

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0691 vom 29. August 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Injektionssystem HB-VMU plus für Beton

Verbunddübel zur Verankerung im Beton

HALFEN GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Halfen Herstellwerk HB1

24 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-16/0691

Seite 2 von 24 | 29. August 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-16/0691

Seite 3 von 24 | 29. August 2016

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem HB-VMU plus für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel HB-VMU plus oder HB-VMU plus Polar und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange in den Größen M8 bis M30 oder ein Betonstahl in den Größen 8 bis 32 mm.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkr	nal	Leistung				
Charakteristische Querbeanspruchung	Werte	bei	Zug-	und	Siehe Anhang C 1 bis C 8	
Verschiebungen unte	r Zug- un	d Querb	eansprud	chung	Siehe Anhang C 9 / C 10	

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Europäische Technische Bewertung ETA-16/0691

Seite 4 von 24 | 29. August 2016

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäisch technische Zulassung ETAG 001, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, gilt folgende Rechtsgrundlage: [96/582/EG].

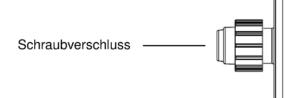
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

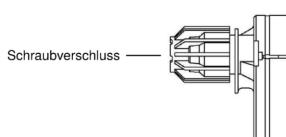
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 29. August 2016 vom Deutschen Institut für Bautechnik

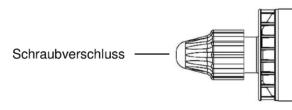
Uwe Bender Beglaubigt: Abteilungsleiter



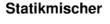
Einbauzustand Ankerstange **t**fix hο h_{min} **Einbauzustand Betonstahl** d_{f} Durchgangsloch im anzuschließenden Bauteil Dicke des Anbauteils $\mathsf{t}_{\mathsf{fix}}$ effektive Verankerungstiefe h_{ef} Bohrlochtiefe h_0 Mindestbauteildicke h_{min} Injektionssytem HB-VMU plus für Beton Anhang A1 Produktbeschreibung Einbauzustand


Kartusche HB-VMU plus oder HB-VMU plus Polar

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml Kartusche (Typ: Koaxial)


Aufdruck: HB-VMU plus oder HB-VMU plus Polar, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), sowohl mit als auch ohne Kolbenwegskala

235 ml, 345 ml bis 360 ml und 825 ml Kartusche (Typ: "side-by-side")



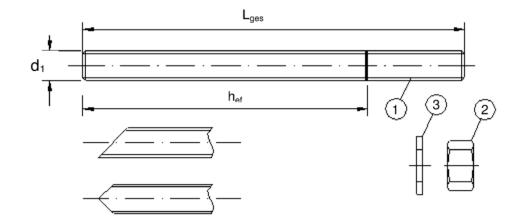
Aufdruck: HB-VMU plus oder HB-VMU plus Polar, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), sowohl mit als auch ohne Kolbenwegskala

165 ml und 300 ml Kartusche (Typ: "Schlauchfolie")

Aufdruck: HB-VMU plus oder HB-VMU plus Polar, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), sowohl mit als auch ohne Kolbenwegskala

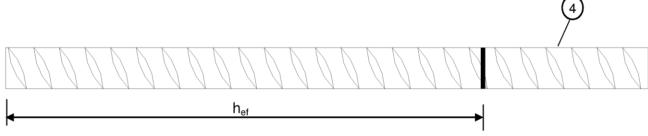
Injektionssytem HB-VMU plus für Beton


Produktbeschreibung


Injektionssystem

Anhang A2

Ankerstange M8, M10, M12, M16, M20, M24, M27, M30 mit Unterlegscheibe und Sechskantmutter



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Verankerungstiefe

Betonstahl \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen
 (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Injektionssytem HB-VMU plus für Beton

