

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen:

11.07.2016 I 15.1-1.15.2-16/16

Zulassungsnummer:

Z-15.2-40

Antragsteller:

FILIGRAN
Trägersysteme GmbH & Co. KG
Zappenberg 6
31633 Leese

Zulassungsgegenstand:

Filigran-D-Gitterträger und/oder
Filigran-E-Gitterträger und/oder
Filigran-EW-Gitterträger und/oder
Filigran-SE-Gitterträger und/oder
Filigran-SE2-Gitterträger und/oder
Filigran-SWE-Gitterträger und
Filigran-EQ-Gitterträger für Filigran-Elementwände

Geltungsdauer

vom: 11. Juli 2016 bis: 1. Januar 2020

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst 18 Seiten und zwölf Anlagen. Diese allgemeine bauaufsichtliche Zulassung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-15.2-40 vom 20. März 2014, ergänzt und verlängert durch Bescheid vom 25. Februar 2015. Der Gegenstand ist erstmals mit der Nr. Z-4.2-60 am 8. Oktober 1979 bzw. am 1. September 1995 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 18 | 11. Juli 2016

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Seite 3 von 18 | 11. Juli 2016

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Zulassungsgegenstand sind 120 bis 420 mm hohe Filigran-D- und/oder Filigran-E- und/oder Filigran-SE und/oder Filigran-SE2 und/oder Filigran-SWE und Filigran-EQ-Gitterträger. Diese müssen Anlage 1 entsprechen.

1.2 Anwendungsbereich

Die Gitterträger dürfen in Filigran-Elementwänden ohne Vorspannung verwendet werden, die aus jeweils zwei werkmäßig hergestellten geschosshohen Fertigplatten mit der Mindestdicke 40 bis 60 mm, je nach Anwendungsart (siehe Tabelle 2), bestehen. Die Fertigplatten werden durch einbetonierte Filigran-Gitterträger miteinander verbunden und auf der Baustelle nach dem Einbau mit Ortbeton verfüllt. Die Dicke des Ortbetonkerns darf in der Regel 100 mm nicht unterschreiten. Bei Verwendung von Beton der Ausbreitmaßklasse F4 oder höher nach DIN EN 206-1 darf die Dicke des Ortbetonkerns 70 mm nicht unterschreiten.

Die Gitterträger dürfen als Zug-, Biegezug-, Biegedruck-, Druck-, Verbund- und Querkraftbewehrung sowie als Bewehrung nach DIN 1045-1, Abschnitt 13.7.1 (10) und (11) bzw. DIN EN 1992-1-1 zusammen mit DIN EN 1992-1-1/NA, Abschnitt 9.6.4 (2) verwendet werden.

Die Filigran-Elementwände dürfen als

- unbewehrte und bewehrte Außen- und Innenwände,
- wandartige Träger und
- als eingespannte Wände

verwendet werden.

Zur Aufnahme nicht vorwiegend ruhender Belastung müssen Filigran-EQ-Gitterträger eingesetzt werden in Verbindung mit Filigran-D- und/oder Filigran-E- und/oder Filigran-SW- und/oder Filigran-SE und/oder Filigran-SWE- Gitterträgern.

Für Elementwände mit einer Wärmedämmung zwischen Fertigplatte und Ortbeton ist eine gesonderte allgemeine bauaufsichtliche Zulassung erforderlich.

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

2.1.1 Gitterträger

Für alle Stäbe dürfen die Stahlsorten B500A+G aus Bewehrungsdraht nach DIN 488-3 und gerippter Betonstahl in Ringen B500A oder B500B nach DIN 488-3 verwendet werden.

Sie müssen die Eigenschaften des entsprechenden Stahles nach DIN 488-1 bzw. der entsprechenden allgemeinen bauaufsichtlichen Zulassung aufweisen. Für die Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE und/oder Filigran-SWE-Gitterträger gilt für Stäbe mit Durchmesser 5 mm die Fußnote c) in Tabelle 2 der DIN 488-1 nicht.

Es darf auch nichtrostender Betonstahl B500 NR oder B500 NG verwendet werden. Dieser muss die Eigenschaften des entsprechenden Stahles nach allgemeiner bauaufsichtlicher Zulassung aufweisen.

Alle verwendeten Stähle müssen für maschinelles Widerstandspunktschweißen geeignet sein.

Die Abmessungen der Filigran-Gitterträger sind Tabelle 1 zu entnehmen.

Nr. Z-15.2-40

Seite 4 von 18 | 11. Juli 2016

<u>Tabelle 1:</u> Gitterträgergeometrie

Cittorträger	Gitterträger-	Dui	chmesser d _s [mm]		
Gitterträger	höhe [mm]	Diagonalen	Obergurt	Untergurt	
Filigran-D-Gitterträger	120 - 200	5 - 7	8 - 10	2x 5 - 12	
Filigran-E-Gitterträger	120 - 400	5 - 7	8 - 10	2x 5 - 12	
Filigran-EW-Gitterträger	120 - 320	5 - 7	5 - 10	2x 5 - 12	
Filigran-SE-Gitterträger	120 - 420	5 - 9	5 - 12	5 - 12	
Filigran-SE2-Gitterträger	120 - 420	5 - 9	5 - 12	2x 5 - 12	
Filigran-SWE-Gitterträger	120 - 410	5 - 9	5 - 12	5 - 12	
Filigran-EQ-Gitterträger	120 - 300	5 - 7	5	2x 5	

Die erforderlichen Scherfestigkeiten der Schweißpunkte sind beim DIBt hinterlegt.

2.1.2 Fertigplatten

Für die Fertigplatten ist ein Beton der Festigkeitsklasse C 16/20 bis C 50/60 oder LC 12/13 bis LC 50/55 mindestens mit einer Rohdichteklasse D 1,2 nach DIN EN 206-1 in Verbindung mit DIN 1045-2 zu verwenden, falls nicht nach Tabelle 2 oder im Abschnitt 3 oder durch Anforderungen der jeweiligen Bemessungsnorm höhere Festigkeiten gefordert werden.

Selbstverdichtender Beton darf für die Herstellung der Fertigplatten nicht eingesetzt werden.

Die Fertigplattenhöhe ist in Abhängigkeit von der Betonkonsistenz und dem Betonierverfahren so zu wählen, dass eine fachgerechte Betonierbarkeit der Wände auf der Baustelle gewährleistet wird.

Zur Bewehrung der Fertigplatten dürfen alle Betonstähle nach DIN 488-1 und alle allgemein bauaufsichtlich zugelassenen Betonstähle verwendet werden. Der Durchmesser der Tragstäbe als Einzelstäbe darf 6 mm nicht unterschreiten.

2.1.3 Ortbeton

Der Ortbeton muss für bewehrte Wände mindestens der Festigkeitsklasse C 16/20 oder LC 16/18 und für unbewehrte Wände mindestens der Festigkeitsklasse C 12/15 oder LC 12/13 nach DIN EN 206-1 in Verbindung mit DIN 1045-2 entsprechen.

2.2 Herstellung und Kennzeichnung

2.2.1 Gitterträger

Es gilt DIN 488-5, falls in dieser allgemeinen bauaufsichtlichen Zulassung nichts anderes bestimmt wird.

Die Diagonalen sind mit dem Obergurt und mit den Untergurten an allen Berührungspunkten durch maschinelles Widerstandspunktschweißen zu verbinden.

Bei den Diagonalen dürfen die Biegerollendurchmesser den vierfachen Durchmesser der Diagonalen nicht unterschreiten.

2.2.2 Fertigplatten

Die Herstellung der Fertigplatten erfolgt entsprechend DIN 1045-4 und den Regelungen dieser allgemeinen bauaufsichtlichen Zulassung.

In den Fertigplatten müssen mindestens zwei Gitterträger angeordnet werden. Der Abstand der Gitterträger untereinander darf höchstens 625 mm betragen, bei Verwendung von Leichtbeton für die Platten und Normalbeton als Füllbeton jedoch höchstens 500 mm.

Bei Wanddicken h ≤ 250 mm darf der größte Abstand zum Rand der Fertigplatte 312,5 mm nicht überschreiten. Der Abstand der Gitterträger zum Rand der Fertigplatte darf bei Wanddicken von mehr als 250 mm an Wandecken und -stößen bis zu 500 mm betragen (siehe Anlagen 2, 3, 4 und 9), wenn zusätzliche Maßnahmen zur Sicherung des Verbundes zwischen Fertigplatte und Ortbeton getroffen werden sowie eine geeignete Unterstützung im Montagezustand vorgesehen wird.

Nr. Z-15.2-40

Seite 5 von 18 | 11. Juli 2016

Die Fertigplatten müssen bei Verwendung von Normalbeton mindestens 40 mm, bei Verwendung von Leichtbeton mindestens 60 mm dick sein. Die Oberflächen auf den zum Ortbeton gewandten Seiten der Fertigplatten müssen ausreichend rau sein. Folgendes ist zu beachten:

- Bei einer Bemessung nach DIN 1045-1 gilt für die Oberflächenrauigkeit der Fuge die Definition nach DIN 1045-1, Abschnitt 10.3.6. Alternativ darf die Oberfläche eine definierte Rauigkeit nach DAfStb-Heft 525, Abschnitt 10.3.6 aufweisen.
- Bei einer Bemessung nach DIN EN 1992-1-1 gilt für die Oberflächenrauigkeit der Fuge die Definition nach DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, Abschnitt 6.2.5 (2).

Die entsprechend den Expositionsklassen nach DIN 1045-1 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA erforderliche Betondeckung der Bewehrung ist an jeder Stelle im Bauteil einzuhalten.

Zur Ausbildung der Plattenfugen ist Anlage 11 zu beachten. Bei Druckfugen entsprechend den Anlagen 5 bis 8 darf auf eine Anfasung der Fertigplatten verzichtet werden.

2.2.3 Kennzeichnung

Der Lieferschein des Gitterträgers muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Die Gitterträger sind durch den Hersteller für jede Produktionsstätte (Herstellwerk) gesondert mit dem vom Deutschen Institut für Bautechnik zugeteilten Werkkennzeichen zu kennzeichnen. Es gilt DIN 488-1, Abschnitt 8.2.5 sowie der Abschnitt 2.4 der "Richtlinie für die Überwachung von geschweißten Gitterträgern als biegesteife Bewehrung".

Die Gitterträger sind mit einem wetterbeständigen Anhänger zu versehen, aus welchem das Herstellwerk und die Gitterträgerbezeichnung einschließlich Höhe, Stabdurchmesser, Stahlsorten und Duktilitätsklasse erkennbar sind.

Für die Kennzeichnung der Fertigplatten gilt DIN 1045-4, Abschnitt 7.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der Gitterträger mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung der Gitterträger nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Gitterträger eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats sowie eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

Seite 6 von 18 | 11. Juli 2016

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle der Gitterträger ist nach DIN 488-6, Abschnitt 5.2 durchzuführen. Für die Fertigplatten ist DIN 1045-4 maßgebend.

