

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0024 of 13 February 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System fischer FIS V

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

29 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-02/0024 issued on 17 June 2016

European Technical Assessment ETA-02/0024

Page 2 of 29 | 13 February 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z76105.16 8.06.01-196/16

European Technical Assessment ETA-02/0024

Page 3 of 29 | 13 February 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system fischer FIS V is a bonded anchor consisting of a cartridge with injection mortar fischer FIS V and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic values for static and quasi-static action, displacements	See Annex C 1 to C 9				
Characteristic values for seismic performance categories C1 and C2, displacements	See Annex C 10 to C 12				

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z76105.16 8.06.01-196/16

European Technical Assessment ETA-02/0024

Page 4 of 29 | 13 February 2017

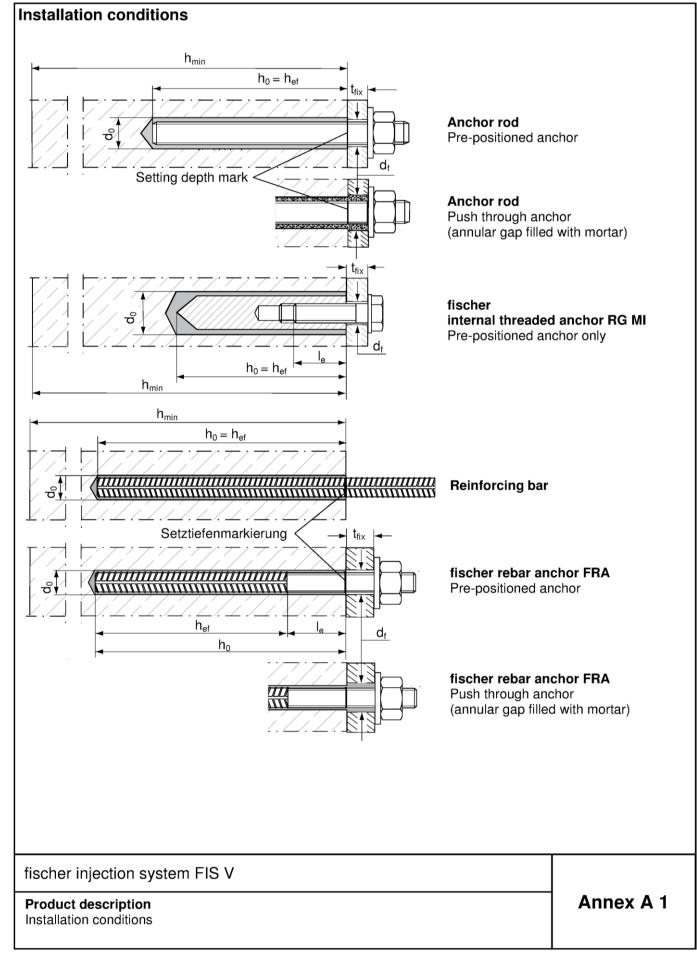
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

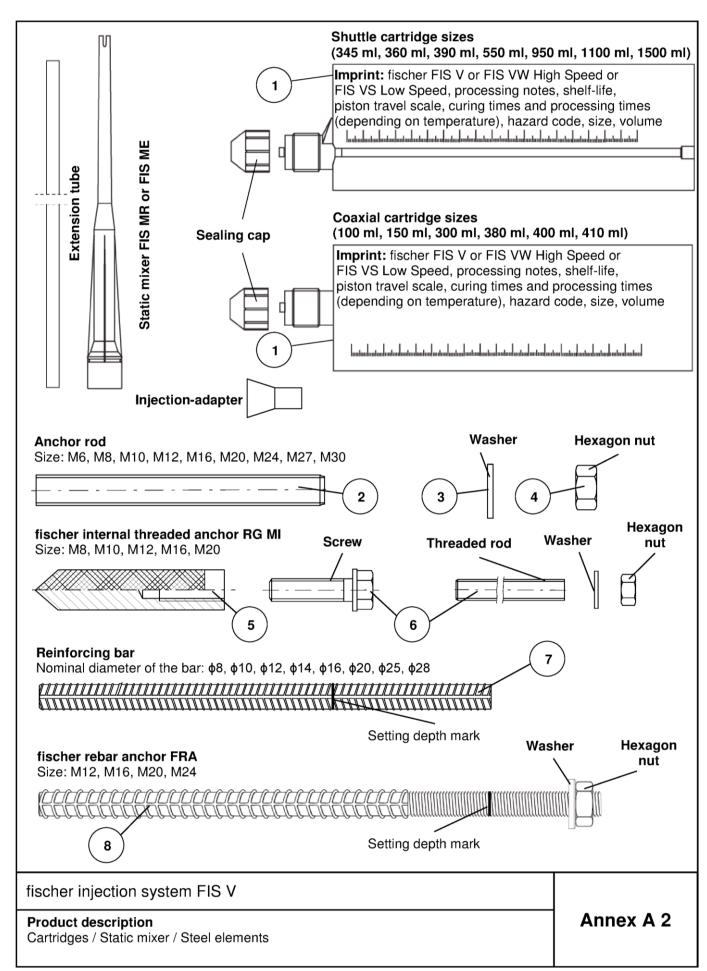
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 February 2017 by Deutsches Institut für Bautechnik