Produktbeschreibung

Ankerstange und Betonstahl

Anhang A3

Teil	Benennung	Werkstoff
Stah feuer	teile, galvanisch verzinkt ≥ 5 μm gei verzinkt ≥ 40 μm gemäß EN ISO 146	mäß EN ISO 4042:1999 oder 1:2009 und EN ISO 10684:2004+AC:2009
1	Ankerstange	Stahl gemäß EN 10087:1998 oder EN 10263:2001 Festigkeitsklasse 4.6, 4.8, 5.8, 8.8 gemäß EN 1993-1-8:2005 +AC:2009 A ₅ > 8% Bruchdehnung
2	Sechskantmutter	Stahl gemäß EN 10087:1998 oder EN 10263:2001 Festigkeitsklasse 4 (für Ankerstangen der Klasse 4.6 oder 4.8) Festigkeitsklasse 5 (für Ankerstangen der Klasse 5.8) Festigkeitsklasse 8 (für Ankerstangen der Klasse 8.8) gemäß EN ISO 898-2:2012
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Stahl, galvanisch verzinkt oder feuerverzinkt
Stah	Iteile aus nichtrostendem Stahl	
1	Ankerstange	Werkstoff 1.4401 / 1.4404 / 1.4571 / 1.4362, EN 10088-1:2005, > M24: Festigkeitsklasse 50 EN ISO 3506-1:2009 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1:2009 A₅ > 8% Bruchdehnung
2	Sechskantmutter	Werkstoff 1.4401 / 1.4404 / 1.4571 / 1.4362, EN 10088:2005, > M24: Festigkeitsklasse 50 (für Ankerstangen der Klasse 50) ≤ M24: Festigkeitsklasse 70 (für Ankerstangen der Klasse 70) gemäß EN ISO 3506-2:2009
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4401, 1.4404, 1.4571 oder 1.4362 gemäß EN 10088-1:2005
Stah	Iteile aus hochkorrosionsbeständige	em Stahl
1	Ankerstange	Werkstoff 1.4529 / 1.4565, EN 10088-1:2005, > M24: Festigkeitsklasse 50 EN ISO 3506-1:2009 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1:2009 A₅ > 8% Bruchdehnung
2	Sechskantmutter	Werkstoff 1.4529 / 1.4565, EN 10088-1:2005, > M24: Festigkeitsklasse 50 (für Ankerstangen der Klasse 50) ≤ M24: Festigkeitsklasse 70 (für Ankerstangen der Klasse 70) gemäß EN ISO 3506-2:2009
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4529 / 1.4565 gemäß EN 10088-1:2005
Beto	nstahl	
4	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injektionssytem HB-VMU plus für Beton Produktbeschreibung Werkstoffe Anhang A4

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: M8 bis M30, Betonstahl Ø8 bis Ø32.
- Seismische Einwirkung für Katergorie C1: M8 bis M30, Betonstahl Ø8 bis Ø32.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- Gerissener und ungerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32.

Temperaturbereich:

- I: 40 °C bis +40 °C (max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
- II: 40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)
- III: 40 °C bis +120 °C (max. Langzeit-Temperatur +72 °C und max. Kurzzeit-Temperatur +120 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen unter statischen und quasi-statischen Lasten erfolgt nach:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Fassung September 2010 oder
 - CEN/TS 1992-4:2009
- Die Bemessung der Verankerungen unter seismischer Einwirkung (gerissener Beton) erfolgt nach:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Fassung Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B.: plastischer Gelenke) der Betonkonstruktion anzuordnen.
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt.

Einbau:

- Trockener oder nasser Beton: M8 bis M30, Betonstahl Ø8 bis Ø32.
- Wassergefüllte Bohrlöcher (nicht Seewasser): M8 bis M16, Betonstahl Ø8 bis Ø16.
- · Bohrlochherstellung durch Hammer- oder Pressluftbohren.
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.