Der Hersteller der Gitterträger muss sich davon überzeugen, dass die für das Vormaterial in DIN 488-1 oder nach bauaufsichtlicher Zulassung geforderten Eigenschaften durch Werkkennzeichen und Ü-Zeichen oder bei Selbsterzeugung des Vormaterials durch den Gitterträgerhersteller durch eine entsprechende werkseigene Produktionskontrolle belegt sind. Deren Ergebnisse sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Gitterträgers einschl. Höhe, Stabdurchmesser und Stahlsorten,
- Beschreibung und Prüfung des Ausgangsmaterials und der Bestandteile,
- Art der Kontrolle oder Prüfung,
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen,
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen. Für Umfang, Art und Häufigkeit der Fremdüberwachung für die Gitterträger ist DIN 488-6, Abschnitt 5.4, für die Fertigplatten ist DIN 1045-4 maßgebend.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Gitterträger durchzuführen und sind Proben für Stichprobenprüfungen zu entnehmen. Die Probenahme und Prüfung obliegen jeweils der anerkannten Überwachungsstelle.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Allgemeines

Es gilt DIN 1045-1 bzw. DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, falls im Folgenden nichts anderes bestimmt wird. Es dürfen jedoch nur die Regeln ein und derselben Norm angewendet werden. Eine Mischung ist nicht zulässig.

Seite 7 von 18 | 11. Juli 2016

3.2 Entwurf

3.2.1 Allgemeines

(1) Die Fertigplatten müssen den Anlagen 2 bis 11 entsprechen.

Die Gitterträger sind in der Regel lotrecht anzuordnen. Sollen Gitterträger waagerecht angeordnet werden, ist dies unter folgenden Bedingungen möglich:

- Die Diagonalen der Gitterträger müssen übereinander liegen, um die Einführung von Rüttelgeräten von oben nach unten zu gewährleisten, sofern nicht ein Beton der Ausbreitmaßklasse F4 oder höher nach DIN EN 206-1 verwendet wird.
- Bei Wänden, die plattenartig Lasten senkrecht zu den Gitterträgergurtstäben abtragen, z. B. bei vertikal spannenden Wänden mit horizontal angeordneten Gitterträgern unter Erddruck, darf der größte in Spannrichtung gemessene Abstand von Verbundbewehrungen nicht mehr als das Doppelte der Wanddicke betragen.

Sollen Fertigplatten zur Druckübertragung in der Fuge mit herangezogen werden, muss beim Einbau zwischen der Oberfläche der Decke und der Unterkante der Fertigplatten ein mindestens 30 mm breiter Zwischenraum zum einwandfreien Einbringen des Ortbetons verbleiben (Anlagen 5 bis 8).

(2) Die in den Fertigplatten angeordnete statisch erforderliche Trag- und Querbewehrung ist an den Plattenstößen, Wandecken und Wandanschlüssen nach DIN 1045-1, Abschnitte 12.6 und 12.8 bzw. DIN EN 1992-1-1, Abschnitt 6.6, z. B. durch zusätzlich in den Ortbeton eingelegte oder dorthin aufgebogene Bewehrungsstäbe mit beidseitiger Übergreifungslänge nach DIN 1045-1, Abschnitt 12.8.2 bzw. nach DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 8.7.3, zu verbinden. Die Ortbetonüberdeckung der zu stoßenden Bewehrung darf 5 mm nicht unterschreiten und 20 mm nicht überschreiten.

Die gerippten Untergurte der Gitterträger dürfen wie Betonstahlmatten mit gerippten Stäben verankert werden.

Die glatten Untergurte der Gitterträger dürfen entsprechend DIN 1045-1, Tabelle 26, Zeile 5 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 8.4.4 (2) für angeschweißte Querstäbe verankert werden, wobei das Grundmaß bzw. der Grundwert der Verankerungslänge I_b = 700 mm bzw. $I_{b,rqd}$ = 700 mm beträgt. Bei Verwendung von Leichtbeton ist das Grundmaß bzw. der Grundwert der Verankerungslänge mit dem Faktor $1/\eta_1$ zu erhöhen (η_1 nach DIN 1045-1, Tabelle 10 bzw. nach DIN EN 1992-1-1, Abschnitt 11.3.1 (3)).

Unabhängig von der Oberfläche der Untergurtstäbe ist bei Untergurtstäben mit $d_s = 5$ mm bis 10 mm ein Schweißpunkt und sind bei Untergurtstäben mit $d_s = 12$ mm oder 14 mm zwei Schweißpunkte je Untergurtstab einem aufgeschweißten Querstab einer Betonstahlmatte gleichzusetzen.

(3) Die Betondeckung gegen den Kernbeton ist nach DIN 1045-1 bzw. nach DIN EN 1992-1-1 und DIN EN 1992-1-1/NA einzuhalten. Für die Gitterträger-Gurtstäbe und der Tragstäbe der Betonstahlmatten müssen zusätzlich die Angaben nach Tabelle 2 und den Anlagen eingehalten werden.

Bei der Bemessung der Filigran-EQ-Gitterträger ist zu beachten, dass nur die zum Auflager hin steigenden Diagonalen angerechnet werden dürfen.

Die Betondeckung der Gitterträger EW-Gurtstäbe gegen den Kernbeton muss mindestens 10 mm betragen. Auf Riegelstäbe bzw. auf Verankerungsstäbe darf verzichtet werden, wenn bei Beton der Festigkeitsklasse C 20/25 und C 20/30 oder LC 25/28 und LC 30/33 die Betondeckung der Gitterträger-Gurtstäbe mindestens 15 mm und bei Beton der Festigkeitsklasse \geq C 30/37 oder \geq LC 35/38 mindestens 12 mm beträgt.

Die Verwendung von Normalbeton und Leichtbeton mit geschlossenem Gefüge im Fertigteil bzw. als Ortbeton darf unter Beachtung der Regelungen dieser allgemeinen bauaufsichtlichen Zulassung beliebig kombiniert werden.

Seite 8 von 18 | 11. Juli 2016

Im Bereich der Fertigteilfugen darf als Betonüberdeckung für den Korrosionsschutz nur der Ortbetonquerschnitt in Rechnung gestellt werden (siehe Anlage 11).

- (4) Zur Begrenzung der Rissbreiten ist DIN 1045-1, Abschnitt 11.2 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitte 7.3 bzw. 12.7 zu beachten. Bei längeren Bauwerken oder Bauteilen, bei denen durch Schwinden Zwänge und somit grobe Schwindrisse entstehen können, dürfen zur Beschränkung der Rissbildung geeignete konstruktive Maßnahmen, z. B. Bewegungsfugen, entsprechende Bewehrung oder zwangfreie Lagerung, getroffen werden.
- (5) Für die Aufnahme von örtlich auftretenden Biegespannungen in den Lastfällen Transport und Montage, sowie zur Aufnahme von Zwangbeanspruchungen darf die vorhandene Bewehrung in Rechnung gestellt werden.

<u>Tabelle 2:</u> Betondeckung der Gitterträgergurte und der Tragstäbe der Betonstahlmatten

		ke		ondecku	des bei		
			gegenü	ber Kerr	vert ordes		
Gitterträger	Beton	Plattendicke	Gurtstäbe	Tragstäbe	Obergurte	Bemessungswert des Tragwiderstandes bei Belastung aus Schalungsdruck je 1 m Gitterträger	
-	-	[mm]		[mm]		[kN/m]	
	≥ LC 12/13	60	28			4.7.0	
Filigran-D-,	LC 16/18 o. C 12/15 LC 20/22 o. C 16/20	50	21			15,6	
Filigran-E-, Filigran-SE2-	≥ LC 25/28 o. C 20/25		17	-	-	18,4	
Gitterträger	LC 25/28 o. C 20/25 LC 30/33 o. C 25/30	40	15			15,6	
	≥ LC 35/38 o. C 30/37		12			75,5	
		50	17			18,4	
Filigran-EW- Gitterträger	≥ LC 25/28 o. C 20/25	45	15	-	-	17,8	
		40	10			15,6	
	≥ LC 12/13	60		28			
	LC 16/18 o. C 12/15 LC 20/22 o. C 16/20	50		2	1	15,6	
Filigran-SE- Gitterträger	LC 25/28 o. C 20/25 LC 30/33 o. C 25/30	50	-	17 15		18,4	
	LC 25/28 o. C 20/25 LC 30/33 o. C 25/30	40				15,6	
	≥ LC 35/38 o. C 30/37	40		1	2	15,0	

Nr. Z-15.2-40

Seite 9 von 18 | 11. Juli 2016

Fortsetzung Tabelle 2: Betondeckung der Gitterträgergurte und der Tragstäbe der Betonstahlmatten

Filigran- SWE- Gitterträger	≥ LC 12/13	60		28		45.0	
	LC 16/18 o. C 12/15 LC 20/22 o. C 16/20	50		21		15,6	
	LC 25/28 o. C 20/25 LC 30/33 o. C 25/30	-	17	-	18,4		
	≥ LC 25/28 o. C 20/25	40		15		15,6	
Filigran-EQ- Gitterträger	Nicht zur Auf	Nicht zur Aufnahme von Schalungsdruck ansetzbar.					

3.2.2 Unbewehrte Wände

- (1) Abschnitt 3.2.1 dieser Zulassung ist zu beachten.
- (2) Der Kernbeton läuft vom Grundkörper bis zum obersten Geschoss durch. Dabei gehen die Betonkernmittelebenen der übereinander stehenden Wände durch alle Geschosse ohne Abstufung durch. Wenn dies aus baulichen Gründen nicht möglich ist, z.B. bei Außenwänden verschiedener Dicke, darf die Ausmittigkeit höchstens so groß sein, dass eine Wandfläche in allen Geschossen bündig ist. Die sich ergebenden Versatzmomente sind in den entsprechenden statischen Nachweisen zu berücksichtigen.

Es gilt DIN 1045-1, Abschnitt 13.7.4 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitte 12.6 und 12.7.

Die Ableitung der waagerechten Auflagerkräfte der Deckenscheiben ist nachzuweisen.

(3) In Außen-, Haus- und Wohnungstrennwänden sind außerdem in Höhe jeder Geschossoder Kellerdecke zwei durchgehende Bewehrungsstäbe mindestens ∅ 12 mm als Ringanker einzulegen. Zwischen zwei Trennfugen des Gebäudes darf diese Bewehrung auch nicht durch Fenster oder andere Öffnungen unterbrochen werden. Bewehrungsstöße sind entsprechend DIN 1045-1, Abschnitt 12.8 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 8.7 auszubilden und versetzt anzuordnen. Auf diese Ringanker darf eine dazu parallel liegende durchlaufende Bewehrung mit vollem Querschnitt angerechnet werden, wenn sie in Decken im Abstand von höchstens 50 cm von der Mittelebene der Wand liegt. Liegt diese Bewehrung mehr als 50 cm, jedoch maximal 1,00 m von der Mittelebene der Wand entfernt, darf der halbe Querschnitt angerechnet werden.

Die Mindestbewehrung der Fertigplatten zur Aufnahme des Schalungsdrucks muss Abschnitt 3.3.2 entsprechen.

(4) Anordnung der Gitterträger als Verbundbewehrung

Als Verbundbewehrung darf die Diagonalenneigung der Gitterträger $35^{\circ} \le \alpha \le 90^{\circ}$ betragen. Es dürfen nur die Diagonalen als Verbundbewehrung in Rechnung gestellt werden, wenn sie in einem gedachten Fachwerkmodell als Zugstreben wirken.

In einachsig gespannten Wänden gilt für die maximalen Gitterträgerabstände DIN 1045-1, Abschnitt 10.3.6 (11) bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt NCI Zu 6.2.5 (3).