Uwe Benderbeglaubigt:Head of DepartmentLange

Z76105.16 8.06.01-196/16

	e A1: Materials								
Part	Designation		Mate						
1	Mortar cartridge		Mortar, hard						
	Steel grade	Steel, zinc plated	Stainles A			High corrosion resistant steel C			
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation Fracture elongation $A_5 > 8$	performance	or 80 06-1:2009 .04; 1.4578; .39; 1.4362; .662, 1.4462 .3-1:2014 .0 N/mm ² .12 % .12 % .10 longation .20 longation .21 ations without .22 category C2	or p				
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014				1.4565;1.4529 EN 10088-1:2014			
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014			Property class 50, 70 or 80 N ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property 70 EN ISO 35 1.4401; 1.44 1.4571; 1.44 EN 10088	0 06-1:2009 -04; 1.4578; 439; 1.4362		Property class 70 N ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:1999 A2K fracture elongation $A_5 > 8$ %	70 EN ISO 35 1.4401; 1.44 1.4571; 1.44 EN 10088	Property class 70 SO 3506-1:2009 1; 1.4404; 1.4578; 1; 1.4439; 1.4362 1 10088-1:2014 Sture elongation		Property class 70 N ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %			
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$			I+AC	2:2010			
8	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class B or C with f _{yk} and k according to NDP or NCL Threaded part: Property class 70 or 80 EN ISO 3506-1:2009							
Proc	ner injection system f duct description erials	FIS V				Annex A 3			

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Table B1. Ove	erview use ar	la perior		alegones								
Anchorages subj	ect to	FIS V with										
		Anch	or rod	fisc internal t anchor		Reinfor	cing bar	rebar a	her anchor RA			
				-)	-							
Hammer drilling with standard drill bit	\$-99990000000 				all s	izes						
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")			Nominal drill bit diameter (d ₀) 12 mm to 35 mm									
Static and quasi	uncracked concrete	all sizes	Tables:	all sizes	Tables: C2, C5,	all sizes	Tables: C3, C5,	all sizes	Tables: C4, C5,			
static load, in	cracked concrete	M10 to M30	C6, C10	not assessed	C7, C11	φ10 bis φ28	C8, C12	all sizes	C9, C13			
Seismic performance category (only	C1 ¹⁾	M10 to M30	Tables: C14, C15, C16									
hammer drilling with Standard / hollow drill bits)	C2 ¹⁾	M12, M16, M20	Tables: C14, C15, C17			-						
Llee estegery	dry or wet concrete				all s	izes						
Use category	flooded hole	M12 t	o M30	all s	izes	not as	sessed	not ass	sessed			
Installation temperature					-10 °C to	+40 °C						
In-service	Temperature range I	-40 °C to	J +00 C	(max. long max. shor	t term tem	perature +	80 °C)					
1) Nat far EIC VI	Temperature range II		1+120 30	(max. long max. shor	term tem t term tem							

¹⁾ Not for FIS VW High Speed and FIS VS Low Speed

fischer injection system FIS V

Intended Use
Specifications (part 1)

Annex B 1

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e. g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer injection system FIS V

Intended Use
Specifications (part 2)

Annex B 2

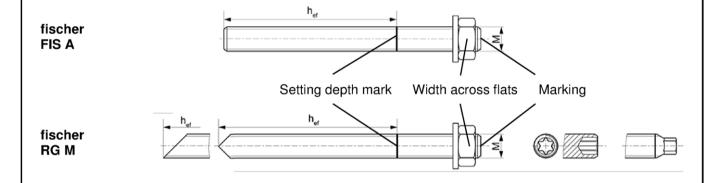


Table B2: Installa	Table B2: Installation parameters for anchor rods												
Size				М6	M8	M10	M12	M16	M20	M24	M27	M30	
Width across flats		SW		10	13	17	19	24	30	36	41	46	
Nominal drill bit diameter		d ₀		8	10	12	14	18	24	28	30	35	
Drill hole depth		h_0	$h_0 = h_{ef}$										
Effective		$h_{\text{ef},\text{min}}$		50	60	60	70	80	90	96	108	120	
anchorage depth		h _{ef,max}		72	160	200	240	320	400	480	540	600	
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140	
Diameter of clearance hole in	pre- positioned anchorage	d _f		7	9	12	14	18	22	26	30	33	
the fixture ¹⁾	push through anchorage	d _f		9	11	14	16	20	26	30	32	40	
Minimum thickness of concrete member		h _{min}				- 30 00)			١	n _{ef} + 2d	0		
Maximum installation torque		T _{inst,max}	[Nm]	5	10	20	40	60	120	150	200	300	

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Anchor rods:

installation torque

Marking (on random place) fischer anchor rod:

Property class 8.8, stainless steel, property class 80 or high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: •• Or colour coding according to DIN 976-1

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

fischer injection system FIS V	
Intended Use Installation parameters anchor rods	Annex B 3

8.06.01-196/16 Z7252.17

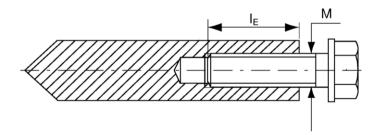
installation torque

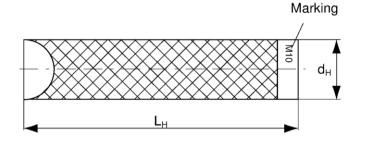
80

120

Size			М8	M10	M12	M16	M20	
Diameter of anchor	d_H		12	16	18	22	28	
Nominal drill bit diameter	d_0		14	18	20	24	32	
Drill hole depth	h ₀	h_0 $h_0 = h_{ef}$						
Effective anchorage depth $(h_{ef} = L_H)$	h_{ef}		90	90	125	160	200	
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125	
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22	
Minimum thickness of concrete member	h _{min}		120	125	165	205	260	
Maximum screw-in depth	$I_{E,max}$] [18	23	26	35	45	
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20	
Maximum	т	[MM]	10	20	40	80	120	