Injektionssytem HB-VMU plus für Beton	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Montage- und Dübelkennwerte, Ankerstange

Ankerstange			М8	M10	M12	M16	M20	M24	M27	M30
Bohrernenndurchmesser	d ₀ =	[mm]	10	12	14	18	24	28	32	35
Effektive	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
Verankerungstiefe	h _{ef,max} =	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Bürstendurchmesser	d _b	[mm]	12	14	16	20	26	30	34	37
Drehmoment	T _{inst} ≤	[mm]	10	20	40	80	120	160	180	200
Anhautaildiaka	t _{fix,min} >	[mm]				()			
Anbauteildicke	t _{fix,max} <	[mm]				1500				
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
minimaler Achsabstand	S _{min}	[mm]	40	50	60	80	100	120	135	150
minimaler Randabstand	C _{min}	[mm]	40	50	60	80	100	120	135	150

Tabelle B2: Montage- und Dübelkennwerte, Betonstahl

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Bohrernenndurchmesser	d ₀ =	[mm]	12	14	16	18	20	24	32	35	40
Effektive	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
Verankerungstiefe	h _{ef,max} =	[mm]	160	200	240	280	320	400	480	540	640
Bürstendurchmesser	d _b	[mm]	14	16	18	20	22	26	34	37	41,5
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀						
minimaler Achsabstand	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
minimaler Randabstand	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

Injektionssytem HB-VMU plus für Beton	
Verwendungszweck Montagekennwerte	Anhang B2

Stahlbürste

Tabelle B3: Parameter für Reinigungs- und Setzzubehör

Ankerstange	Betonstahl	Robrer - (A Rüreten - (A		d _{b,min} min. Bürsten - Ø	Injektionsadapter		
[mm]	[mm]	[mm]	[mm]	[mm]	[-]		
M8		10	12	10,5			
M10	8	12	14	12,5			
M12	10	14	16	14,5	Kein		
	12	16	18	16,5	Injektionsadapter notwendig		
M16	14	18	20	18,5			
	16	20	22	20,5			
M20	20	24	26	24,5	VM-IA 24		
M24		28	30	28,5	VM-IA 28		
M27	25	32	34	32,5	VM-IA 32		
M30	28	35	37	35,5	VM-IA 35		
	32	40	41,5	40,5	VM-IA 40		

Bohrerdurchmesser (d₀): 10 mm bis 20 mm, Verankerungstiefe (h_{ef}): bis 240mm,

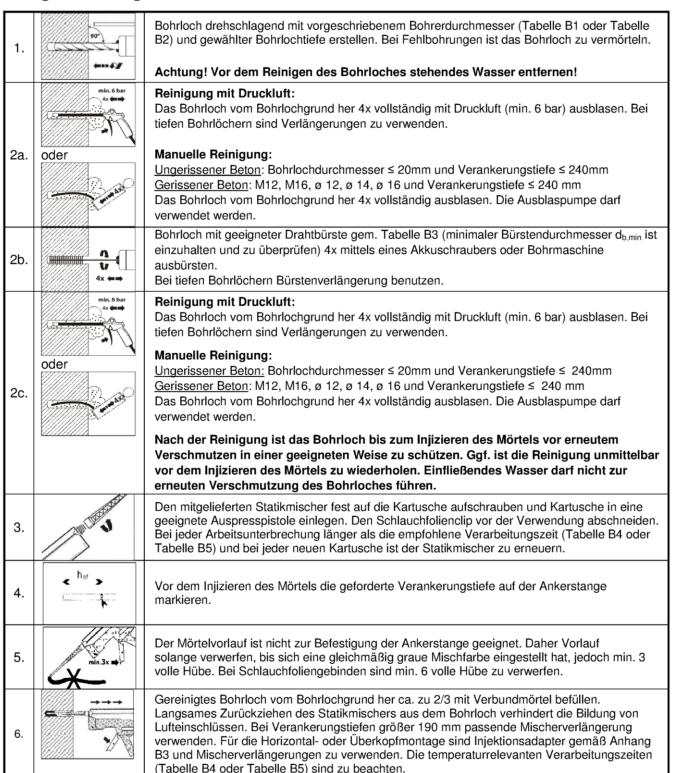
im ungerissenen Beton

Alle Anwendungen

Injektionsadapter für Überkopf- oder Horizontalmontage Bohrerdurchmesser (d₀): 24 mm bis 40 mm

Injektionssytem HB-VMU plus für Beton

Verwendungszweck


Reinigungs- und Installationszubehör

Anhang B3

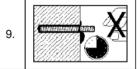
Z53728.16

Montageanweisung

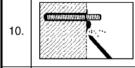
Injektionssytem HB-VMU plus für Beton

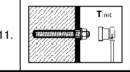
Verwendungszweck Montageanweisung Anhang B4

Montageanweisung (Fortsetzung)



Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Verankerungstiefe einführen.