3.2.3 Bewehrte Wände

(1) Für bewehrte Wände gilt DIN 1045-1, Abschnitt 13.7.1 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 9.6. Bei bewehrten Wänden darf die statisch erforderliche Bewehrung ganz oder teilweise in den Fertigplatten angeordnet werden, wobei die erforderliche Mindestbewehrung zur Aufnahme des Schalungsdruckes hierauf angerechnet werden darf.

Nr. Z-15.2-40

Seite 10 von 18 | 11. Juli 2016

Die Bewehrung der Fuge (siehe Anlagen 2, 3 und 4, Bilder 9, 11 und 13) darf entfallen, wenn beim Standsicherheitsnachweis des Wandabschnittes beidseitig gelenkige Lagerung angenommen und auf die Berücksichtigung günstig wirkender Momente verzichtet wird.

(2) In bewehrten Wänden muss der Durchmesser der Tragstäbe mindestens 6 mm und bei Betonstahlmatten B500A oder B500B mindestens 5 mm betragen. Der Abstand dieser Stäbe darf höchstens 200 mm sein. Auf jeder Seite sind je Meter Wandhöhe bei Betonstahlmatten mindestens 3Ø5 mm und bei allen anderen Betonstahlsorten mindestens 3Ø6 mm anzuordnen.

Die Sicherung der Bewehrungsstäbe nach DIN 1045-1, Abschnitt 13.7.1 (9) bis (11) bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 9.6.4 kann unter Beachtung der Bemessungswerte des Knotenscherwiderstandes durch die angeschweißten Gitterträgerdiagonalen gewährleistet werden.

(3) Anordnung als Verbundbewehrung in Wänden ohne rechnerisch erforderliche Querkraftbewehrung:

Es sind die Bestimmungen von Abschnitt 3.2.2 (4) einzuhalten.

(4) Anordnung als Querkraft- und Verbundbewehrung in Wänden mit rechnerisch erforderlicher Querkraftbewehrung:

Neigungen der Diagonalen kleiner als 45° sind unzulässig ($45^{\circ} \le \alpha \le 90^{\circ}$).

Der Abstand der Schubbewehrung in Tragrichtung ist in Abhängigkeit vom Druckstrebenwinkel θ und dem Winkel α der Diagonalen zu begrenzen auf $s_{max} \le (\cot \theta + \cot \alpha) * z \le 200 \text{ mm}.$

Für die maximale Querkrafttragfähigkeit bei Elementwänden mit Gitterträgern als Querkraftund Verbundbewehrung V_{Rd.max.GT} gilt Abschnitt 3.3.3.2.3 (3) bzw. 3.3.3.2.3 (4).

In einachsig gespannten Wänden gilt für die maximalen Gitterträgerabstände DIN 1045-1, Abschnitt 10.3.6 (11) bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt NCI Zu 6.2.5 (3).

In zweiachsig gespannten Wänden darf der Abstand der Verbundbewehrung in Längsrichtung der Gitterträger (Stützrichtung der Wand) das 2,5 fache der Wanddicke nicht überschreiten. Quer zu den Gitterträgern ist als maximal zulässiger Abstand $s_{\text{max}} \leq 2h \leq 625 \text{ mm}$ bzw. $s_{\text{max}} \leq 2h \leq 500 \text{ mm}$ für Fertigplatten aus Leichtbeton einzuhalten.

3.2.4 Wände unter nicht vorwiegend ruhenden Verkehrslasten

3.2.4.1 Allgemeines

Dieser Abschnitt gilt für nicht vorwiegend ruhende Verkehrslasten und auch für Wände in Fabriken und Werkstätten mit schwerem Betrieb, also für Wände, auf denen Decken mit einer gleichmäßig verteilten charakteristischen Verkehrslast > 10 kN/m² belastet sind.

Die Fertigplatten müssen mindestens 60 mm dick sein, und aus Normalbeton mindestens der Festigkeitsklasse C 20/25 bestehen, falls nach Abschnitt 3.3 nicht höhere Festigkeiten erforderlich sind.

Diagonalstabneigungen unter 45° sind nicht zulässig.

Die Biegezugbewehrung im Fertigteil ist durchgehend anzuordnen. Die Stabdurchmesser dürfen 16 mm nicht überschreiten.

Zur Aufnahme nicht vorwiegend ruhender Lastanteile dürfen nur Filigran-EQ-Gitterträger verwendet werden.

Die Gitterträgergurtstäbe dürfen nicht in Rechnung gestellt werden.

Nr. Z-15.2-40

Seite 11 von 18 | 11. Juli 2016

Der Abstand zwischen den Filigran-EQ-Gitterträgern darf bis zur Querkraftgrenze V_{Ed} ≤ V_{Rd,ct} nach DIN 1045-1 (gemäß Anlage 12) bzw. $V_{Ed} \le V_{Rd,c}$ nach DIN EN 1992-1-1 und DIN EN 1992-1-1/NA maximal 750 mm und bis 7ur Querkraftgrenze DIN 1045-1 $V_{Rd,ct} < V_{Ed} \le 0.5 V_{Rd,max,GT}$ (gemäß Anlage 12) nach $V_{Rd,c} \leq V_{Ed} \leq 0.5 \ V_{Rd,max,GT} \ nach \ DIN \ EN \ 1992-1-1 \ und \ DIN \ EN \ 1992-1-1/NA \ -mit \ V_{Rd,max,GT} \ nach \ DIN \ EN \ Nach \ Nach$ nach Abschnitt 3.3.3.2.3 dieser allgemeinen bauaufsichtlichen Zulassung - maximal 400 mm - betragen.

3.2.4.2 Gelenkiger Anschluss Wand - Decke

Als gelenkig gelagerte Decken gelten z.B. auch solche, bei denen rechnerisch durch Annahme klaffender Fugen die Einleitung von Momenten beschränkt wird.

Im Bereich der oberen und unteren Wandenden sind zusätzlich zu den Gitterträgern nach Abschnitt 2.2.2 mindestens 800 mm lange Filigran-EQ-Gitterträgerabschnitte im Abstand von höchstens 750 mm anzuordnen. Gegebenenfalls ist nachzuweisen, dass die zusätzlichen Filigran-EQ-Gitterträger zur Aufnahme der Summe der Querkraftbeanspruchungen ausreichen.

3.2.4.3 Übrige Ausbildung des Anschlusses Wand - Decke

Es ist stets eine Verbund- bzw. Querkraftbewehrung anzuordnen.

An den Wandenden im Stoßbereich der Bewehrung (Kopf- bzw. Fußpunkte) ist eine Bewehrung aus Filigran-EQ-Gitterträgern als stoßsichernde Bewehrung anzuordnen, die für die Kraft aller zu stoßenden Stäbe zu bemessen und über die Übertragungslänge zu verteilen ist. Die Übergreifungslänge ist die um 100 mm vergrößerte Übergreifungslänge nach DIN 1045-1, Abschnitt 12.8. bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 8.7.3. Dabei dürfen Diagonalen nur angerechnet werden, wenn sie in einem gedachten Fachwerk als Zugstäbe wirken. Diese Bewehrung darf auf die Querkraftbewehrung angerechnet werden. Die stoßsichernde Bewehrung muss über die gesamte Wanddicke reichen.

In eingespannten Wänden dürfen die Stabdurchmesser 14 mm nicht überschreiten. Bei einem Bemessungswert der einwirkenden Querkraft von $V_{Rd,ct} \leq V_{Ed} \leq 0,5 \ V_{Rd,max,GT}$ nach DIN 1045-1 (gemäß Anlage 12) bzw. $V_{Rd,c} \leq V_{Ed} \leq 0,5 \ V_{Rd,max,GT}$ nach DIN EN 1992-1-1 und DIN EN 1992-1-1/NA mit $V_{Rd,max,GT}$ nach Abschnitt 3.3.3.2.3 dieser allgemeinen bauaufsichtlichen Zulassung darf der Durchmesser d_s der zu stoßenden Bewehrung 12 mm nicht überschreiten. Es dürfen nicht mehr als 10 cm²/m gestoßen werden.

3.2.5 Wandartige Träger

Diese Angaben gelten sinngemäß auch für Durchbrüche von Wänden, z. B. Türstürze.

Grundsätzlich gelten die Angaben der Abschnitte 3.2.1, 3.2.3 und 3.2.4, falls hier nichts anderes angegeben wird.

EQ-Gitterträger dürfen als randsichernde Bewehrung an freien Rändern von Wänden mit einer Bewehrung $A_s \ge 0,003 \, A_c$ je Wandseite an Stelle von Steckbügeln entsprechend Anlage 10, Bild 20 angeordnet werden.

Die Biegezugbewehrung darf im Ortbeton und/oder im Fertigteil angeordnet werden. Bei der Ausbildung von Bewehrungsstößen im Auflagerbereich ist Abschnitt 3.3.3.4 zu beachten.

3.3 Bemessung

3.3.1 Allgemeines

Der Nachweis der Tragfähigkeit der Wände ist in jedem Einzelfall zu erbringen. Dabei können auch Bemessungstafeln verwendet werden, die von einem Prüfamt für Baustatik geprüft sind.

Für die Ermittlung der Schnittgrößen dürfen Verfahren nach der Plastizitätstheorie und nichtlineare Verfahren für Bauteile mit Gitterträgern nicht angewendet werden. Für den Knicksicherheitsnachweis ist Abschnitt 3.3.3.2.4 zu beachten.

Nr. Z-15.2-40

Seite 12 von 18 | 11. Juli 2016

Bei Wänden, die aus Betonen unterschiedlicher Festigkeitsklassen bestehen, darf der Beton mit der höheren Festigkeitsklasse nur mit den Werten der Festigkeitsklasse in Rechnung gestellt werden, die um eins höher liegt, als die des Betons mit der geringeren Festigkeitsklasse.

3.3.2 Nachweis der Aufnahme des Schalungsdrucks

Die Aufnahme des horizontalen Frischbetondrucks ist in jedem Fall nachzuweisen. Dabei sind die tatsächliche Steiggeschwindigkeit (Betoniergeschwindigkeit), Konsistenzklasse, Rohdichte und das Erstarrungsverhalten des Frischbetons sowie sonstige Einflussfaktoren auf die Größe des Frischbetondrucks zu berücksichtigen.

Die Bemessungswerte des Tragwiderstandes je 1 m Gitterträger sind in Abhängigkeit von der Betonfestigkeit (zum Zeitpunkt des Einbringens des Ortbetons), Plattendicke und Betondeckung gegenüber dem Kernbeton in Tabelle 2 angegeben. Die zulässige Betoniergeschwindigkeit errechnet sich unter anderem in Abhängigkeit vom gewählten Gitterträgerabstand. Der maximale Gitterträgerabstand beträgt 625 mm.

Der charakteristische Wert des horizontalen Frischbetondrucks ist nach DIN 18218 zu bestimmen. Der Bemessungswert des Frischbetondruckes σ_{hd} darf im Montagezustand der Elementwände mit Gitterträgern (abweichend von DIN 18218, Abschnitt 4.2) mit dem Teilsicherheitsbeiwert γ_F = 1,15 ermittelt werden. Die sich daraus ergebende Belastung für die Gitterträger darf die Bemessungswerte des Tragwiderstandes nach Tabelle 2 nicht überschreiten. Ansonsten sind die Steiggeschwindigkeit bzw. andere Einflussfaktoren und / oder der Gitterträgerabstand zu ändern.