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1


10


20

40

T_{inst,max} [Nm]

fischer internal threaded anchor RG MI

Marking: Anchor size

e. g.: M10

Stainless steel additional A4

e. g.: M10 A4

High corrosion resistant steel

additional C e. g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

fischer injection system FIS V

Intended Use
Installation parameters fischer internal threaded anchors RG MI

Annex B 4

Table B4: Installation parameters for reinforcing bars													
Nominal diameter of the bar		ф	8	1)	10) ¹⁾	12	2 ¹⁾	14	16	20	25	28
Nominal drill bit diameter	d_0		10	12	12	14	14	16	18	20	25	30	35
Drill hole depth	h ₀		$h_0 = h_{ef}$										
Effective	$h_{\text{ef},\text{min}}$		6	0	6	0	7	0	75	80	90	100	112
anchorage depth	h _{ef,max}	[mm]	16	60	20	00	24	40	280	320	400	500	560
Minimum spacing and minimum edge distance	S _{min} = C _{min}		4	0	4	5	5	5	60	65	85	110	130
Minimum thickness of concrete member	h _{min}				_{ef} + 3 ≥ 100					h	_{ef} + 2d ₀		

¹⁾ Both drill bit diameters can be used

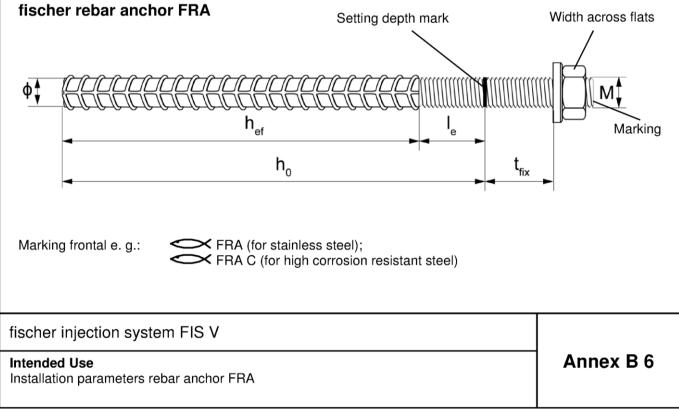
Reinforcing bar

electronic copy of the eta by dibt: eta-02/0024

- The minimum value of related rib area $f_{\text{R},\text{min}}$ must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \varphi \le h_{rib} \le 0.07 \cdot \varphi$ (φ = Nominal diameter of the bar , h_{rib} = rib height)

fischer injection system FIS V	
Intended Use Installation parameters reinforcing bars	Annex B 5

8.06.01-196/16


Z7252.17

electronic copy of the eta by dibt: eta-02/0024

Table B5: Installation parameters for fischer rebar anchor FRA											
Size				M1	2 ¹⁾	M16	M20	M24			
Nominal diameter of the bar		ф		12		16	20	25			
Width across flats	_	SW		1	9	24	30	36			
Nominal drill bit diameter		d_0		14	16	20	25	30			
Drill hole depth		h_0				h _{ef}	+ l _e				
Effective	_	$h_{\text{ef},\text{min}}$		7	0	80	90	96			
anchorage depth		$h_{\text{ef},\text{max}}$		14	40	220	300	380			
Distance concrete surface to welded join		l _e	[mm]			100					
Minimum spacing and minimum edge distance		S _{min} = C _{min}		5	5	65	85	105			
Diameter of clearance hole in	pre- positioned anchorage	≤ d _f		1	4	18	22	26			
the fixture ²⁾	push through anchorage	≤ d _f		1	8	22	26	32			
Minimum thickness of concrete member		h _{min}		h ₀ + 30 (≥ 100)		$h_0 + 2d_0$					
Maximum installation torque		T _{inst,max}	[Nm]	4	0	60	120	150			

¹⁾ Both drill bit diameters can be used ²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

electronic copy of the eta by dibt: eta-02/0024

8.06.01-196/16

English translation prepared by DIBt

Table B6: Diameters of steel brush FIS BS Ø

The size oft the steel brush refers to the nominal drill bit diameter

Nominal drill bit diameter	d ₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter	d _b	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

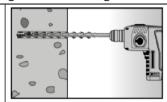
Table B7: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

	Maxin	num processin	g time	Minimum curing time ¹⁾				
System temperature		t _{work} [minutes]		t _{cure} [minutes]				
[°C]	FIS VW High Speed	FIS V	FIS VS Low Speed	FIS VW High Speed	FIS V	FIS VS Low Speed		
-10 to -5				12 hours				
> -5 to ±0	5			3 hours	24 hours			
> ±0 to +5	5	13		3 hours	3 hours	6 hours		
> +5 to +10	3	9	20	50	90	3 hours		
> +10 to +20	1	5	10	30	60	2 hours		
> +20 to +30		4	6		45	60		
> +30 to +40		2	4		35	30		

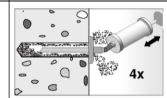
¹⁾ In wet concrete or flooded holes the curing times must be doubled

fischer injection system FIS V

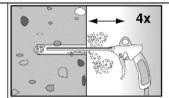
Intended Use
Cleaning tools
Processing times and curing times

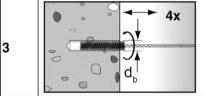

Annex B 7

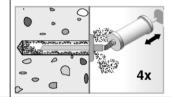
Z7252.17

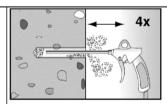


Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)


Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3, B4, B5


Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

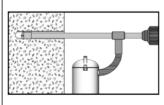
Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **Table B6**

