3	2,4	3,7	5,0		
$\delta_{V\infty}$	[mm]	1,8		2,0	3,6	5,6	7,5		

fischer Highbond-Anchor FHB II Inject	
Performances Displacement for fischer Highbond-Anchor FHB II Inj-A S	Annex C 6