Eine Steiggeschwindigkeit von maximal 0,80 m/h sollte in der Regel nicht überschritten werden.

Als Mindestbewehrung zur Aufnahme des Frischbetondrucks auf die Schalung sind in den Fertigplatten Betonstahlmatten 150 x 250 x 5 x 4 (Tragstäbe rechtwinklig zu den Gitterträgergurten und Querstäbe innen liegend) oder eine entsprechende Bewehrung aus Betonstabstahl anzuordnen.

3.3.3 Bemessung im Endzustand

3.3.3.1 Allgemeines

Es gilt DIN 1045-1 bzw. DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, falls im Folgenden nichts anderes bestimmt wird.

3.3.3.2 Nachweise bei vorwiegend ruhender Belastung

3.3.3.2.1 Bemessung für Biegung

Der Bemessungswert der Streckgrenze ist bei Unter- und Obergurtstäben aus gerippten Stäben mit $f_{yd} = 435 \text{ MN/m}^2$ ($f_{yk}/1,15$), bei solchen aus glatten Stäben mit $f_{yd} = 365 \text{ MN/m}^2$ ($f_{yk}/1,15$) in Rechnung zu stellen.

3.3.3.2.2 Schubkraftübertragung in der Fuge

(1) Bemessung nach DIN 1045-1

Für die Schubkraftübertragung in der Fuge gelten die Angaben der Anlage 12 dieser allgemeinen bauaufsichtlichen Zulassung.

(2) Bemessung nach DIN EN 1992-1-1

Für die Schubkraftübertragung in der Fuge gelten DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 6.2.5. Bei Verwendung von Leichtbeton mit geschlossenem Gefüge sind zusätzlich die Abschnitte NCI Zu 11.6.2 (NA.3), NDP Zu 11.6.2 (1) und die Materialwerte nach Abschnitt 11 zu beachten.

Die Ermittlung der maximalen Schubtragfähigkeit $v_{Rdi, max}$ in der Fuge erfolgt:

Nr. Z-15.2-40

Seite 13 von 18 | 11. Juli 2016

- für Wände aus Normalbeton nach Gleichung (6.25) von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA. Die maximale Schubtragfähigkeit v_{Rdi, max} darf außerdem den entsprechenden Wert nach Tabelle 3a dieser allgemeinen bauaufsichtlichen Zulassung nicht überschreiten.
- für Wände mit Leichtbeton nach Gleichung (11.6.25) von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA. Die maximale Schubtragfähigkeit v_{Rdi, max} darf außerdem den entsprechenden Wert nach Tabelle 3b dieser allgemeinen bauaufsichtlichen Zulassung nicht überschreiten.

Tabelle 3a: V_{Rdi, max} ii

v_{Rdi. max} in Abhängigkeit von der Betonfestigkeitsklasse für Normalbeton

	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
v _{Rdi, max} [N/mm²]	2,4	2,8	3,3	3,6	3,8	4,0	4,1

Tabelle 3b:

v_{Rdi. max} in Abhängigkeit von der Betonfestigkeitsklasse für Leichtbeton

	LC 12/13							LC 45/50	LC 50/55
v _{Rdi, max} [N/mm²]	1,4	1,8	2,1	2,6	3,0	3,3	3,5	3,8	4,0

Besteht ein Querschnitt aus Betonen verschiedener Festigkeitsklassen, so ist die geringere Festigkeit in Rechnung zu stellen.

3.3.3.2.3 Bemessung für Querkraft

- (1) Nur Diagonalen, die als Zugstäbe in einem gedachten Fachwerk wirken, dürfen bei der Bemessung für Querkraft in Rechnung gestellt werden. Dabei sind Diagonalen wie aufgebogene Längsstäbe zu betrachten und müssen als Querkraftbewehrung eine Neigung von $45^{\circ} \le \alpha \le 90^{\circ}$ gegen die Gitterträgerachse haben. Der Bemessungswert der Streckgrenze ist bei gerippten Diagonalen mit $f_{yd} = 435 \text{ N/mm}^2$ ($f_{yk}/1,15$), bei profilierten und glatten Diagonalen mit $f_{yd} = 365 \text{ N/mm}^2$ ($f_{yk}/1,15$) in Rechnung zu stellen.
- (2) Bei Verwendung von Filigran-EQ-Gitterträgern sind die unterschiedlichen Neigungswinkel α_i der Gitterträgerstäbe (45° $\leq \alpha_i \leq$ 90°) in Gitterträgerrichtung (Vertikalen und Diagonalen) bei Ansatz eines einheitlichen Druckstrebenwinkels θ zu berücksichtigen:

$$\sum \frac{V_{Rd,sy,cai}}{V_{Rd,\max,GT,cai}} \leq 1,0 \ \ (\text{bei Anwendung von DIN 1045-1})$$

bzw.

$$\sum \frac{V_{Rd,s,ci}}{V_{Rd,\max,GT,ci}} \leq 1,0 \ \ \text{(bei Anwendung von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA)}$$

Dieser Nachweis kann entfallen, wenn die Gesamtquerkraft $V_{Ed} \le min \ V_{Rd,max,GT,\alpha i}$ ist.

Bei Anordnung der Filigran-EQ-Gitterträger senkrecht zum Querkraftverlauf darf zur Ermittlung von $V_{Rd.max,GT}$ für die Neigung der Stäbe $\alpha_i = 90^{\circ}$ angenommen werden.

Filigran-EQ-Gitterträger mit anrechenbaren Diagonalen gelten als Bügel im Abstand von 100 mm. Sind die Diagonalen nicht anrechenbar ist ein Abstand 200 mm anzusetzen.

(3) Bemessung nach DIN 1045-1

Die Bemessung erfolgt nach Anlage 12.

Nr. Z-15.2-40

Seite 14 von 18 | 11. Juli 2016

In Bauteilen ohne rechnerisch erforderliche Querkraftbewehrung nach DIN 1045-1, Abschnitt 10.3.3 sind die Gitterträger mindestens als Verbundbewehrung entsprechend Abschnitt 3.2.2 (4) der Zulassung anzuordnen.

In Bauteilen mit rechnerisch erforderlicher Querkraftbewehrung nach DIN 1045-1, Abschnitt 10.3.4 müssen die Gitterträger als Querkraft- und Verbundbewehrung entsprechend Abschnitt 3.2.3 (4) angeordnet werden.

(4) Bemessung nach DIN EN 1992-1-1 und DIN EN 1992-1-1/NA

Bei planmäßigen Längsdruckspannungen ist der Längsspannungsanteil in den Berechnungsformeln rechnerisch nicht zu berücksichtigen und somit σ_{cp} = 0 bzw. σ_{cd} = 0 zu setzen.

Für Bauteile ohne rechnerisch erforderliche Querkraftbewehrung gilt Abschnitt 6.2.2, Gleichung (6.2.a) mit einem Mindestwert nach Gleichung (6.2.b) von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA bzw. bei Verwendung von Leichtbeton Abschnitt 11.6.1, Gleichung (11.6.2) von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA. Die Gitterträger sind mindestens als Verbundbewehrung entsprechend Abschnitt 3.2.2 (4) dieser Zulassung anzuordnen.

Für Bauteile mit rechnerisch erforderlicher Querkraftbewehrung gilt Abschnitt 6.2.3 bzw. bei Verwendung von Leichtbeton Abschnitt 11.6.2 von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA. Die Gitterträger müssen als Querkraft- und Verbundbewehrung entsprechend Abschnitt 3.2.3 (4) dieser Zulassung angeordnet werden.

Für die Neigung θ der Druckstreben des Fachwerks ist zu beachten, dass bei cot θ < 1 die Bemessung nicht zulässig ist. D.h. die Konstruktion ist entsprechend zu ändern, so dass cot $\theta \ge 1$ eingehalten wird.

Der Bemessungswert der einwirkenden Querkraft V_{Ed} bei Wänden mit Gitterträgern als Querkraftbewehrung ist nach DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 9.3.2 (3) auf $V_{Rd,max,GT} = 1/3 \ V_{Rd,max}$ zu begrenzen, wobei $V_{Rd,max}$ nach Gleichung (6.14) von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA zu ermitteln ist.

Für die Bemessung von Querschnitten, die teilweise aus Leichtbeton bestehen, ist Abschnitt 11 von DIN EN 1992-1-1 und DIN EN 1992-1-1/NA zu beachten.

Für die aufnehmbare Querkraft ist zusätzlich der Nachweis der Schubkraftübertragung in der Fuge nach Abschnitt 3.3.3.2.2 (2) dieser allgemeinen bauaufsichtlichen Zulassung zu berücksichtigen.

3.3.3.2.4 Nachweis der Knicksicherheit

Bei der Bemessung der Wand darf so vorgegangen werden, als ob der Gesamtquerschnitt von Anfang an einheitlich hergestellt worden wäre. Für die Bemessung und den Nachweis der Knicksicherheit unbewehrter und bewehrter Wände gilt DIN 1045-1, Abschnitt 8.6, bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 5.8 für bewehrte und Abschnitt 12.6 zusätzlich für unbewehrte Wände.

Bei Innenwänden, die beidseitig durch Decken belastet werden, aber mit diesen nicht biegesteif verbunden sind, darf die Ausmitte von Deckenlasten bei der Bemessung in der Regel unberücksichtigt bleiben.

Bei Wänden, die einseitig durch Decken belastet werden, ist am Wandkopf eine dreiecksförmige Spannungsverteilung unter der Auflagerfläche der Decke in Rechnung zu stellen, falls nicht durch geeignete Maßnahmen eine zentrische Lasteinleitung sichergestellt ist. Am Wandfuß darf ein Gelenk in der Mitte der Aufstandfläche angenommen werden.

3.3.3.3 Nachweis bei nicht vorwiegend ruhender Belastung

3.3.3.1 Allgemeines

Dieser Abschnitt gilt für nicht vorwiegend ruhende Verkehrslasten und auch für Wände in Fabriken und Werkstätten mit schwerem Betrieb, also für Wände, auf denen Decken mit einer gleichmäßig verteilten charakteristischen Verkehrslast > 10 kN/m² belastet sind.

Nr. Z-15.2-40

Seite 15 von 18 | 11. Juli 2016

Im Fall der nicht vorwiegend ruhenden Belastung ist Normalbeton einzusetzen. Für Leichtbeton sind gesonderte Betrachtungen nötig.

Es dürfen nur Filigran-EQ-Gitterträger in Rechnung gestellt werden.

Soweit in diesem Abschnitt und im Abschnitt 3.2.4 nichts anderes festgelegt wird, gilt Abschnitt 3.3.3.2.

Bei der Biegebemessung dürfen die Stäbe der Ober- und Untergurte nicht in Rechnung gestellt werden.

3.3.3.2 Ermüdungsnachweis

Zusätzlich zu Abschnitt 3.3.3.2 ist die Bemessung gegen Ermüdung nach DIN 1045-1, Abschnitt 10.8 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 6.8 zu führen, falls im Folgenden nichts anderes bestimmt wird. Eine Wöhlerlinie für Gitterträger liegt nicht vor. Die Anwendung von anderen Wöhlerlinien aus DIN 1045-1 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA ist für Gitterträger unzulässig.

Der Ermüdungsnachweis ist für die Gitterträger als Querkraftbewehrung und als Verbundbewehrung getrennt zu führen.