Die Ankerstange muss schmutz-, fett- und ölfrei sein.


Nach der Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Wird kein Mörtel an der Betonoberfläche sichtbar, ist die Ankerstange sofort heraus zu ziehen und erneut bei Schritt 6 zu beginnen. Bei Überkopfmontage ist der Anker zu fixieren (z.B. Holzkeile).

Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B4 oder Tabelle B5).

Ausgetretenen Mörtel entfernen.

Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment T_{inst} (Tabelle B1) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel festgezogen werden.

Injektionssytem HB-VMU plus für Beton

Verwendungszweck

Montageanweisung (Fortsetzung)

Anhang B5

Tabelle B4: Maximale Verarbeitungs- und minimale Aushärtezeiten, HB-VMU plus

Beton Temperatur	Maximale Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton ¹⁾
- 10°C bis - 6°C	90 min ²⁾	24 h ²⁾
- 5°C bis - 1°C	90 min	14 h
0°C bis + 4°C	45 min	7 h
+ 5°C bis + 9°C	25 min	2 h
+ 10°C bis + 19°C	15 min	80 min
+ 20°C bis + 29°C	6 min	45 min
+ 30°C bis + 34°C	4 min	25 min
+ 35°C bis + 39°C	2 min	20 min
+ 40°C	1,5 min	15 min
Kartuschentemperatur	+ 5°C bis	s + 40°C

Die Aushärtezeiten in feuchtem Beton sind zu verdoppeln.
 Die Kartuschentemperatur muss min. + 15°C betragen.

Tabelle B5: Maximale Verarbeitungs- und minimale Aushärtezeiten, HB-VMU plus Polar

Beton Temperatur	Maximale Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton ¹⁾
- 20°C bis - 16°C	75 min	24 h
- 15°C bis - 11°C	55 min	16 h
- 10°C bis - 6°C	35 min	10 h
- 5°C bis - 1°C	20 min	5 h
0°C bis +4°C	10 min	2,5 h
+ 5°C bis + 9°C	6 min	80 min
+10°C	6 min	60 min
Kartuschentemperatur	- 20°C bi	s + 10°C

¹⁾ Die Aushärtezeiten in feuchtem Beton sind zu verdoppeln.

Injektionssytem HB-VMU plus für Beton	
Verwendungszweck Verarbeitungs- und Aushärtezeiten	Anhang B6

Tabelle C1: Charakteristische Werte für Ankerstangen bei Zugbeanspruchung in gerissenem Beton

Ankerstange				М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen					•						
Charakteristische Zugtr	[kN]	$A_s \cdot f_{uk}$									
Kombiniertes Versage	n durch Herausziel	nen und E	Betonausbi	ruch							
Charakteristische Verbu	ındtragfähigkeit im g	erissenen	Beton C20	/25							
Temperaturbereich I: 40°C/24°C	trockener und feuchter Beton	$ au_{Rk,cr}$	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5		nicht z	ulässig	
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
80°C/50°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0		nicht z	ulässig	
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
120°C/72°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0		nicht z	6,5 ulässig 4,5 ulässig 3,5 ulässig	
			C25/30	1,02							
			C30/37 C35/45					04			
Erhöhungsfaktoren für	Rk,cr	Ψο	C40/50	,					5 5,5 6,5 6 nicht zulässig 0 4,0 4,5 4 nicht zulässig 0 3,0 3,5 3 nicht zulässig		
			C45/55					09	14,0 4,0 4,5 4 nicht zulässig 3,0 3,0 3,5 3 nicht zulässig		
			C50/60					10			
Faktor gemäß CEN/TS	1992-4-5	k ₈	[-]					,2			
Betonausbruch											
Faktor gemäß CEN/TS	1992-4-5	k _{cr}	[-]				7	,2			
Randabstand		C _{cr,N}	[mm]				1,5	h _{ef}			
Achsabstand			[mm]				3,0) h _{ef}			
Montagesicherheitsbeiv (trockener und feuchter		$S_{cr,N}$ $\gamma_2 = \gamma_{inst}$	[-]	1,0			,	1,2			
Montagesicherheitsbeiv (wassergefülltes Bohrlo	vert	$\gamma_2 = \gamma_{inst}$	[-]		1	,4			nicht zulässig 3,0 3,0 3,5 3 nicht zulässig		