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5

2


4

2

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see

Tables B2, B3, B4, B5

Go to step 5

fischer injection system FIS V

Intended use

Installation instructions part 1

Annex B 8

Z7252.17

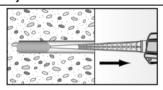
Installation instructions part 2

Preparing the cartridge

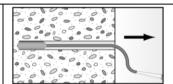
Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

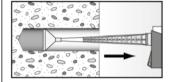
Place the cartridge into the dispenser


Extrude approximately 10 cm of material until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Go to step 8


7

8


Mörtelinjektion

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

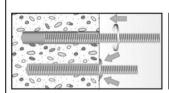
For drill hole depth ≥ 150 mm use an extension tube

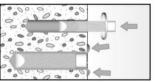
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection-adapter

Go to step 9

fischer injection system FIS V

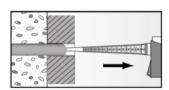
Intended use


Installation instructions part 2


Annex B 9

Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG MI

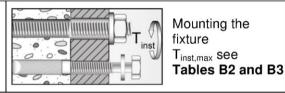


Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

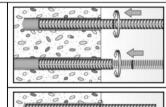
After inserting the anchor element, excess mortar must be emerged around the anchor element.

For overhead installations support the anchor rod with wedges. (e. g. fischer centering wedges)

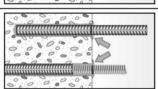
For push through installation fill the annular gap with mortar



9


Wait for the specified curing time t_{cure} see Table B7

11



Mounting the fixture T_{inst,max} see

Installation reinforcing bars and fischer rebar anchor FRA

Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

9

Wait for the specified curing time t_{cure} see Table B7

Mounting the fixture T_{inst,max} see **Table B5**

fischer injection system FIS V

Intended use

Installation instructions part 3

Annex B 10

Table	e C1: Character under tens	istic values sile / shear			teel b	earin	g capa	city o	f ancl	or ro	ds		
Size					М6	M8	M10	M12	M16	M20	M24	M27	M30
Bearir	ng capacity unde	r tensile loa	d, ste	el fail	ure								
g s	Steel zinc plated		5.8		10	19	29	43	79	123	177	230	281
sarir N _{rk,}			8.8		16	29	47	68	126	196	282	368	449
it.be	Stainless steel	Property class	50	 [kN]	10	19	29	43	79	123	177	230	281
Charact.bearing capacity N _{Rk,s}	A4 and High corrosion	Class	70		14	26	41	59	110	172	247	322	393
	resistant steel C		80		16	30	47	68	126	196	282	368	449
Partia	I safety factors ¹⁾												
>	Steel zinc plated		5.8						1,50				
afet) _{Ms,N}			8.8						1,50				
al sa or y	Stainless steel	Property class	50	[-]					2,86				
Partial safety factor _{YMs,N}		Class	70					1,	50 ²⁾ / 1,	87			
	resistant steel C		80						1,60				
	ng capacity under	r shear load	, stee	l failu	re								
withou	ut lever arm	<u> </u>											
ng s,	Steel zinc plated		5.8		5	9	15	21	39	61	89	115	141
eari V _{rk}			8.8		8	15	23	34	63	98	141	184	225
st.b	→ A Stainless steel 1	Property class	50	[kN]	5	9	15	21	39	61	89	115	141
arac ıpac		Class	70		7	13	20	30	55	86	124	161	197
ن ي	resistant steel C		80		8	15	23	34	63	98	141	184	225
	ty factor acc. to CE 4-5:2009 Section 6		k ₂	[-]					1,0				
with le	ever arm												
	Steel zinc plated		5.8		7	19	37	65	166	324	560	833	1123
ti Do			8.8		12	30	60	105	266	519	896	1333	1797
	Stainless steel	Property class	50	[Nm]	7	19	37	65	166	324	560	833	1123
<u>ප</u> දූ	A4 and High corrosion	Ciass	70		10	26	52	92	232	454	784	1167	1573
	Fresistant steel C		80		12	30	60	105	266	519	896	1333	1797
Partia	I safety factors ¹⁾												
	Steel zinc plated		5.8						1,25				
rfet) As,v			8.8						1,25				
ıl sa or γ	Stainless steel	Property	50	[-]					2,38				
Partial safety factor ‱,v	A4 and High corrosion	class	70					1,2	25 ²⁾ / 1,	56			
<u>.</u>	resistant steel C		80						1,33				
¹⁾ In a	absence of other n ly for fischer FIS A	ational regul	ations nade	of higi	n corro	sion-res	sistant s	teel C					
fisch	er injection sys	tem FIS V											
	ormances acteristic steel bea	ring capacity	anch	or rod	s						An	nex C	1

Table C2: Characteristic values for the steel bearing capacity of
fischer internal threaded anchors RG MI under tensile / shear load