Für den Querkraftnachweis der Gitterträgerdiagonalen gegen Ermüdung darf die charakteristische Schwingfestigkeit im Bereich $V_{Ed} \leq V_{Rd,ct}$ bzw. $V_{Ed} \leq V_{Rd,c}$ zu $\Delta\sigma_{Rsk} = 92 \text{ N/mm}^2$ und im Bereich $V_{Rd,ct} \leq V_{Ed} \leq 0,5 \text{ V}_{Rd,max,GT}$ bzw. $0,5 \text{ * V}_{Rdi,max} \times b \times z$ nach Tabelle 3a zu $\Delta\sigma_{Rsk} = 46 \text{ N/mm}^2$ angenommen werden. Diese Werte gelten für den Nachweis bis $N^* = 2 \cdot 10^6$ Lastwechsel.

Der Bemessungswert der einwirkenden Querkraft im Grenzzustand der Tragfähigkeit darf den Wert $0.5 \times v_{Rdi,max} \times b \times z$ mit $v_{Rdi,max}$ nach Tabelle 3a nicht überschreiten.

Die Stahlspannungsamplitude wird mit Hilfe der Fachwerkanalogie mit der verminderten Druckstrebenneigung tan $\theta_{\text{fat}} = \sqrt{\tan \theta}$ mit θ nach Abschnitt 3.3.3.2.3 bestimmt.

Für den Nachweis der Verbundfuge gilt:

- Der Bemessungswert der Schubkraft in der Fuge im Grenzzustand der Tragfähigkeit ist auf 50% der Werte v_{Rdi, max} nach Tabelle 3a zu begrenzen.
- Der Nachweis der Verbundbewehrung ist entsprechend DIN 1045-1, Abschnitt 10.3.6 (9) bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt NCI ZU 6.2.5 (5) ohne den Adhäsionstraganteil zu führen ($c_i = c = 0$).
- Für den Nachweis der Spannungsschwingbreite in den Gitterträgerdiagonalen (γ_{E,fat} = 1,0) gilt bis maximal 2·10⁶ Lastwechsel:

$$\Delta v_{\text{Rdi,fat}} = \rho \cdot \frac{\Delta \sigma_{\text{Rsk}}}{\gamma_{\text{s,fat}}} \times (\text{ 1,4} \times \sin\alpha + \text{1,67} \times \cos\alpha)$$

mit:

 ρ = Verbundbewehrungsgrad

 $\gamma_{s,fat} = 1,15$

 $\Delta\sigma_{Rsk}$ = 92 N/mm² (für V_{Ed} \leq V_{Rd,ct} bzw. V_{Ed} \leq V_{Rd,c}) sonst $\Delta\sigma_{Rsk}$ = 46 N/mm² α = Neigungswinkel der Diagonalen

3.3.3.4 Wandartige Träger

Zusätzlich zu den Angaben der Abschnitte 3.3.3.2 und 3.3.3.3 gilt für:

den Stoß der Biegezugbewehrung bei wandartigen Trägern:
 Die erforderliche Übergreifungslänge beträgt erf I_s = 1,1 I_s mit I_s nach DIN 1045-1,
 Abschnitt 12.8.2. bzw. 1,1 I₀ mit I₀ nach DIN EN 1992-1-1, Abschnitt 8.7.3.
 Rechnerisch beginnt die Übergreifungslänge beim ersten Filigran-Gitterträger.

Nr. Z-15.2-40

Seite 16 von 18 | 11. Juli 2016

 die Verwendung von Gitterträgern als Bügelbewehrung:
 Die anrechenbaren Diagonalen der Filigran-EQ-Gitterträger gelten als Bügel im Abstand von 200 mm.

4 Bestimmungen für die Ausführung

4.1 Allgemeines

Für die Ausführung gilt DIN EN 13670 zusammen mit DIN 1045-3 und den folgenden Ergänzungen.

4.2 Einbau der Fertigplatten

Für den Einbau der Fertigplatten gilt DIN EN 13670, Abschnitt 9 zusammen mit DIN 1045-3. Sie sind so zu lagern und zu transportieren, dass sie dabei nicht überbeansprucht oder beschädigt werden. Gegebenenfalls sind hierfür gesonderte Nachweise erforderlich.

Am jeweiligen Einbauort muss diese Zulassung vorliegen.

Die Innenflächen der Fertigplatten müssen frei von Verschmutzungen sein.

Vom Hersteller der Wandplatten ist unter Berücksichtigung der allgemeinen Forderungen von DIN 1045-1, Abschnitt 4.2.2 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 10.2 (NA 6), eine Montageanweisung zur Verfügung zu stellen.

Beim Einbau der Decken sind unmittelbar am Auflager Montageunterstützungen anzuordnen, damit die Fertigplatten der Wände im Montagezustand nicht belastet werden.

Eine Montageunterstützung am Auflager ist nicht erforderlich, wenn

- a) die Deckenlasten im Montagezustand (Eigenlast der Rohdecke und p bzw. $q_k = 1,5 \text{ kN/m}^2$) bis zum Erhärten des Kernbetons der Wand 15 kN/m nicht überschreiten,
- b) die lichte Geschosshöhe nicht größer als 2,5 m ist,
- c) die Betonfestigkeit der Wand-Fertigplatten mindestens 20 N/mm² beträgt und
- d) die belastete Plattenwandseite im oberen Drittelspunkt im Abstand von 1,25 m gegen seitliches Ausweichen gehalten wird. Die Aussteifung ist zusätzlich zur Windbeanspruchung für eine Horizontallast von 1/100 der Deckenlast im Montagezustand zu bemessen.

Die entsprechend den Expositionsklassen nach DIN 1045-1 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA erforderliche Betondeckung der Bewehrung ist an jeder Stelle im Bauteil einzuhalten.

4.3 Einbringen des Ortbetons

Die Fertigplatten müssen eine ausreichende Betonfestigkeit zur Aufnahme des Schalungsdrucks haben, bevor der Ortbeton eingebracht werden darf. Nach ausreichendem Annässen der Fertigplatteninnenflächen darf der Ortbeton mit geeigneten Betoniergeräten eingebracht werden. Der Innenraum zwischen den Fertigplatten muss frei sein von Verunreinigungen. Der Ortbeton ist in jedem Fall in gleichmäßigen waagerechten Lagen zu schütten, wobei in jedem Bauabschnitt stets sämtliche Wände gleichzeitig hochzuführen sind. Bei der Ausführung darf die tatsächliche Höhe der waagerechten Lagen je Stunde die nach Abschnitt 3.3.2 dieser Zulassung ermittelte Steiggeschwindigkeit nicht überschreiten (siehe Montageanweisung). Es ist darauf zu achten, dass die Fuge zwischen den Fertigteilen und der Decke beim Einbringen des Ortbetonkerns sachgerecht ausgeführt wird. Lotrechte Arbeitsfugen sind möglichst zu vermeiden. Waagerechte Arbeitsfugen sind im Allgemeinen nur in Höhe der Geschossdecken anzuordnen. Es darf eine waagerechte Arbeitsfuge zwischen den Geschossdecken im Ortbetonkern ausgeführt werden, wenn Gitterträger in den Wänden senkrecht angeordnet sind. Die für Anschlussbewehrung erforderlichen Übergreifungslängen der Bewehrung sind zu beachten. Es gilt DIN EN 13670, Abschnitt 8.2 (4) zusammen mit DIN 1045-3, Abschnitt 2.8.2 (NA.4).

Nr. Z-15.2-40

Seite 17 von 18 | 11. Juli 2016

Der Beton ist so zusammenzusetzen, dass beim Schütten kein Entmischen eintritt. Der Beton muss sorgfältig verdichtet werden, um Nesterbildungen zu vermeiden und eine ausreichende Haftung zwischen Ortbeton und Fertigteilen herzustellen. Das Größtkorn der Gesteinskörnung ist insbesondere unter Beachtung der Dicke des Kernbetons und den Abständen der Gitterträger so zu wählen, dass der Beton einwandfrei eingebracht und verdichtet werden kann. Für Ortbetonschichten dünner als 100 mm ist ein Größtkorn von maximal 16 mm zu verwenden.

Bei Verwendung von Beton ab der Ausbreitmaßklasse F4 nach DIN EN 206-1 ist zu beachten, dass:

- der Beton sachgerecht zu fördern und wegen der begrenzten Wirkungsdauer der Fließmittel zügig einzubauen ist. Eine Unterbrechung der Verarbeitung des fertiggemischten Betons ist daher zu vermeiden.
- eine auf die Konsistenz abgestimmte Verdichtung vorgenommen wird. Dies sollte in der Regel, besonders bei schmalen, hohen oder engbewehrten Bauteilen, durch Stochern und/oder leichtes Rütteln geschehen.
- sich ein höherer Frischbetondruck einstellt. Dieser ist bei der Bemessung nach DIN 18218 bzw. Abschnitt 3.3.2 dieser Zulassung zu berücksichtigen.

Solange der Ortbeton nicht ausreichend erhärtet ist, sind die Wände vor Erschütterungen und sonstigen zusätzlichen Belastungen zu schützen, damit der Verbund zwischen den Fertigteilen und dem Ortbeton nicht beeinträchtigt wird.

Die Montagehalterungen der Wandelemente müssen bis zum Erhärten des Ortbetons stehen bleiben.

Folgende Normen, Zulassungen und Verweise werden in dieser allgemeinen bauaufsichtlichen Zulassung in Bezug genommen:

-	DIN 488-1:2009-08	Betonstahl - Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung
-	DIN 488-3:2009-08	Betonstahl - Teil 3: Betonstahl in Ringen, Bewehrungsdraht
-	DIN 488-5:2009-08	Betonstahl - Teil 5: Gitterträger
-	DIN 488-6:2010-01	Betonstahl - Teil 6: Übereinstimmumgsnachweis
-	DIN 1045-1:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 1: Bemessung und Konstruktion
-	DIN 1045-2:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 2: Beton, Festlegung, Eigenschaften, Herstellung und Konformität – Anwendungsregeln zu DIN EN 206-1
-	DIN EN 13670:2011-03	Ausführung von Tragwerken aus Beton
-	DIN 1045-3:2012-03	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 3: Bauausführung – Anwendungsregeln zu DIN EN 13670
-	DIN 1045-3 Ber.1:2013-07	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 3: Bauausführung – Anwendungsregeln zu DIN EN 13670, Berichtigung zu DIN 1045-3:2012-03
-	DIN 1045-4:2012-02	Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 4: Ergänzende Regeln für die Herstellung und die Konformität von Fertigteilen
-	DIN 18218:2010-01	Frischbetondruck auf lotrechte Schalungen
-	DIN EN 206-1:2001-07	Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität
-	DIN EN 206-1/A1:2004-10	Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und

Z45300.16 1.15.2-16/16

Konformität; Deutsche Fassung EN 206-1:200/A1:2004

Nr. Z-15.2-40

Seite 18 von 18 | 11. Juli 2016

-	DIN EN 206-1/A2:2005-09	Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität; Deutsche Fassung EN 206-1:200/A2:2005
-	DIN EN 1992-1-1:2011-01	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004+AC:2010 und
	DIN EN 1992-1-1/NA:2013-04	Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
-	DAfStb-Heft 525:2010	Erläuterungen zur DIN 1045-1
-	DAfStb-Heft 600:2012-09	Erläuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA (Eurocode 2)
-	Deutsches Institut für Bautechnik	Richtlinie für die Überwachung von geschweißten Gitterträgern als biegesteife Bewehrung – Ausgabe August 1993