Injektionssytem HB-VMU plus für Beton

Leistung

Charakteristische Werte für Ankerstangen bei Zugbeanspruchung in gerissenem Beton

Anhang C1

Tabelle C2: Charakteristische Werte für Ankerstangen bei Zugbeanspruchung in ungerissenem Beton

Ankerstange				M8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen												
Charakteristische Zugtr	agfähigkeit	$N_{Rk,s}$	[kN]				As	• f _{uk}				
Kombiniertes Versage	n durch Herausz	Betonausk	oruch									
Charakteristische Verbu	ındtragfähigkeit im	ungerisse	nen Beton (C20/25								
Temperaturbereich I:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	9			
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	7,5	8,5	8,5	8,5		nicht zulässig			
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	7,5	9	9	9	9	6,5			
80°C/50°C	wassergefülltes Bohrloch trockener und	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5		nicht zulässig			
Temperaturbereich III:	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0		
120°C/72°C	τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0	nicht zulässig					
			C25/30					02				
			C30/37			1,04 1,07						
Erhöhungsfaktoren für 1	Rk.ucr	Ψc	C35/45									
_			C40/50 C45/55					08				
			C50/60	,								
Faktor gemäß CEN/TS	1992-4-5	k ₈	[-]	10,1								
Betonausbruch												
Faktor gemäß CEN/TS	1992-4-5	k _{ucr}	[-]				10),1				
Randabstand		C _{cr,N}	[mm]				1,5	h _{ef}				
Achsabstand		S _{cr,N}	[mm]				3,0	h _{ef}				
Spalten												
Randabstand	[mm]			1,0·h _{ef} ≤	2·h _{ef} (2	$2,5-\frac{h}{h_{ef}}$	≤ 2,4·h _{ef}					
chsabstand s _{cr,sp} [mn							2 c	cr,sp				
(trockener und feuchter	ontagesicherheitsbeiwert ockener und feuchter Beton) $\gamma_2 = \gamma_{inst}$ [-]				1,0 1,2							
Montagesicherheitsbeiv (wassergefülltes Bohrlo		$\gamma_2 = \gamma_{inst}$	[-]		1	,4			nicht z	ulässig		

Injektionssytem HB-VMU plus für Beton

Leistung

Charakteristische Werte für Ankerstangen bei Zugbeanspruchung in ungerissenem Beton

Anhang C2

Tabelle C3: Charakteristische Werte für Ankerstangen bei Querbeanspruchung in gerissenem und ungerissener Beton

Ankerstange		М8	M10	M12	M16	M20	M24	M27	M30			
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	0,5 • A _s • f _{uk}									
Duktilitätsfaktor gemäß CEN/TS 1992-4-5	[-]				0	,8						
Stahlversagen mit Hebelarm												
Charakteristisches Biegemoment	[Nm]				1,2 • V	V _{el} • f _{uk}						
Betonausbruch auf der lastabgewandten S	Seite											
Faktor k gemäß TR 029 bzw. k ₃ gemäß CEN/TS 1992-4-5	k ₍₃₎	[-]				2	,0					
Betonkantenbruch												
Effektive Ankerlänge	[mm]			I _f	= min(h	ef; 8 d _{nor}	m)					
Außenduchmesser des Dübels d _{nom} [mm				10	12	16	20	24	27	30		
Montagesicherheitsbeiwert	[-]				1	,0						