1130110	.	iterriar tin	cauc	u un	chors ma	ivii dilaci te		ai ioaa	
Size					М8	M10	M12	M16	M20
Bearing capacity u	ınde	r tensile loa	ad, ste	el fail	ure				
		Property	5.8		19	29	43	79	123
Characteristic	NI.	class	8.8	וואוז	29	47	68	108	179
bearing capacity Nowith screw	$V_{Rk,s}$	Property	A4	[kN]	26	41	59	110	172
		class 70	С		26	41	59	110	172
Partial safety facto	ors ¹⁾								
		Property	5.8				1,50		
Partial safety		class	8.8	[_1			1,50		
factor	Ms,N	Property	A4	[-]			1,87		
		class 70	С				1,87		
Bearing capacity u	ınde	r shear loa	d, stee	l failu	ire				
without lever arm									
Ola a wa at a wiati a		Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0
Characteristic bearing capacity V	'	class	8.8		14,6	23,2	33,7	54,0	90,0
with screw	City V RK,S	Property	A4 C		12,8	20,3	29,5	54,8	86,0
		class 70			12,8	20,3	29,5	54,8	86,0
Ductility factor acc. 1992-4-5:2009 Sect			k_2	[-]			1,0		
with lever arm									
Ola a sea a tanta ti a		Property	5.8		20	39	68	173	337
Characteristic bending moment M	1 0	class	8.8	[Nm]	30	60	105	266	519
with screw	¹ Rk,s	Property	_A4	ַנוי י יון	26	52	92	232	454
		class 70	С		26	52	92	232	454
Partial safety facto	ors ¹⁾								
		Property	5.8				1,25		
Partial safety		class	8.8	[_1			1,25		
factor	Ms,V	Property	_A4	[-]			1,56		
		class 70	С				1,56		

¹⁾ In absence of other national regulations

Performances

Characteristic steel bearing capacity of fischer internal threaded anchors RG MI

Annex C 2

Table C3: Characteristic values for the steel bearing capacity of reinforcing bars
under tensile / shear load

Nominal diameter of the bar	ф	8	10	12	14	16	20	25	28	
Bearing capacity under tensile	load, ste	el fail	ure							
Characteristic bearing capacity	$N_{Rk,s}$	[kN]				A _s ·	f _{uk} ¹⁾			
Bearing capacity under shear lo	oad, stee	l failu	ire							
without lever arm										
Characteristic bearing capacity	$V_{Rk,s}$	[kN]				0,5 · A	∖ _s · f _{uk} ¹)			
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k_2	[-]				0	,8			
with lever arm	·				·		·		·	
Characteristic bending moment	${\sf M^0}_{\sf Rk,s}$	[Nm]				1,2 · W	$I_{el}\cdotf_{uk}^{-1}$			

 $^{^{1)}}$ f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar

Table C4: Characteristic values for the steel bearing capacity of fischer rebar anchors FRA under tensile / shear load

Size			M12	M24		
Bearing capacity under tensile	load, ste	el fail	ure			
Characteristic bearing capacity	N _{Rk,s}	[kN]	63	111	173	270
Partial safety factors ¹⁾						
Partial safety factor	γMs,N	[-]		1,	4	
Bearing capacity under shear lo	oad, stee	l failu	re			
without lever arm						
Characteristic bearing capacity	$V_{Rk,s}$	[kN]	30	55	86	124
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]		1,	,0	
with lever arm						
Characteristic bearing capacity	${\sf M^0}_{\sf Rk,s}$	[Nm]	92	233	454	785
Partial safety factors ¹⁾						
Partial safety factor	γMs,V	[-]		1,	56	

¹⁾ In absence of other national regulations

fischer injection system FIS V

Performances
Characteristic steel bearing capacity of reinforcing bars and fischer rebar anchors FRA

Annex C 3

tensile / shear load

8.06.01-196/16

Table C5: General desigr uncracked or o				ring ca	apacity	/ und	der	tens	ile / s	hear Ic	oad;	
Size							ΑI	l size				
Bearing capacity under tensil	e load							OILC				
Factors acc. to CEN/TS 1992-		ection 6	.2.2.3									
Uncracked concrete	k _{ucr}							10,1				
Cracked concrete	k _{cr}	[-]						7,2				
Factors for the compressive s		of conc	rete > (C20/25				,,_				
C25				<u> </u>				1,05				
C30								1,10				
Increasing C35	/45							1,15				
factor ————————————————————————————————————	— Ψ	[-]						1,19				
for τ_{Rk} C45								1,22				
C50								1,26				
Splitting failure	700							1,20				
h / h _{ef} ≥	2 0							I,0 h _{ef}				
Edge distance $2.0 > h / h_{ef} >$								ո _{ef} - 1,				
$\frac{2,0 > 11 / 1_{ef}}{h / h_{ef}} \le$		[mm]						,26 h _e				
Spacing		-						2 C _{cr,sp}				
Concrete cone failure acc. to	S _{cr,sp}	002-4-6	5.2000	Section	2623	2		- Ccr,sp				
Edge distance		332-4-	7.2009	Section	1 0.2.3.			I,5 h _{ef}				
Spacing Spacing	C _{cr,N}	[mm]										
	S _{cr,N}							2 c _{cr,N}				
Bearing capacity under shear	ioad											
Installation safety factors												
All installation conditions	γ ₂ =	[-]						1,0				
All installation conditions	— γ _{inst}	[-]						1,0				
Concrete pry-out failure	711131											
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3	k ₍₃₎	[-]						2,0				
Concrete edge failure												
The value of h_{ef} (= l_f) under shear load		[mm]					min	(h _{ef} ; 8	Bd)			
Calculation diameters												
Size			M6	M8	M10	M12	2	M16	M20	M24	M27	МЗ
Anchor rods	d		6	8	10	12		16	20	24	27	30
fischer internal threaded anchors RG M	11 d _{nom}	[mm]		12	16	18		22	28			
fischer rebar anchors FRA	d					12		16	20	25		
Nominal diameter of the bar		ф	8	10	12		14	Π.	16	20	25	28
Reinforcing bar	d	[mm]	8	10	12		14		16	20	25	28
Ferformances	IS V									Δn	nex (2.4