Dr.-Ing. Lars Eckfeldt Referatsleiter Beglaubigt

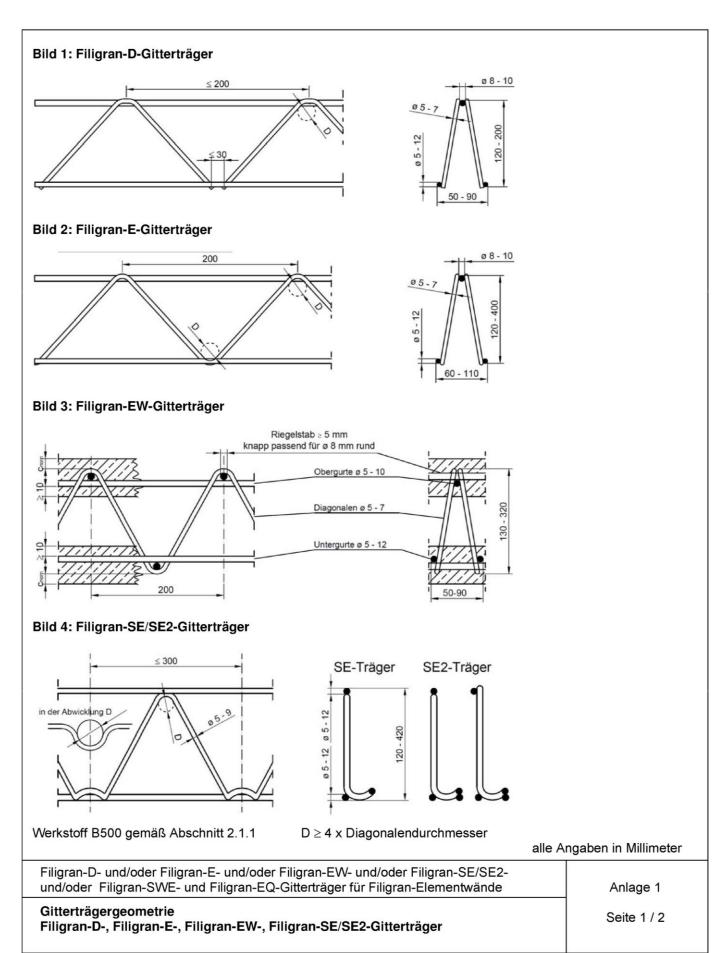
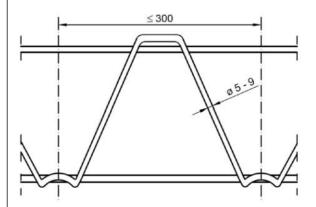



Bild 5: Filigran-SWE-Gitterträger

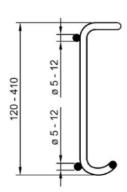


Bild 6: Filigran-EQ-Gitterträger

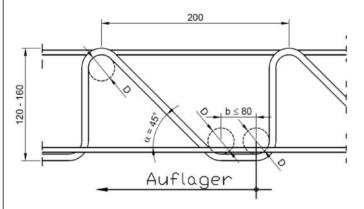
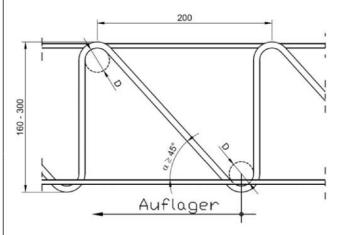
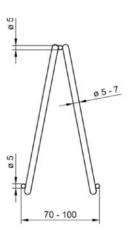
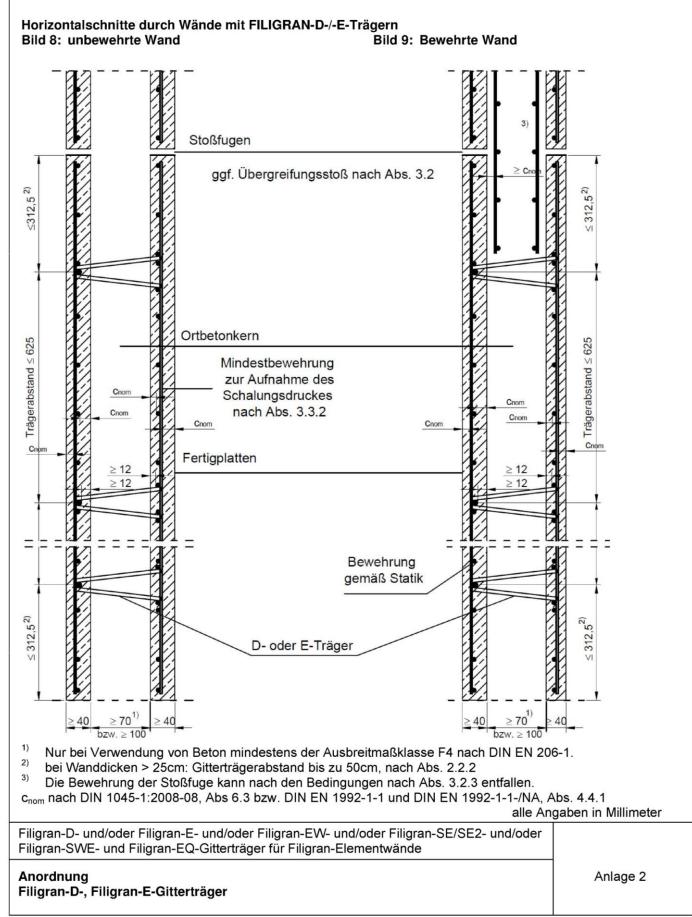
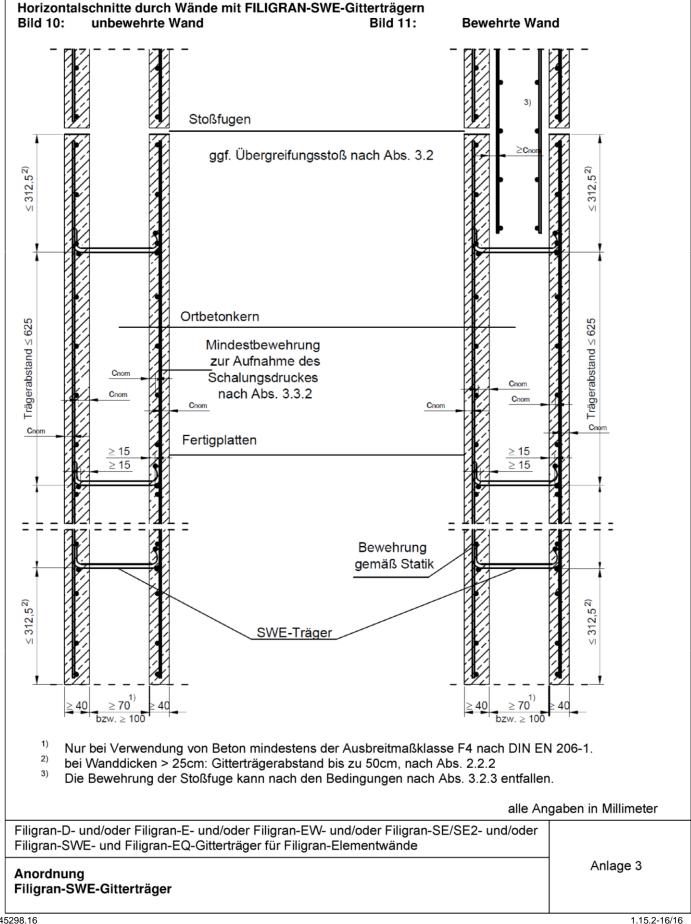




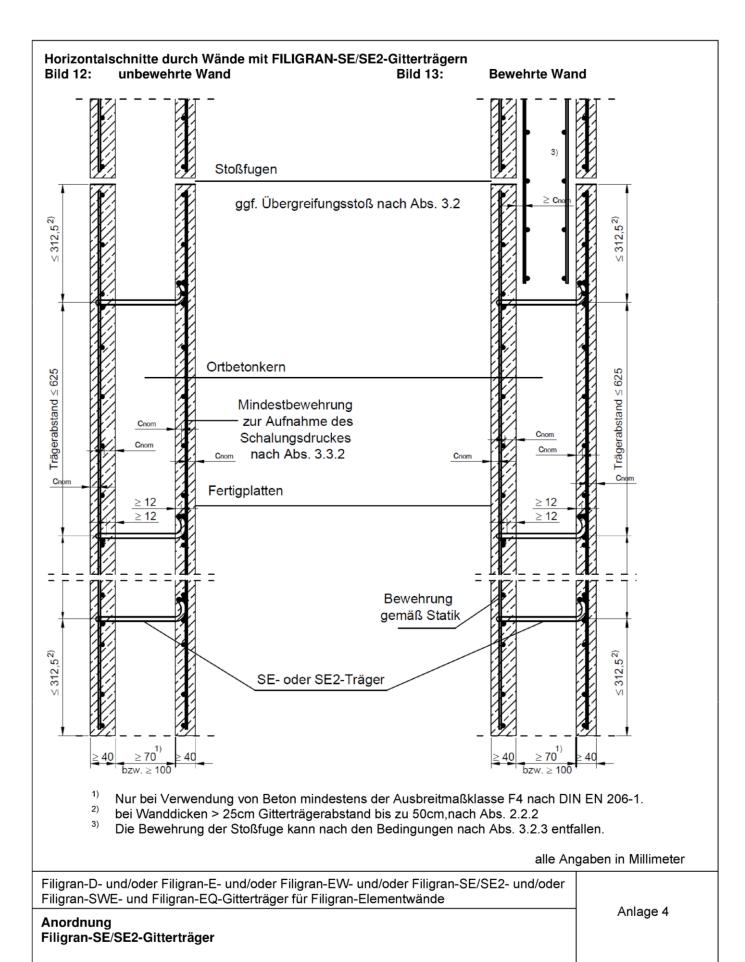
Bild 6: Filigran-EQ-Gitterträger

Werkstoff B500 gemäß Abschnitt 2.1.1

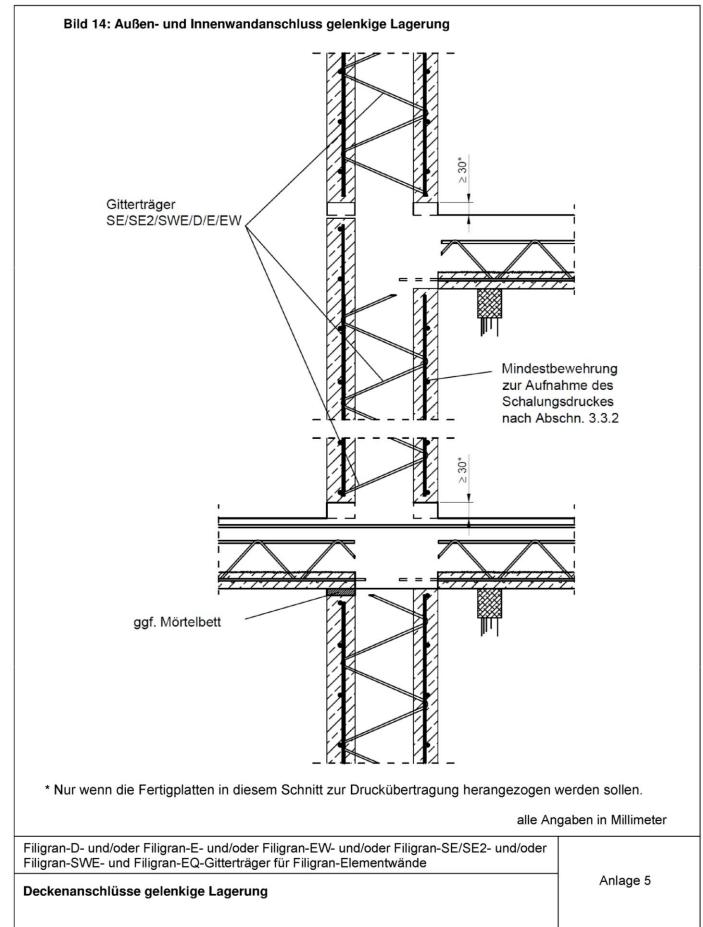
 $D \ge 4 \times Diagonal endurch messer$