Injektionssytem	HB-VMU I	plus für	Beton
-----------------	----------	----------	-------

Leistung

Charakteristische Werte für Ankerstangen bei Querbeanspruchung

Anhang C3

Tabelle C4:	Charakteristische Werte für Ankerstangen bei seismischer Beanspruchung,
	Kategorie C1

Kate	egorie C1										
Ankerstange				М8	M10	M12	M16	M20	M24	M27	M30
Zugbeanspruchung											
Stahlversagen											
Charakteristische Zugtra	agfähigkeit	N _{Rk,s,seis}	[kN]				As	• f _{uk}			
Kombiniertes Versage	n durch Herausziel	nen und Be	etonausb	ruch							
Charakteristische Verbu	ındtragfähigkeit in Be	eton C20/25	5 bis C50/	60							
Temperaturbereich I:	trockener und feuchter Beton	$ au_{Rk,seis}$	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	Bohrloch			2,5	2,5	3,7	3,7		nicht z	ulässig	
Temperaturbereich II:			[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	wassergefülltes Bohrloch	τ _{Rk,seis}	[N/mm²]	1,6	1,9	2,7	2,7	nicht zulässig			
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	wassergefülltes Bohrloch	τ _{Rk,seis}	[N/mm ²]	1,3	1,6	2,0	2,0		nicht z	ulässig	
Erhöhungsfaktor für $\tau_{Rk,s}$	seis	Ψc	[-]				1	,0			
Montagesicherheitsbeiw (trockener und feuchter		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2			
Montagesicherheitsbeiw (wassergefülltes Bohrlog		$\gamma_2 = \gamma_{inst}$	[-]		1	,4			nicht z	ulässig	
Querbeanspruchung											
Stahlversagen ohne H	ebelarm										
Charakteristische Quert	ragfähigkeit	V _{Rk,s,seis}	[kN]				0,35 •	A _s · f _{uk}			
Stahlversagen mit Heb											
Charakteristisches Bieg	emoment	M ⁰ _{Rk,s,seis}	[Nm]			Keine L	eistung	bestimm	nt (NPD)		

Injektioneeytem	HB-VMU plus für Beton	
iniekuonssylem	no-vivio bius iur beion	

Leistund

Charakteristische Werte für **Ankerstangen** bei **seismischer Beanspruchung**, Kategorie **C1**

Anhang C4

Tabelle C5: Charakteristische Werte für Betonstahl bei Zugbeanspruchung in gerissenem Beton

Betonstahl								Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen												
Charakteristische Zugt	ragfähigkeit	N _{Rk,s}	[kN]	A _s • f _{uk} ¹⁾								
Kombiniertes Versag	en durch Heraus	ziehen ur	ıd Betonaı	usbruc	h							
Charakteristische Verb	oundtragfähigkeit i	m gerisser	nen Beton	C20/25								
Temperaturbereich I:	trockener und feuchter Beton	$ au_{Rk,cr}$	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
40°C/24°C	wassergefülltes Bohrloch	$ au_{Rk,cr}$	[N/mm²]	4,0	4,0	5,5	5,5	5,5		nicht z	ulässig	
Temperaturbereich II:	trockener und feuchter Beton		[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
80°C/50°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	4,0	nicht zulässig			
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
120°C/72°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0		nicht z	ulässig	
Erhöhungsfaktoren für	T _{Rk,cr}	Ψο	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60					1,02 1,04 1,07 1,08 1,09 1,10				
Faktor gemäß CEN/TS	3 1992-4-5	k ₈	[-]					7,2				
Betonversagen												
Faktor gemäß CEN/TS	3 1992-4-5	k _{cr}	[-]					7,2				
Randabstand	Randabstand C _{cr,N}							1,5 h _{ef}				
chsabstand s _{cr,N} [mn								3,0 h _{ef}				
(trockener und feuchte	ontagesicherheitsbeiwert rockener und feuchter Beton) $\gamma_2 = \gamma_1$			1,0 1,2								
Montagesicherheitsbei (wassergefülltes Bohrle		$\gamma_2 = \gamma_{inst}$	[-]			1,4				nicht z	ulässig	

 $[\]overline{f}_{uk} = f_{tk} = k \cdot f_{yk}$

Injektionssytem HB-VMU plus für Beton

Leistung

Charakteristische Werte für Betonstahl bei Zugbeanspruchung in gerissenem Beton

Anhang C5

Tabelle C6:	Charakteristische Werte für Betonstahl bei Zugbeanspruchung in
	ungerissenem Beton

Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Stahlversagen														
Charakteristische Zugtr	agfähigkeit	N _{Rk,s}	[kN]					A _s • f _{uk} 1))					
Kombiniertes Versage	en durch Herausz	iehen und	Betonau	sbruc	h									
Charakteristische Verbu	undtragfähigkeit im	ungerisse	nen Beto	n C20/2	25									
Temperaturbereich I:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	10 12 12 12 12 11 10							10	8,5		
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	7,5	8,5	8,5	8,5	8,5	nicht zulässig					
remperaturbereich II: leuchter Beton					8,0	7,0	6,0							
80°C/50°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5		nicht z	ulässig			
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5		
120°C/72°C	$ au_{Rk,ucr}$	[N/mm ²]	4,0 5,0 5,0 5,0 5,0 nicht zulässi							ulässig				
			C25/30											
			C30/37	,										
Erhöhungsfaktoren für	TRk.ucr	Ψς	C35/45	,										
-			C40/50 C45/55					1,08						
			C50/60	,										
Faktor gemäß CEN/TS	1992-4-5	k ₈	[-]					10,1						
Betonversagen														
Faktor gemäß CEN/TS	1992-4-5	k _{ucr}	[-]					10,1						
Randabstand		C _{cr,N}	[mm]					1,5 h _{ef}						
Achsabstand		S _{cr,N}	[mm]					3,0 h _{ef}						
Spalten														
Randabstand	C _{cr,sp}	[mm]			1,0·h	_{ef} ≤ 2·h	_{ef} (2,5-	$\left(\frac{h}{h_{ef}}\right) \le 2$,4·h _{ef}					
Achsabstand	chsabstand s _{cr,sp}							2 c _{cr,sp}						
Montagesicherheitsbeiv (trockener und feuchter	Beton)	$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2					
Montagesicherheitsbeiv (wassergefülltes Bohrlo		$\gamma_2 = \gamma_{inst}$	[-]			1,4				nicht z	ulässig			

 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injektionssytem HB-VMU plus für Beton

Leistung

Charakteristische Werte für Betonstahl bei Zugbeanspruchung in ungerissenem Beton

Anhang C6

Tabelle C7: Charakteristische Werte für Betonstahl bei Querbeanspruchung in gerissenem und ungerissenem Beton

Betonstahl	3etonstahl					Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	[kN]				0,5	0 • A _s •	f _{uk} 1)				
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 k ₂ [-]							0,8				
Stahlversagen mit Hebelarm											
Charakteristisches Biegemoment	[Nm]				1,2	· W _{el} · f	fuk ¹⁾				
Betonausbruch auf der lastabge	wandten S	Seite									
Faktor k gemäß TR 029 bzw. k ₃ gemäß CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0				
Betonkantenbruch											
Effektive Dübellänge	[mm]				I _f = m	in(h _{ef} ; 8	d _{nom})				
Außendurchmesser	[mm]	8	10	12	14	16	20	25	28	32	
Montagesicherheitsbeiwert	[-]	1,0									

 $[\]overline{}^{1)} f_{uk} = \overline{f_{tk}} = k \cdot f_{yk}$

Injektionssytem HB-VMU plus für Beton

Leistung

Charakteristische Werte für Betonstahl bei Querbeanspruchung in gerissenem und ungerissenem Beton

Anhang C7

Tabelle C8:	Charakteristische Werte für Betonstahl bei seismischer Beanspruchung,
	Kategorie C1

Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Zugbeanspruchung													
Stahlversagen													
Charakteristische Zugtr	agfähigkeit	$N_{\text{Rk},s,\text{seis}}$	[kN]	A _s • f _{uk} ¹⁾									
Kombiniertes Versage	n durch Herausz	iehen un	d Betonau	ısbruch	1								
Charakteristische Verbu	ındtragfähigkeit im	Beton Ca	20/25 bis (C50/60									
Temperaturbereich I:	trockener und feuchter Beton	$ au_{Rk,seis}$	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,seis}	[N/mm²]	2,5	2,5	3,7	3,7	3,7		nicht zulässig			
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C	wassergefülltes Bohrloch	τ _{Rk,seis}	[N/mm²]	1,6	1,9	2,7	2,7	2,7	nicht zulässig				
Temperaturbereich III:	trockener und feuchter Beton	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
120°C/72°C	wassergefülltes Bohrloch	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0		nicht z	ulässig		
Erhöhungsfaktor für τ _{Rk,}	seis	Ψc	[-]					1,0					
Montagesicherheitsbeiv (trockener und feuchter	Beton)	$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2				
Montagesicherheitsbeiw (wassergefülltes Bohrlo		$\gamma_2 = \gamma_{inst}$	[-]			1,4				nicht z	ulässig		
Querbeanspruchung													
Stahlversagen ohne H	ebelarm												
Charakteristische Quert	ragfähigkeit	$V_{Rk,s,seis}$	[kN]				0,35	5 • A _s • 1	: 1) uk				
Stahlversagen mit Hel	pelarm												
Charakteristisches Bieg	emoment	M ⁰ _{Rk,s,seis}	[Nm]			Keine	Leistu	ng best	immt (N	NPD)			

 $[\]overline{f_{uk}} = \overline{f_{tk}} = k \cdot f_{yk}$

Injektionssytem HB-VMU plus für Beton

Leistung

Charakteristische Werte für Betonstahl bei seismischer Beanspruchung, Kategorie C1

Anhang C8

Verschiebung unter Zugbeanspruchung¹⁾ (Ankerstange) Tabelle C9:

Ankerstange	М8	M10	M12	M16	M20	M24	M27	M30				
Ungerissener Beton C20/25												
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
40°C/24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperaturbereich II: 80°C/50°C	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperaturbereich III: 120°C/72°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Gerissener Beton Ca	20/25											
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,0	90	0,070							
40°C/24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,1	05	0,105							
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,219		0,170							
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,255		0,245							
Temperaturbereich III:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,2	19	0,170							
120°C/72°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,255		0,245							

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor τ ; τ : einwirkende Verbundspannung unter Zugbeanspruchung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \ \cdot \tau;$

Tabelle C10: Verschiebung unter Querbeanspruchung¹⁾ (Ankerstange)

Ankerstange			М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton C20/25										
Alle Temperaturbereiche	δ_{V0} -Faktor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beton C20/25										
Alle	δ_{V0} -Faktor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
Temperaturbereiche	δ _{V∞} -Faktor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querkraft

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor} \cdot V;$

Injektionssytem HB-VMU plus für Beton

Leistung

Verschiebungen (Ankerstange)

Anhang C9

Tabelle C11: Verschiebung unter Zugbeanspruchung¹⁾ (Betonstahl)

Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Ungerissener Beton C20/25												
Temperaturbereich I: 40°C/24°C	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperaturbereich II: 80°C/50°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
120°C/72°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Gerissener Beton C20	Gerissener Beton C20/25											
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,090		0,070							
40°C/24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,105		0,105							
Temperaturbereich II: 80°C/50°C	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,2	219	0,170							
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm ²)]	0,255		0,245							
Temperaturbereich III: 120°C/72°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,2	219	0,170							
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,255		0,245							

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbeanspruchung

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-Faktor} \cdot \tau;$

Tabelle C12: Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25											
Alle Temperaturbereiche	δ_{V0} -Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	δ _{V∞} -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Gerissener Beton C20/25											
T	δ_{V0} -Faktor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	δ _{V∞} -Faktor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -Faktor · V;

Injektionssytem HB-VMU plus für Beton

Leistung

Verschiebungen (Betonstahl)

Anhang C10