Z7252.17

Table C6: Characteristic v	/alues o	of resist	ance	for an	chor r	ods					
in hammer drill							rete				
Size			М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and concre	ete cone	failure									
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete											
Characteristic bond resistant	ce in un	cracked o	concre	te C20/	25						
Hammer-drilling with standard	<u>drill bit o</u>	r hollow d	rill bit (c	dry and	wet co	ncrete)					
Tem- I: 50 °C / 80 °C		[N]/ma ma ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (f	looded	hole)1)						
Tem- I: 50 °C / 80 °C		2.				9,5	8,5	8,0	7,5	7,0	7,0
perature II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]				7,5	7,0	6,5	6,0	6,0	6,0
Installation safety factors											
Dry and wet concrete							1,0				
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]		1,2 ¹⁾							
Cracked concrete											
Characteristic bond resistand	ce in cra	icked cor	ncrete (C20/25							
Hammer-drilling with standard	<u>drill bit o</u>	<u>r hollow d</u>	rill bit (c	dry and	wet co	ncrete)					
Tem- I: 50 °C / 80 °C	_	[N/mm ²]			6,0	6,0	6,0	5,5	4,5	4,0	4,0
range II: 72 °C / 120 °C	$ au_{Rk,cr}$				5,0	5,0	5,0	5,0	4,0	3,5	3,5
Hammer-drilling with standard	drill bit o	r hollow d	rill bit (f	looded	hole)1)						
Tem- I: 50 °C / 80 °C		2-				5,0	5,0	4,5	4,0	3,5	3,5
perature II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]				4,0	4,0	4,0	3,5	3,0	3,0
Installation safety factors											
Installation safety factors Dry and wet concrete	$\gamma_2 = \gamma_{inst}$	[-]					1,0				

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

Performances

Characteristic values for static or quasi-static action under tensile load for anchor rods (uncracked or cracked concrete)

Annex C 5

Z7252.17

electronic copy of the eta by dibt: eta-02/0024

Table C7: Characteristic values of resistance for fischer internal threaded anchors
RG MI in hammer drilled holes: uncracked concrete

Size			М8	M10	M12	M16	M20
Combined pullout and conc	rete con	e failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resistar	nce in un	cracked (concrete C2	0/25			
Hammer-drilling with standard	drill bit o	r hollow d	Irill bit (dry an	d wet concre	te)		
Tem- perature I: 50 °C / 80 °C	- T-	[N/mm²]	10,5	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	- τ _{Rk,ucr}	[14/11111]	9,0	8,0	8,0	7,5	7,0
Hammer-drilling with standard	drill bit o	r hollow d	Irill bit (floode	d hole) ¹⁾			
Tem- perature I: 50 °C / 80 °C		[N/mm ²]	10,0	9,0	9,0	8,5	8,0
range II: 72 °C / 120 °C	- τ _{Rk,ucr}	[[14/11111]	7,5	6,5	6,5	6,0	6,0
Installation safety factors							
Dry and wet concrete	[]			1,0			
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,2 ¹⁾		

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

Table C8: Characteristic values of **resistance** for **reinforcing bars** in hammer drilled holes; **uncracked or cracked concrete**

Nominal diameter of the bar	ф	8	10	12	14	16	20	25	28	
Combined pullout and conci	rete con	e failure								
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	28
Uncracked concrete										
Characteristic bond resistan	nce in un	cracked (concret	e C20/2	5					
Hammer-drilling with standard	drill bit o	r hollow d	Irill bit (d	ry and w	vet conci	rete)				
Tem- perature I: 50 °C / 80 °C		[N/mm²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
range II: 72 °C / 120 °C	- τ _{Rk,ucr}	[[14/11111]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Installation safety factor										
Dry and wet concrete	$\gamma_2 = \gamma_{inst}$	[-]				1	,0			
Cracked concrete										
Characteristic bond resistan	nce in cra	acked co	ncrete C	20/25						
Hammer-drilling with standard	drill bit o	r hollow d	Irill bit (d	ry and w	vet conci	rete)				
Tem- I: 50 °C / 80 °C		[N/mm²]		3,0	5,0	5,0	5,0	4,5	4,0	4,0
range II: 72 °C / 120 °C	- τ _{Rk,cr}	[[14/11]]		3,0	4,5	4,5	4,5	4,0	3,5	3,5
Installation safety factor										
Dry and wet concrete	$\gamma_2 = \gamma_{inst}$	[-]				1	,0			

Performances

Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI and reinforcing bars (uncracked concrete)

Table C9: Characteristic values of resistance for fischer rebar anchors FRA
in hammer drilled holes; uncracked or cracked concrete

Size		M12	M16	M20	M24		
Combined pullout and concrete cor	e failure						
Calculation diameter d	[mm]	12	16	20	25		
Uncracked concrete							
Characteristic bond resistance in un	ncracked	concrete C20/2	5				
Hammer-drilling with standard drill bit	or hollow d	Irill bit (dry and w	<u>vet concrete)</u>				
Tem- I: 50 °C / 80 °C	[N/mm²]	11,0	10,0	9,5	9,0		
range II: 72 °C / 120 °C	[14/11111]	9,0	8,5	8,0	7,5		
Installation safety factor							
Dry and wet concrete $\gamma_2 = \gamma_{ins}$	[-]		1,	,0			
Cracked concrete							
Characteristic bond resistance in cr	acked co	ncrete C20/25					
Hammer-drilling with standard drill bit	or hollow d	Irill bit (dry and w	vet concrete)				
Tem- I: 50 °C / 80 °C	[N/mm ²]	5,0	5,0	4,5	4,0		
perature II: 72 °C / 120 °C	[[14/11111]	4,5	4,5	4,0	3,5		
Installation safety factor							
Ory and wet concrete $\gamma_2 = \gamma_{inst}$ [-] 1,0							