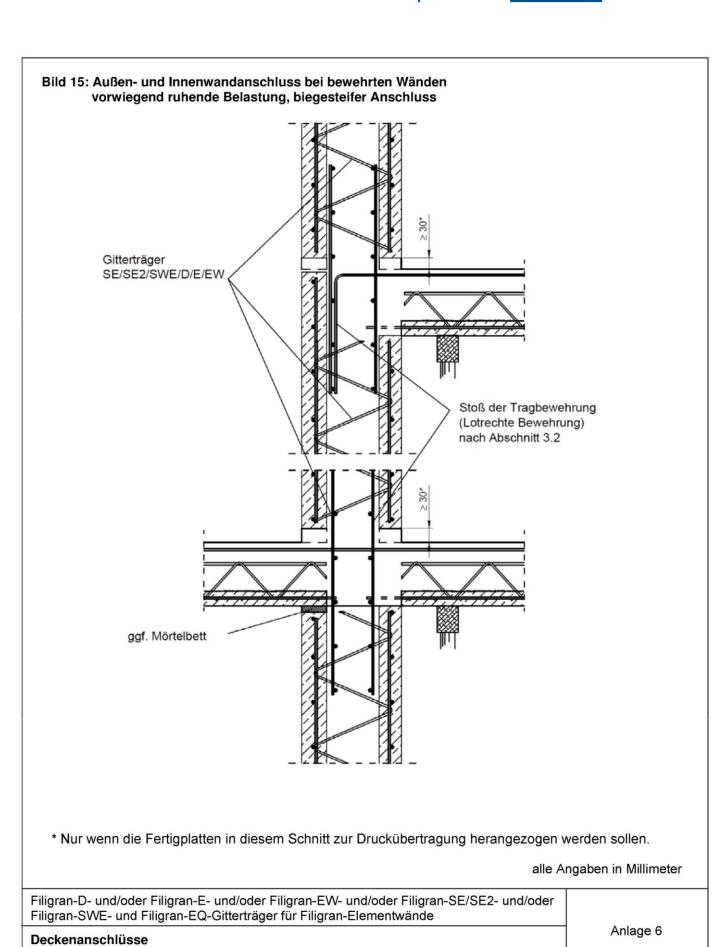

alle Angaben in Millimeter

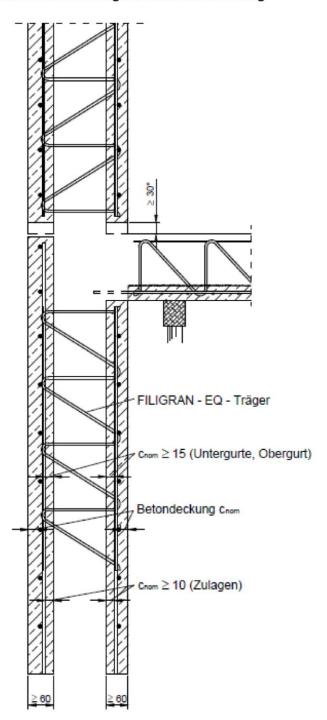

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände


Anlage 1

Gitterträgergeometrie Filigran-SWE-, Filigran-EQ-Gitterträger


Seite 2/2





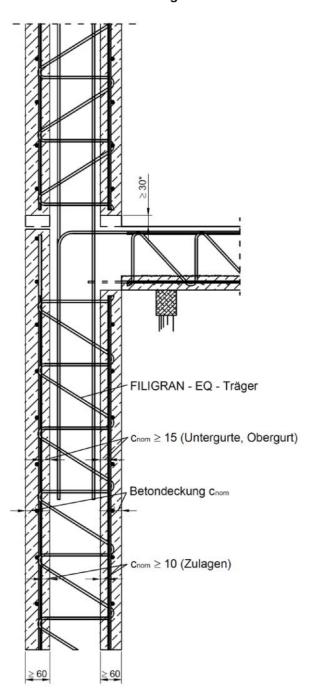
vorwiegend ruhende Belastung, biegesteifer Anschluss, bewehrte Wand

Bild 16: Deckenanschluss bei unbewehrter Wand auch nicht vorwiegend ruhende Belastung

D/E/EW/SE/SE2/SWE - Träger zur Schalungsdruckaufnahme nicht dargestellt

* Nur wenn die Fertigplatten in diesem Schnitt zur Druckübertragung herangezogen werden sollen.

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE/SE2- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände

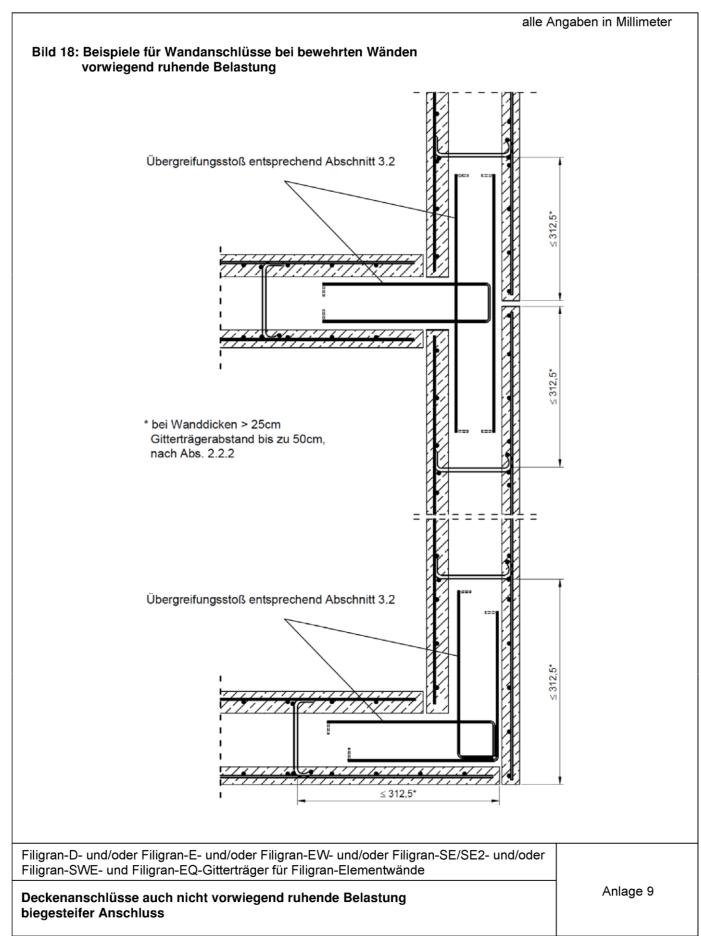

Deckenanschlüsse auch nicht vorwiegend ruhende Belastung unbewehrte Wand

Anlage 7

alle Angaben in Millimeter

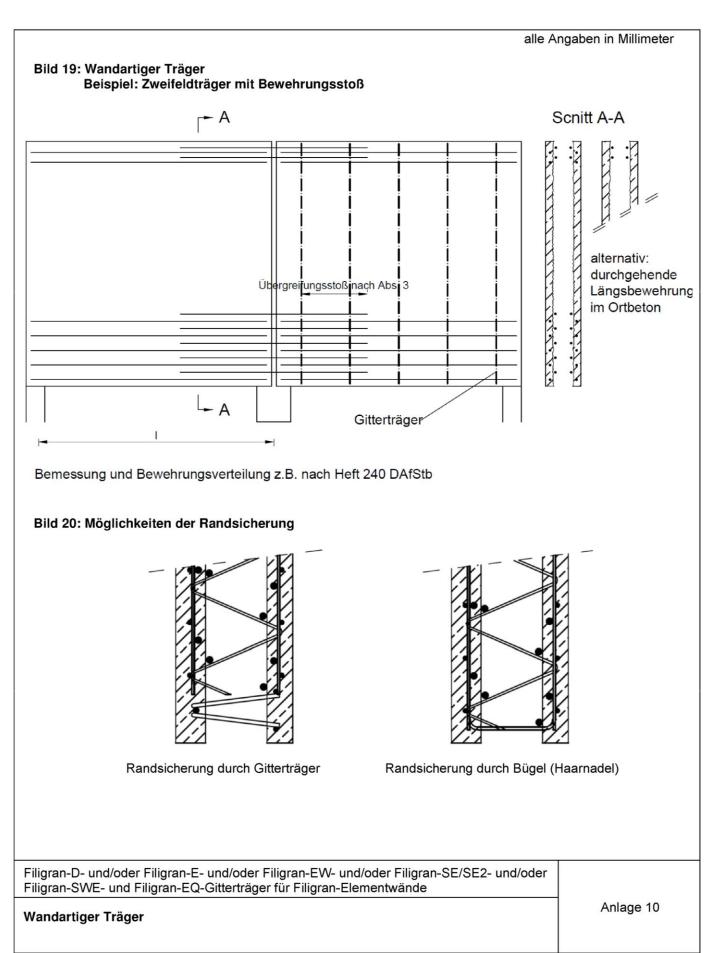
Bild 17: Deckenanschluss bei bewehrter Wand auch nicht vorwiegend ruhende Belastung, biegesteifer Anschluss

D/E/EW/SE/SE2/SWE - Träger zur Schalungsdruckaufnahme nicht dargestellt


* Nur wenn die Fertigplatten in diesem Schnitt zur Druckübertragung herangezogen werden sollen.

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE/SE2- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände

Deckenanschlüsse auch nicht vorwiegend ruhende Belastung biegesteifer Anschluss, bewehrte Wand


Anlage 8

Z45298.16 1.15.2-16/16

Bild 21: Fugenausbildung

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE/SE2- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände

Fugenausbildung

Anlage 11

Bemessung im Endzustand nach DIN 1045-1:2008-08 bzw. davon abweichende Regeln

1 Zusammenwirken von Fertigteilen und Ortbeton

- (1) Bei der Bemessung von durch Ortbeton ergänzten Fertigteilquerschnitten darf so vorgegangen werden, als ob der Gesamtquerschnitt von Anfang an einheitlich hergestellt worden wäre. Voraussetzung hierfür ist, dass die unter dieser Annahme in der Fuge wirkenden Schubkräfte durch Bewehrungen nach den "Besonderen Bestimmungen", Abschnitt 3.3.3 aufgenommen und die Fuge zwischen dem ursprünglichen Querschnitt und der Ergänzung ausreichend rau ausgeführt wird (siehe "Besondere Bestimmungen", Abschnitt 2.2.2).
- (2) Schubkraftübertragung in Fugen
- a) Für die Oberflächenrauhigkeit der Kontaktfläche mit dem Ortbeton Innenfläche der Fertigplatten gilt Abschnitt 2.2.2 nach dieser bauaufsichtlichen Zulassung.
- b) Der Bemessungswert der in der Kontaktfläche zwischen Ortbeton und Fertigteil oder in nachträglich ergänzten Querschnitten zu übertragenden Schubkraft je Längeneinheit darf nach Gleichung (1) ermittelt werden:

$$v_{Ed} = \frac{F_{cdj}}{F_{cd}} \cdot \frac{V_{Ed}}{z} \tag{1}$$

Dabei ist

 F_{cdj} der Bemessungswert des über die Fuge zu übertragenden Längskraftanteils der Bemessungswert der Gurtlängskraft infolge Biegung im betrachteten Querschnitt mit

$$F_{cd} = \frac{M_{Ed}}{z}$$

c) Der Bemessungswert der aufnehmbaren Schubkraft in Fugen von Verbundbauteilen einschließlich der Fugen zwischen Decken- und Wandelementen darf additiv aus Gl. (2) und Gl. (3) dieser Anlage ermittelt werden:

$$V_{Rdi} = \left| \eta_1 \cdot c_i f_{ctd} - \mu \cdot \sigma_{Nd} \right| \cdot b \tag{2}$$

Dabei ist

 η_1 = 1,0 für Normalbeton; für Leichtbeton nach DIN 1045-1:2008-08, Tabelle 10

c_i der Rauhigkeitsbeiwert nach Tabelle 1 und Absatz d)

 f_{ctd} der Bemessungswert der Betonzugfestigkeit des Ortbetons oder des Fertigteils (der kleinere Wert ist maßgebend) in N/mm² mit γ_c =1,8 für unbewehrten Beton

 σ_{Nd} die Normalspannung senkrecht zur Fuge (σ_{Nd} < 0 als Betondruckspannung)

$$\sigma_{Nd} = \frac{n_{Ed}}{b} \ge -0.6f_{cd} \qquad \text{in N/mm}^2$$

n_{Ed} der untere Bemessungswert der Normalkraft senkrecht zur Fuge je Längeneinheit (siehe DIN 1045-1:2008-08, Bild 35a))

b die Breite der Kontaktfläche (z. B. einer Horizontalfuge)

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE/SE2- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände

Anlage 12

Von DIN 1045-1:2008-08 abweichende Regeln für die Bemessung

Seite 1 / 4

Tabelle 1 - Beiwerte c_i , μ

Spalte	1	2
Oberflächenbeschaffenheit nach 1 (2) a)	c _j	μ
rau	0,40 ^a	0,7
glatt	0,20 ^a	0,6
sehr glatt	0	0,5
^a siehe Absatz d)		•

- d) In den Fällen, in denen die Fuge infolge Einwirkungen rechtwinklig zur Fuge unter Zug steht, ist bei glatten oder rauen Fugen $c_i = 0$ zu setzen.
- e) Fugen zwischen Fertigteilelementen mit Gitterträgern und Ortbetonergänzung sind stets zu bewehren. Der Bemessungswert der von der Bewehrung aufnehmbaren Schubkraft beträgt

$$v_{Rd,sy} = a_s \cdot f_{y_d} \cdot (1.2\mu \cdot \sin \alpha + \cos \alpha)$$
 (3)

Dabei ist

as der Querschnitt der die Fuge kreuzenden Bewehrung je Längeneinheit

der Winkel der die Fuge kreuzenden Bewehrung (siehe DIN 1045-1:2008-08, Bild 35a)), in Bauteilen mit rechnerisch erforderlicher Querkraftbewehrung: $45^{\circ} \le \alpha \le 90^{\circ}$

f) Die maximale aufnehmbare Schubkraft in der Fuge beträgt

$$v_{Rdi,max} = 0.5 \cdot \eta_1 \cdot v \cdot f_{cd} \cdot b$$

mit
$$v = 0.5$$
 für raue Fugen

(4)

mit v = 0.2

für glatte Fugen

mit v = 0

für sehr glatte Fugen

oder

 $V_{Rdj,max} = b \cdot V_{Rdi,max}$

mit v_{Rdi,max}

die maximale Schubtragfähigkeit nach Tabelle 6a (Normalbeton) bzw. Tabelle 6b (Leichtbeton) dieser allgemeinen bauaufsichtlichen Zulassung.

Es gilt der kleinere Wert.

- g) Wenn an Fertigteilplatten mit Ortbetonergänzung planmäßig und dauerhaft Lasten angehängt werden, ist die Verbundsicherung im unmittelbaren Lasteinleitungsbereich nachzuweisen.
- (3) Werden im gleichen Querschnitt Fertigteile und Ortbeton oder auch Zwischenbauteile unterschiedlicher Festigkeit verwendet, so ist für die Bemessung des gesamten Querschnitts die geringste Festigkeit dieser Teile in Rechnung zu stellen, sofern nicht das unterschiedliche Tragverhalten der einzelnen Teile rechnerisch berücksichtigt wird.

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE/SE2- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände

Von DIN 1045-1:2008-08 abweichende Regeln für die Bemessung

Anlage 12

Seite 2 / 4

2 Bemessung für Querkraft

2.1 Bauteile ohne rechnerisch erforderliche Querkraftbewehrung

Der Bemessungswert der Querkrafttragfähigkeit $V_{Rd,ct}$ biegebewehrter Bauteile ohne Querkraftbewehrung ist nach Gleichung (5) zu ermitteln. Dabei ist die Wirkung einer Druckspannung σ_{cd} nicht zu berücksichtigen.

$$V_{Rd,ct} = \left[0.10 \cdot \kappa \cdot \eta_1 \cdot (100\rho_1 \cdot f_{ck})^{1/3} - 0.12\sigma_{cd} \right] \cdot b_W \cdot d$$
 (5)

mit

$$\kappa = 1 + \sqrt{\frac{200}{d}} \le 2.0$$

Dabei ist

 η_1 1,0 für Normalbeton; für Leichtbeton nach DIN 1045-1:2008-08, Tabelle 10

ρ₁ der Längsbewehrungsgrad mit

$$\rho_1 = \frac{A_{\text{S}I}}{b_w \cdot d} \le 0.02$$

A_{s/} die Fläche der Zugbewehrung, die mindestens um das Maß d über den betrachteten Querschnitt

hinaus geführt und dort wirksam verankert wird (siehe DIN 1045-1:2008-08, Bild 32).

b_w die kleinste Querschnittsbreite innerhalb der Zugzone des Querschnitts in mm

die statische Nutzhöhe der Biegebewehrung im betrachteten Querschnitt in mm

 f_{ck} der charakteristische Wert der Betondruckfestigkeit in N/mm²

 σ_{cd} der Bemessungswert der Betonlängsspannung in Höhe des Schwerpunktes des Querschnitts mit

$$\sigma_{cd} = \frac{N_{Ed}}{A_c}$$
 in N/mm² Dabei ist die Wirkung einer Druckspannung σ_{cd} nicht zu berücksichtigen und

somit σ_{cd} = 0 anzusetzen

 N_{Ed} der Bemessungswert der Längskraft im Querschnitt infolge äußerer Einwirkungen oder Vorspannung (N_{Ed} <0 als Längsdruckkraft)

2.2 Bauteile mit rechnerisch erforderlicher Querkraftbewehrung

- a) Die Querkraftbemessung biegebewehrter Bauteile mit Querkraftbewehrung erfolgt auf der Grundlage eines Fachwerkmodells (siehe DIN 1045-1:2008-08, Bild 33). Die Neigung θ der Druckstreben des Fachwerks ist nach Absatz c) zu begrenzen.
- b) Beim Nachweis der Querkrafttragfähigkeit darf im Allgemeinen näherungsweise der Wert z = 0.9 d angenommen werden.

Es darf für z jedoch kein größerer Wert angesetzt werden, als sich aus $z = d - 2c_{v,l} \ge d - c_{v,l} - 30$ mm ergibt (mit Verlegemaß $c_{v,l}$ der Längsbewehrung in der Betondruckzone).

c) Die Neigung θ der Druckstreben des Fachwerks ist wie folgt zu begrenzen:

$$1,0 \leq \cot \theta \leq \frac{1,2-1,4 \cdot \sigma_{cd} \, / \, f_{cd}}{1-V_{Rd,c} \, / \, V_{Ed}} \leq \left\{ \begin{array}{c} 3,0 \ \ \, \textit{für Normalbeton} \\ 2,0 \ \ \, \textit{für Leichtbeton} \end{array} \right.$$

mit

$$V_{Rd,c} = \beta_{ct} \cdot 0.10 \cdot \eta_1 \cdot f_{ck}^{1/3} \left(1 + 1.2 \frac{\sigma_{cd}}{f_{cd}} \right) \cdot b_w \cdot z$$

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE/SE2- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände

Anlage 12

Seite 3 / 4

Von DIN 1045-1:2008-08 abweichende Regeln für die Bemessung

Dabei ist

$$\beta_{ct} = 2.4$$

 η_1 = 1,0 für Normalbeton; für Leichtbeton nach DIN 1045-1:2008-08, Tabelle 10

 σ_{cd} der Bemessungswert der Betonlängsspannung in Höhe des Schwerpunktes des Querschnitts mit $\sigma_{cd} = \frac{N_{Ed}}{A_c}$ in N/mm²

 N_{Ed} der Bemessungswert der Längskraft im Querschnitt infolge äußerer Einwirkungen oder Vorspannung (N_{Ed} <0 als Längsdruckkraft)

Bei planmäßigen Längsdruckspannungen (σ_{cd} < 0) ist der Längsspannungsanteil in obigen Formeln rechnerisch nicht zu berücksichtigen und somit σ_{cd} = 0 zu setzen.

Es ist zu beachten, dass bei $\cot \theta < 1$ die Bemessung nicht zulässig ist. D.h. die Konstruktion ist entsprechend zu ändern, so dass $\cot \theta \ge 1$ eingehalten wird.

d) Der Bemessungswert der einwirkenden Querkraft V_{Ed} ist wie folgt zu begrenzen:

$$V_{Ed} \le V_{Rd,max,GT}$$
 mit

$$V_{Rd,max,GT} = 0.25 b_w z \alpha_c f_{cd} \frac{\cot \theta + \cot \alpha}{1 + \cot^2 \theta}$$
 für $\alpha < 55^\circ$

$$V_{\text{Rd},\text{max},\text{GT}} = 0.30 \text{ b}_{\text{w}} \text{ z } \alpha_{\text{c}} \text{ f}_{\text{cd}} \ \frac{\cot \theta + \cot \alpha}{1 + \cot^2 \theta} \ \ (1 + \sin(\alpha - 55^\circ))$$
 für $\alpha \ge 55^\circ$

Dabei ist

$$a_c = 0.75 \, \eta_1$$

mit

Für die aufnehmbare Querkraft von Fertigteilelementen mit Ortbetonergänzung ist zusätzlich der Nachweis der Schubkraftübertragung in der Fuge zu berücksichtigen.

Filigran-D- und/oder Filigran-E- und/oder Filigran-EW- und/oder Filigran-SE/SE2- und/oder Filigran-SWE- und Filigran-EQ-Gitterträger für Filigran-Elementwände

Anlage 12

Von DIN 1045-1:2008-08 abweichende Regeln für die Bemessung

Seite 4 / 4