Performances

Characteristic values for static or quasi-static action under tensile load for fischer rebar anchors FRA (uncracked or cracked concrete)

Table C	Table C10: Displacements for anchor rods											
Size		М6	M8	M10	M12	M16	M20	M24	M27	M30		
Displacement-Factors for tensile load ¹⁾												
Uncracked concrete; Temperature range I, II												
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12		
$\delta_{\text{N}_{\text{m-Faktor}}}$	[[[[[[]]]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14		
Cracked concrete; Temperature range I, II												
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]			0,12	0,12	0,13	0,13	0,13	0,14	0,15		
$\delta_{N\infty\text{-Faktor}}$	[[111111/(14/111111)]			0,27	0,30	0,30	0,30	0,35	0,35	0,40		
Displace	ement-Factors	for shear	load ²⁾									
Uncrack	ed or cracked	concrete	; Tempera	ature rang	je I, II							
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07		
$\delta_{\text{V}\infty\text{-Faktor}}$	[IIIIII/KIN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09		

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot \text{V}_{\text{Ed}}$

 $(V_{Ed}: Design\ value\ of\ the\ applied\ shear\ force)$

Table C11: Displacements for fischer internal threaded anchors RG MI

Size		М8	M10	M12	M16	M20						
Displace	Displacement-Factors for tensile load ¹⁾											
Uncrack	Uncracked concrete; Temperature range I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14						
$\delta_{\text{N}\infty\text{-Faktor}}$	[[[[[[[]]]	0,13 0,14 0,15		0,15	0,16	0,18						
Displace	ment-Factors	for shear load ²⁾										
Uncrack	ed concrete; 1	Temperature rang	je I, II									
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,12	0,12	0,12	0,12						
$\delta_{\text{V}_{\text{$\infty$-Faktor}}}$		0,14	0,14	0,14	0,14	0,14						

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

 $(V_{Ed}$: Design value of the applied shear force)

fischer injection system FIS V

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

²⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

Table C	Table C12: Displacements for reinforcing bars												
Nominal of the ba	diameter ar	8	10	12 14		16	20	25	28				
Displacement-Factors for tensile load ¹⁾													
Uncracked concrete; Temperature range I, II													
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11				
$\delta_{\text{N}\infty\text{-Faktor}}$	[[[[[[]]/([[]/[[[]]])]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13				
Cracked	concrete; Ter	nperature	range I, II										
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]		0,12	0,12	0,13	0,13	0,13	0,13	0,14				
$\delta_{N\infty\text{-Faktor}}$	[[[[[[]]]		0,27	0,30	0,30	0,30	0,30	0,35	0,37				
Displace	ement-Factors	for shear l	oad ²⁾										
Uncrack	ed or cracked	concrete;	Temperatu	ıre range I,	II								
$\delta_{\text{V0-Faktor}}$	[mm/kNI]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08				
$\delta_{\text{V}\infty\text{-Faktor}}$	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09				

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}^{\infty}} = \delta_{\text{N}^{\infty}\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C13: Displacements for fischer rebar anchors FRA

Size		M12	M16	M20	M24						
Displacement-Factors for tensile load ¹⁾											
Uncracked concrete; Temperature range I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,10	0,10	0,10	0,10						
$\delta_{N\infty\text{-Faktor}}$	[[]]]]/([]/[]]]]	0,12	0,12	0,12	0,13						
Cracked	Cracked concrete; Temperature range I, II										
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,12	0,13	0,13	0,13						
$\delta_{N\infty\text{-Faktor}}$	[[]]]]/([]/[]]]]	0,30	0,30	0,30	0,35						
Displace	ment-Factors	for shear load ²⁾									
Uncrack	ed or cracked	concrete; Temperatu	re range I, II								
$\delta_{\text{V0-Faktor}}$	[mm/kN]]	0,10	0,10	0,09	0,09						
$\delta_{V\infty\text{-Faktor}}$	[mm/kN]	0,11	0,11	0,10	0,10						

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}\text{:}\ \text{Design value of the applied tensile stress})$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V_{\text{Ed}}$

 $(\ensuremath{V_{\text{Ed}}}\xspace\ensuremath{:}$ Design value of the applied shear force)

fischer injection system FIS V

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA

²⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

Table C	Fable C14: Characteristic values for the steel bearing capacity of anchor rods under seismic action performance category C1 or C2										
Size		<u> </u>			M10	M12	M16	M20	M24	M27	M30
Bearing	capacity under te	nsile load, s	steel	failur	e ¹⁾						
Anchor r	ods, performance	e category C	1								
ng 10,	Steel zinc plated		5.8		29	43	79	123	177	230	281
eari I _{RK,s}		_	8.8		47	68	126	196	282	368	449
Charact.bearing capacity N _{RK,S,C1}	Stainless steel	Property class	50	[kN]	29	43	79	123	177	230	281
	A4 and High corrosion		70		41	59	110	172	247	322	393
	resistant steel C		80		47	68	126	196	282	368	449
Anchor r	ods, performance	e category C	2								
ng ,c2	Steel zinc plated		5.8			39	72	108			
eari I _{RK,s}			8.8			61	116	173			
ct.b	Stainless steel A4 and	Property class	50	[kN]		39	72	108			
Charact.bearing capacity N _{RK,S,C2}	High corrosion		70			53	101	152			
	resistant steel C		80			61	116	173			
	capacity under sh					lever ar	m ¹⁾				
fischer F	IS A and RG M, p	erformance		gory		0.1		0.1	00	445	4.44
ing s,c1	Steel zinc plated	Property class	5.8 8.8		15 23	21 34	39 63	61 98	89 141	115 184	141 225
oear V _{RK,}	Stainless steel A4 and		50	[kN]	15	21	39	61	89	115	141
Charact.bearing capacity V _{Rk,s,C1}			70		20	30	55	86	124	161	197
har	High corrosion resistant steel C										
			80		23	34	63	98	141	184	225
_	cial standard thre	eaded rods,	5.8	rmar	11	15	27	43	62	81	99
ring ,s,C1	Steel zinc plated		8.8		16	24	44	69	99	129	158
act.bearing	Stainless steel	Property	50	[kN]	11	15	27	43	62	81	99
Charact.bearing capacity V _{RK,S,C1}	A4 and	class	70	ונייזן	14	21	39	60	87	113	138
Chara	High corrosion resistant steel C		80		16	24	44	69	99	129	158
Anchor r	ods, performance	ı e category C									
	Steel zinc plated	J = 7 -	5.8			14	27	43			
Charact.bearing capacity V _{Rk.s,C2}	Steel Zille plated		8.8			22	44	69			
t.be ty V ₁	Stainless steel	Property	50	[kN]		14	27	43			
arac	A4 and High corrosion	class	70	[[20	39	60			
다 ag	resistant steel C		80			22	44	69			

Performances

Characteristic steel bearing capacity for anchor rods and under seismic action (performance category C1 or C2)

Table C15: Partial safety factors for anchor rods

under seismic action performance category C1 or C2

	and colomic action performance category C1 C1 C2											
Size					M10	M12	M16	M20	M24	M27	M30	
Bearing of	capacity under te	nsile load,	steel 1	failur	'e ¹⁾							
	Steel zinc		5.8					1,50				
Partial safety factor _{YMs,N}	plated		8.8					1,50				
	Otali licoo otoci	Property	50	[-]				2,86				
	A4 and High corrosion resistant steel C	class	70		1,50 ²⁾ / 1,87							
			80		1,60							
Bearing of	capacity under sh	near load, s	teel fa	ilure	1)							
	Steel zinc		5.8		1,25							
ety s,v	plated		8.8					1,25				
'artial safet factor ⅓™s,v	Stainless steel	Property	50	[-]	2,38							
Partial safety factor ms,v	A4 and High corrosion	class	70		1,252) / 1,56							
<u> </u>	resistant steel C		80		1,33							

Table C16: Characteristic values of resistance for anchor rods

in hammer drilled holes under seismic action performance category C1

Size					M10	M12	M16	M20	M24	M27	M30	
Characte	Characteristic bond resistance, combined pullout and concrete cone failure											
Hammer-	Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)											
Tem-	l:	50 °C / 80 °C	_	[NI/mm2]	4,5	5,5	5,5	5,5	4,5	4,0	4,0	
perature - range	II:	72 °C / 120 °C	τ _{Rk,C1}	[N/mm²]	4,0	4,5	4,5	4,5	4,0	3,5	3,5	
Hammer-	drill	ing with standa	rd drill b	oit or hol	low drill l	bit (flood	ed hole)					
Tem-	l:	50 °C / 80 °C	_	. ₁ [N/mm²]		5,0	5,0	4,5	4,0	3,5	3,5	
perature – range	II:	72 °C / 120 °C	τ _{Rk,C1}			4,0	4,0	4,0	3,5	3,0	3,0	

fischer injection system FIS V

Performances

Partial safety factors (C1 or C2) and characteristic values under seismic action (C1) for anchor rods

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ Only for fischer FIS A and RG M made of high corrosion-resistant steel C

Table C17: Characteristic values of resistance for anchor rods
in hammer drilled holes under seismic action performance category C2

Size					M12	M16	M20					
Characteri	Characteristic bond resistance, combined pullout and concrete cone failure											
Hammer-d	Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)											
Tem-	l:	50 °C / 80 °C	_	[N/mm²]	1,5	1,3	2,1					
perature — range	II:	72 °C / 120 °C	τ _{Rk,C2}		1,3	1,2	1,9					
Hammer-d	Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)											
Tem-	l:	50 °C / 80 °C	_	[N/mm²]	1,3	1,1	1,8					
perature — range	II:	72 °C / 120 °C	τ _{Rk,C2}		1,1	1,0	1,6					
Displacem	ent	-Factors for ten	sile loa	d ¹⁾								
$\delta_{N,(DLS) ext{-}Factor}$	r			[mm/(N/mm ²)]	0,20	0,13	0,21					
$\delta_{N,(ULS) ext{-}Factor}$	$\delta_{N,(ULS) ext{-}Factor}$			[[[[[[]]]	0,38	0,18	0,24					
Displacem	ent	-Factors for she	ar load	2)								
$\delta_{V,(DLS) ext{-}Factor}$ $\delta_{V,(ULS) ext{-}Factor}$			[mm/kN]	0,18	0,10	0,07						
			[mm/kN]	0,25	0,14	0,11						

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N,(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,(ULS)}} = \delta_{\text{N,(ULS)-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}\text{:}\ \text{Design value of the applied tensile stress})$

 $\delta_{\text{V,(DLS)}} = \delta_{\text{V,(DLS)-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V,(ULS)} = \delta_{V,(ULS)\text{-Factor}} \cdot V_{\text{Ed}}$

 $(V_{Ed}: Design value of the applied shear force)$

fischer injection system FIS V

Performances

Characteristic values under seismic action (performance category C2) for anchor rods

Annex C 12

²⁾ Calculation of effective displacement: