

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-04/0095 of 11 May 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Würth Injection System W-VIZ

Torque controlled bonded anchor with anchor rod W-VIZ-A and internal threaded rod W-VIZ-IG for use in concrete

Adolf Würth GmbH & Co. KG Reinhold Würth Straße 12-17 74653 Künzelsau

Würth Herstellwerk W1, Deutschland

35 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-04/0095 issued on 23 April 2015

European Technical Assessment ETA-04/0095

Page 2 of 35 | 11 May 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-04/0095

Page 3 of 35 | 11 May 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection System W-VIZ is a torque controlled bonded anchor consisting of a cartridge with injection mortar WIT-VM 100, WIT-VIZ, WIT-EXPRESS, WIT-VM 100 express or WIT-VIZ express and an anchor rod with expansion cones and external connection thread (type W-VIZ-A) or with internal connection thread (type W-VIZ-IG).

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance of W-VIZ-A	See Annex C1 to C7
Displacements under tension and shear loads for W-VIZ-A	See Annex C8 and C9
Characteristic resistance of W-VIZ-IG	See Annex C10 to C12
Displacements under tension and shear loads for W-VIZ-IG	See Annex C12

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply. (Nur bei Injektionssysteme)

European Technical Assessment ETA-04/0095

Page 4 of 35 | 11 May 2017

English translation prepared by DIBt

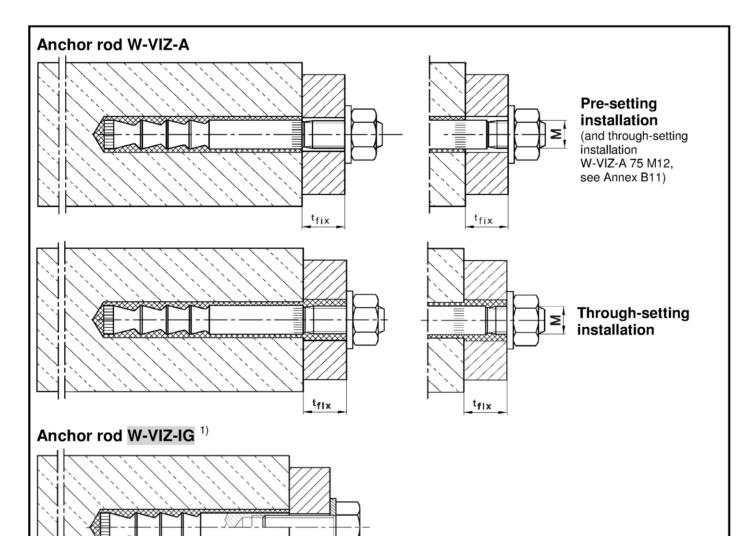
3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

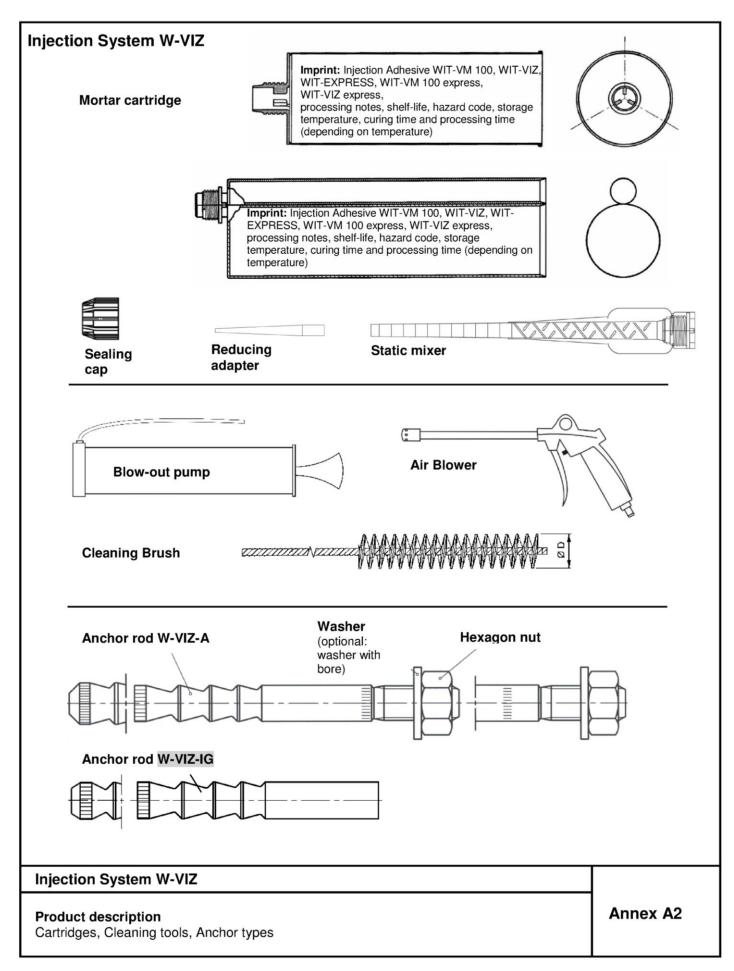
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 May 2017 by Deutsches Institut für Bautechnik

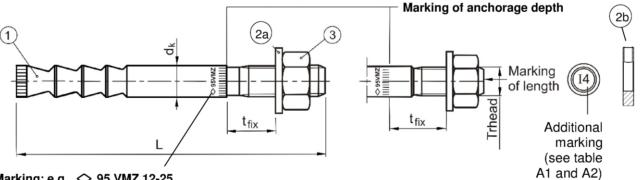
Andreas Kummerow Head of Department *beglaubigt:*Baderschneider


1) Illustration with hexagon head screw exemplified; other screws or threaded rods also permitted (see Annex A5, requirements of the fastening screw or threaded rod)

tfix

Anchor version	Product description	Intended use	Performance
W-VIZ-A	Annex A1 – Annex A4	Annex B1 – Annex B11	Annex C1 – Annex C9
W-VIZ-IG	Annex A1 – Annex A2; Annex A5	Annex B1 – Annex B3; Annex B12 – Annex B14	Annex C10 – Annex C12

Injection System W-VIZ	
Product description Installation situation	Annex A1



Z22150.17

Marking: e.g. <> 95 VMZ 12-25 ...

Identifying mark of \Diamond manufacturing plant

95 Anchorage depth

VMZ Trade name

12 Size of thread

25 Maximum thickness of fixture (when using washer 2a)

additional marking of stainless steel A4 Α4

HCR additional marking of high corrosion resistant

Marking of length	В	С	D	E	F	G	Н	-	J	K	L	М
Length of anchor min ≥	50.8	63.5	76.2	88.9	101.6	114.3	127.0	139.7	152.4	165.1	177.8	190.5
Length of anchor max <	63.5	76.2	88.9	101.6	114.3	127.0	139.7	152.4	165.1	177.8	190.5	203.2

Marking of length	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	> Z
Length of anchor min ≥	203.2	215.9	228.6	241.3	254.0	279.4	304.8	330.2	355.6	381.0	406.4	431.8	457.2	482.6
Length of anchor max <	215.9	228.6	241.3	254.0	279.4	304.8	330.2	355.6	381.0	406.4	431.8	457.2	482.6	

Table A1: Dimensions of anchor rod, W-VIZ-A M8 - M12

		Anchor size W-VIZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
		Additional marking		1	2	1	2	1	2	3	4	5	6	7
ſ	1	Anchor rod Thread		l M	18	М	10				M12			
l			Number of cones	2	3	3	3	3	3	4	4	6	6	6
ı			$d_k =$	8.0	8.0	9.7	9.7	10.7	12.5	12.5	12.5	12.5	12.5	12.5
l			Length L (washer 2a)	52+t _{fix}	63+t _{fix}	75+t _{fix}	90+t _{fix}	95+t _{fix}	90+t _{fix}	100 +t _{fix}	115 +t _{fix}	120 +t _{fix}	130 +t _{fix}	145 +t _{fix}
l			Reduction t _{fix} 1) washer with bore 2b)	3,4	3,4	3	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5
	3	Hexagon nut	t SW	13	13	17	17	19	19	19	19	19	19	19

When using washer with bore (2b) the thickness of fixture is reduced by the specified value

Dimensions in mm

8.06.01-92/17

Injection System W-VIZ

Product description

Anchor parts, Marking, Anchor dimensions W-VIZ-A M8 - M12

Annex A3

Z22150.17

Table A2: Dimensions of anchor rod, W-VIZ-A M16 – M24

	Ancho W-VIZ-		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
	Additional marking		1	2	3	4	5	1	2	3	1	2	3
1	Anchor Thread				M16				M20			M24	
		Number of cones	3	4	6	6	6	3	6	6	6	6	6
l		$d_k =$	16.5	16.5	16.5	16.5	16.5	19.7	22.0	22.0	24.0	24.0	24.0
		Length L	114 +t _{fix}	129 +t _{fix}	150 +t _{fix}	170 +t _{fix}	185 +t _{fix}	143 +t _{fix}	203 +t _{fix}	223 +t _{fix}	210 +t _{fix}	240 +t _{fix}	265 +t _{fix}
	_	Reduction t _{fix} 1) (washer with bore 2b)	2	2	2	2	2	2	2	2	1	1	1
3	Hexago	on nut SW	24	24	24	24	24	30	30	30	36	36	36

When using washer with bore (2b) the thickness of fixture is reduced by the specified value

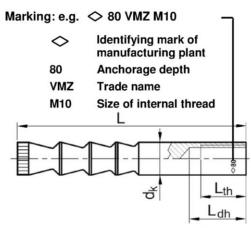

Dimensions in mm

Table A3: Materials W-VIZ-A

			Steel, zinc plated			High corrosion
Part	Designation	galvanised	hot-dip galvanised ≥ 40µm	sherardized ≥ 40µm	Stainless steel A4	resistant steel (HCR)
1	Anchor rod	Steel acc. to EN 10087:1998, galvanised and coated	Steel acc. to EN 10087:1998, hot-dip galvanised and coated	Steel acc. to EN 10087:1998, sherardized and coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088:2005, coated
2a	Washer	Steel,	Steel,	Steel,	Stainless steel, 1.4401, 1.4571,	High corrosion resistant steel 1.4529 or 1.4565,
2b	Washer with bore	zinc plated	zinc plated	zinc plated	EN 10088:2005	acc. to EN 10088:2005
3	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012-08, galvanised	Property class 8 acc. to EN ISO 898-2:2012-08, hot-dip galvanised	Property class 8 acc. to EN ISO 898-2:2012-08, sherardized or hot-dip galvanised	ISO 3506:2009, A4-70, 1.4401, 1.4571, EN 10088:2005	ISO 3506:2009, Property class 70, high corrosion resistant steel 1.4529 or 1.4565, EN 10088:2005
4	Mortar cartridge	Vinylester resin, s	styrene free, mixino	g ratio 1:10		

Injection System W	/-VIZ	
Product description Anchor dimensions W-	-VIZ-A M16 – M24, Materials W-VIZ-A	Annex A4

A4 additional marking of stainless steel A4

HCR additional marking of high corrosion resistant steel HCR

Table A4: Dimensions of anchor rod W-VIZ-IG

Anchor size W-VIZ-	-IG		40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Internal thread		-	M	16	M	18	М	10		M12		M	16	M20
Number of cones		-	2	3	3	3	3	4	3	4	6	3	6	6
Outer diameter	d _k	[mm]	8.0	8.0	9.7	10.7	12.5	12.5	16.5	16.5	16.5	19.7	22.0	24.0
Thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Total length	L	[mm]	41	52	63	78	74	84	94	109	130	120	180	182
Length identifier		[mm]	L _{dh} < 18	L _{dh} > 19	L _{dh} < 22.5	L _{dh} > 23.5	L _{dh} < 27	L _{dh} > 28	L _{dh} < 31.5	32.5 < L _{dh} < 34.5	L _{dh} > 35.5	d _k < 21	d _k > 21	1

Table A5: Materials W-VIZ-IG

Part	Designation	Steel, zir	nc plated	Stainless steel A4	High corrosion
Part	Designation	galvanized	sherardized ≥ 40µm	Stailliess Steel A4	resistant steel (HCR)
1	Anchor rod	Steel acc. to EN 10087:1998, galvanized and coated	Steel acc. to EN 10087:1998, sherardized and coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088:2005, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088:2005, coated
4	Mortar cartridge		Vinylester resin, styren	e free, mixing ratio 1:1	0

Requirements of the fastening screw or the threaded rod and nut

- Minimum screw-in depth L_{sdmin} see Table B7:
- The length of screw or the threaded rod must depending on the thickness of fixture t_{fix}, available thread length L_{th} (=maximum available thread length, see Table B7:) and the minimum screw-in depth L_{sdmin} be established.
- A₅ > 8 % ductility

Steel, zinc plated:

Minimum property class 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012

Stainless steel A4: Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 according to EN 10088:2005 Minimum property class 70 according to EN ISO 3506:2009

High corrosion resistant steel (HCR): Material 1.4529; 1.4565 according to EN 10088:2005 Minimum property class 70 according to EN ISO 3506:2009

Injection System W-VIZ

Product description

Anchor parts, anchor dimensions, Materials W-VIZ-IG

Annex A5

English translation prepared by DIBt

Specifications of in	ntended use									
Injection System W-VIZ	<u>-</u> A	М8	M10	M12	M16	M20	M24			
Static or quasi-static actio	n	√								
Seismic action (Category	C1 + C2)	-	✓	✓	✓	✓	✓			
Cracked and uncracked c	oncrete			•	/		·			
Strength classes acc. to E	EN 206-1:2000 C20/25 to C50/60			•	/					
Reinforced or unreinforce EN 206-1:2000	d normal weight concrete acc. to			,	/					
Temperature Range I	-40 °C to +80 °C		max.	long term	mperature temperatu	re +50 °C				
Temperature Range II	-40 °C to +120 °C				perature +1 mperature					
	Hammer drill bit	√								
Making of drill hole	Vacuum drill bit ¹⁾	-	✓	✓	✓	✓	✓			
	Diamond drill bit (seismic action excluded)	-	✓	✓	✓	✓	✓			
_	dry concrete			,	/					
Installation allowable in	wet concrete			,	/					
	water-filled hole	-	-	√ ²⁾	✓	✓	✓			
Overhead installation adm	nissible	✓	✓	✓	✓	✓	✓			

e.g. Würth hammer drill bit with suction, MKT vacuum drill bit or Heller Duster Expert exception: W-VIZ-A 75M12 (Installation in water-filled drill hole is not allowed)

Injection System W-VIZ	-IG	М6	М8	M10	M12	M16	M20			
Static or quasi-static action	n	√								
Seismic action (Category	C1 + C2)	-								
Cracked and uncracked co	oncrete			,	/					
Strength classes acc. to E	N 206-1:2000 C20/25 to C50/60			,	/					
Reinforced or unreinforced EN 206-1:2000	d normal weight concrete acc. to			,	/					
Temperature Range I	-40 °C to +80 °C	max short term temperature +80 °C and max long term temperature +50 °C								
Temperature Range II	-40 °C to +120 °C	max short term temperature +120 °C and max long term temperature +72 °C								
_	Hammer drill bit	✓								
Making of drill hole	Vacuum drill bit ¹⁾	-	✓	✓	✓	✓	✓			
	Diamond drill bit (seismic action excluded)	-	✓	✓	✓	✓	✓			
	dry concrete	✓								
Installation allowable in	wet concrete	✓								
	water-filled hole	-	-	✓	✓	✓	✓			
Overhead installation adm	issible	✓	✓	✓	✓	✓	✓			

e.g. Würth hammer drill bit with suction, MKT vacuum drill bit or Heller Duster Expert

Injection System W-VIZ Intended use Specifications, installation conditions Annex B1

Specifications of intended use

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted drill hole: the drill hole shall be filled with mortar.
- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes (where admissible) must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the
 temperature of the concrete must not fall below -5 °C. Curing time must be observed prior to loading the
 anchor.
- It must be ensured that icing does not occur in the drill hole.
- Optionally, the annular gap between anchor rod and fixture may be filled with injection adhesive WIT-VM 100, WIT-VIZ, WIT-EXPRESS, WIT-VM 100 express, WIT-VIZ express using the washer with bore (Part 2b, Annex A3) instead of the washer (Part 2a, Annex A3).

Injection System W-VIZ

Intended use Specifications

Annex B2

Table B1: Processing and curing time WIT-VM 100, WIT-VIZ

Temperature	Maximum processing	Minimum cu	ring time
in the drill hole	time	dry concrete	wet concrete
+ 40 °C	1.4 min	15 min	30 min
+ 35 °C to + 39 °C	1.4 min	20 min	40 min
+ 30 °C to + 34 °C	2 min	25 min	50 min
+ 20 °C to + 29 °C	4 min	45 min	1:30 h
+ 10 °C to + 19 °C	6 min	1:20 h	2:40 h
+ 5 °C to + 9 °C	12 min	2:00 h	4:00 h
0 °C to + 4 °C	20 min	3:00 h	6:00 h
- 4 °C to - 1 °C	45 min	6:00 h	12:00 h
- 5 °C	1:30 h	6:00 h	12:00 h

Table B2: Processing and curing time WIT-EXPRESS, WIT-VM 100 express, WIT-VIZ express

Temperature	Maximum processing	Minimum cur	ring time
in the drill hole	time	dry concrete	wet concrete
+ 30 °C	1 min	10 min	20 min
+ 20 °C to + 29 °C	1 min	20 min	40 min
+ 10 °C to + 19 °C	3 min	40 min	80 min
+ 5 °C to + 9 °C	6 min	1:00 h	2:00 h
+ 0 °C to + 4 °C	10 min	2:00 h	4:00 h
- 4 °C to - 1 °C	20 min	4:00 h	8:00 h
- 5 °C	40 min	4:00 h	8:00 h

Injection System W-VIZ

Intended use
Processing and curing time

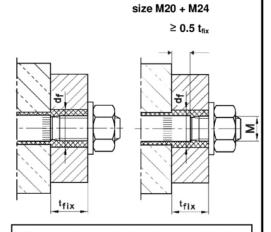
Annex B3

Table B3: Installation parameters, W-VIZ-A M8 – M12

Anchor size W-VIZ-A					60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Depth of drill hole	h ₀ ≥	[mm]	42	55	65	80	80	75	85	100	105	115	130
Diameter of cleaning brush	D≥	[mm]	10.8	10.8	13.0	13.0	13.0	15.0	15.0	15.0	15.0	15.0	15.0
Installation torque	$T_{inst} \leq$	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Diameter of clearance hole in	Diameter of clearance hole in the fixture												
Pre-setting installation	$d_{f} \leq$	[mm]	9	9	12	12	14	14	14	14	14	14	14
Through-setting installation	$d_{f}\leq$	[mm]	,	-	14	14	14 ¹⁾ /	16	16	16	16	16	16

¹⁾ see Annex B11

Table B4: Installation parameters, W-VIZ-A M16 - M24


Anchor size W-VIZ-A			90 M16	105 M16	125 M 16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Nominal diameter of drill hole	d ₀ =	[mm]	18	18	18	18	18	22	24	24	26	26	26
Depth of drill hole	h₀ ≥	[mm]	98	113	133	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19.0	19.0	19.0	19.0	19.0	23.0	25.0	25.0	27.0	27.0	27.0
Installation torque	$T_{inst} \leq$	[Nm]	50	50	50	50	50	80	80	80	100	120	120
Diameter of clearance hole in	the fixtu	re											
Pre-setting installation	$d_{f}\leq$	[mm]	18	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Through-setting installation	d _f ≤	[mm]	20	20	20	20	20	24	26	26	28	28	28

size M20 + M24

Pre-setting installation

h_{ef} ≥ 0.5 t_{fix}

Through-setting installation

The annular gap in the clearance hole in the fixture has to be filled completely by excess mortar!

Injection System W-VIZ

Intended use

Installation parameters W-VIZ-A

h

Annex B4

Z22150.17

Table B5:	Minimum spacing ar	nd edge distance,	W-VIZ-A M8 – M12
-----------	--------------------	-------------------	------------------

Anchor size W-VIZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110 100 1)	110	110	110	130 125 ¹⁾	130	140	160
Cracked concrete													
Minimum spacing	S _{min}	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	55	50	50	50	50	50
Uncracked concrete													
Minimum spacing	S _{min}	[mm]	40	40	50	50	50	55	55	55	80 ²⁾	80 ²⁾	80 ²⁾
Minimum edge distance	C _{min}	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾

Table B6: Minimum spacing and edge distance, W-VIZ-A M16 – M24

Anchor size W-VIZ-A			90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Minimum thickness of concrete	h _{min}	[mm]	130	150	170 160 ¹⁾	190 180 ¹⁾	205 200 ¹⁾	160	230 220 ¹⁾	250 240 ¹⁾	230 220 1)	270 260 ¹⁾	300 290 1)
Cracked concrete													
Minimum spacing	S _{min}	[mm]	50	50	60	60	60	80	80	80	80	80	80
Minimum edge distance	C _{min}	[mm]	50	50	60	60	60	80	80	80	80	80	80
Uncracked concrete													
Minimum spacing	S _{min}	[mm]	50	60	60	60	60	80	80	80	80	105	105
Minimum edge distance	C _{min}	[mm]	50	60	60	60	60	80	80	80	80	105	105

The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through, the ground of the drill hole shall be closed with high strength mortar. The full bonded length her shall be achieved and any potential loss of injection mortar shall be compensated.

Injection System W-VIZ

Intended use

Minimum spacing and edge distance, W-VIZ-A

Annex B5

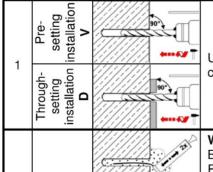
²⁾ For an edge distance c \geq 80 mm a minimum spacing s_{min} = 55 mm is applicable.

4

Installation instructions W-VIZ-A

Hole drilling and cleaning (hammer drill bit)

min. 6 bar


M10 - M16

min. 6 bar

M8 - M16 min. 6 bar

M10 - M16

min. 6 bar

>

2

Use Hammer drill or air drill with drill bit and depth gauge. Drill perpendicular to concrete surface.

W-VIZ-A M8 - M16:

Blow out drill hole from the bottom with Blow-out pump at least two times. The Extension Tube with reduced diameter must be added to the Blow-out pump for the diameter M8.

W-VIZ-A M20 - M24:

Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

W-VIZ-A M10 - M16:

Blow out drill hole from the bottom with Blow-out pump at least two times.

W-VIZ-A M20 - M24:

Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

Check diameter of cleaning brush. If the brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck brush into drill machine. Turn on drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine.

W-VIZ-A M8 - M16:

Blow out drill hole from the bottom with Blow-out pump at least two times. The Extension Tube with reduced diameter must be added to the Blow-out pump for the diameter M8.

W-VIZ-A M20 - M24:

Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

W-VIZ-A M10 - M16:

Blow out drill hole from the bottom with Blow-out pump at least two times.

W-VIZ-A M20 - M24:

Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

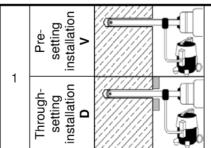
Injection System W-VIZ

Intended use

Installation instructions W-VIZ-A

Hole drilling and cleaning (hammer drill bit)

Annex B6

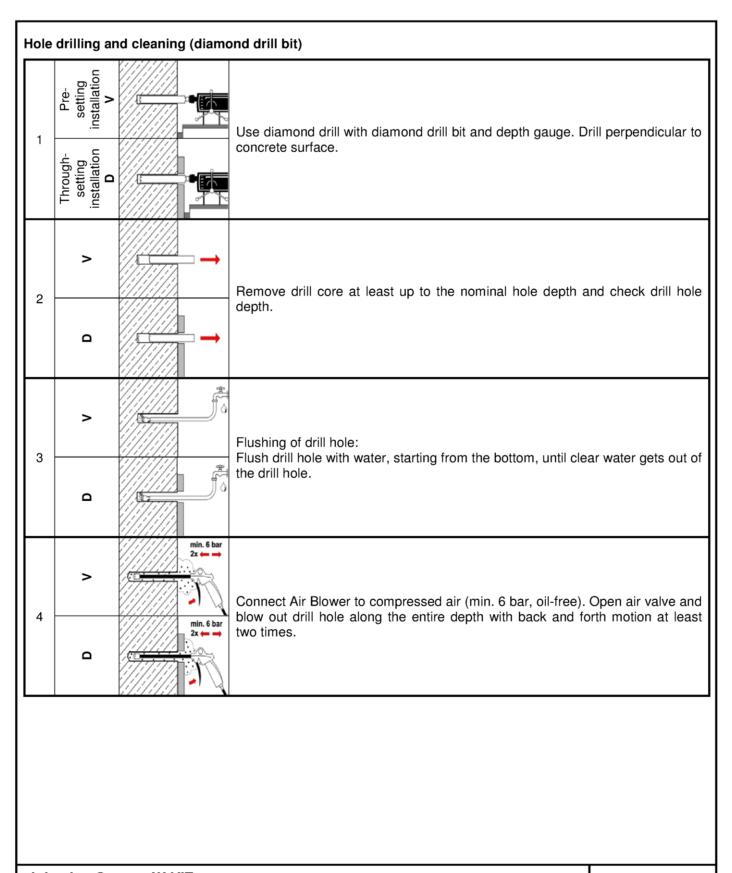

8.06.01-92/17

Z22150.17

Hole drilling and cleaning (vacuum drill bit)

Drill hole perpendicular to concrete surface by using a vacuum drill bit (see Annex B1).

The nominal underpressure of the vacuum cleaner must be at least 230 mbar / 23kPa. **Make sure the dust extraction is working properly** throughout the whole drilling process.


Additional cleaning is not necessary - continue with step 5!

Injection System W-VIZ

Intended use Installation instructions W-VIZ-A Hole drilling and cleaning (vacuum drill bit) **Annex B7**

Z22150.17

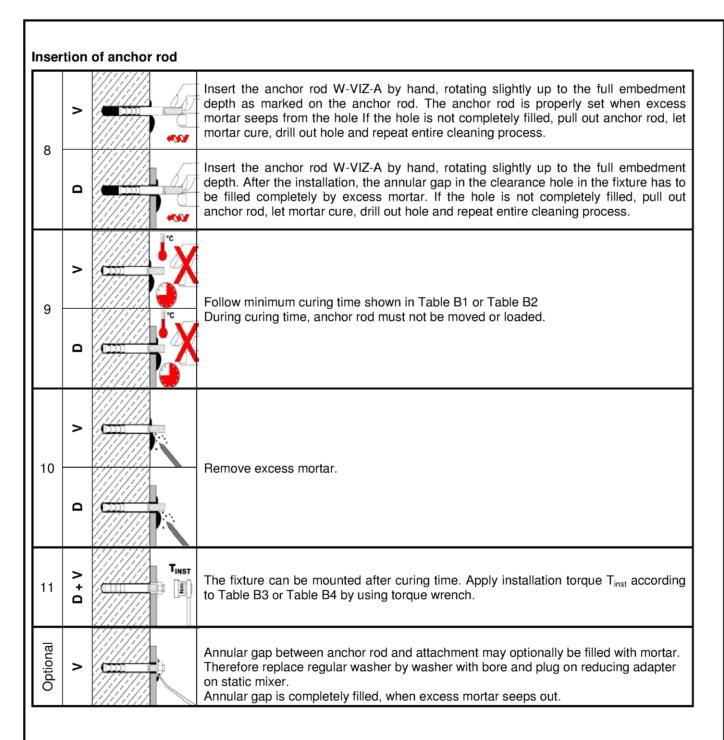
Injection System W-VIZ

Intended use

Installation instructions W-VIZ-A

Hole drilling and cleaning (diamond drill bit)

Annex B8

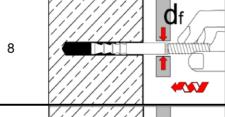

Injection Check expiration date on cartridge. Never use when expired. Remove cap from cartridge. Screw Mixer Nozzle on cartridge. When using a new cartridge always use a 5 new Mixer Nozzle. Never use cartridge without Mixer Nozzle and never use Mixer Nozzle Ω without helix inside. > Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full strokes or a 6 line of 10 cm) until it shows a consistent grey colour. Never use this mortar. Prior to injection, check if Mixer Nozzle reaches the bottom of the drill hole. If it does not reach the bottom, plug Mixer Extension onto Mixer Nozzle in order to fill the drill hole 7 properly. Fill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets. Ω

Injection System W-VIZ

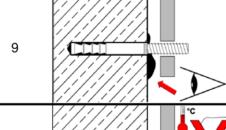
Intended use
Installation instructions W-VIZ-A
Injection

Annex B9

Injection System W-VIZ Intended use Installation instructions W-VIZ-A Anchor installation Annex B10

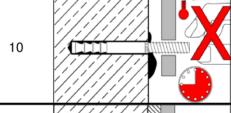


Installation instructions W-VIZ-A 75 M12

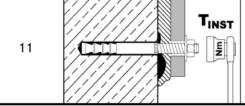

Through-setting installation with clearance between concrete and anchor plate

Work step 1-7 as illustrated in Annexes B6 - B9

Requirement: Diameter of clearance hole in the fixture $d_f \le 14$ mm



Insert the anchor rod W-VIZ-A by hand, rotating slightly up to the full embedment depth.



Check if excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat the entire cleaning process.

The annular gap in the fixture does not have to be filled.

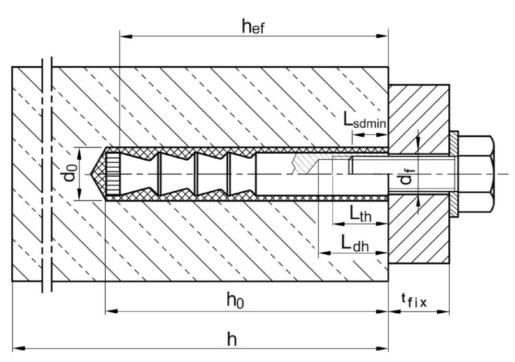
During curing time according to Table B1 or Table B2 anchor rod must not be moved or loaded.

Washer and nut can be mounted after curing time and backfilling of anchor plate. Apply installation torque T_{inst} according to Table B3 by using torque wrench.

Injection System W-VIZ

Intended use

Installation instructions W-VIZ-A 75 M12


Through-setting installation with clearance between concrete and anchor plate

Annex B11

Table B7: Install	ation parameters	W-VIZ-IG
-------------------	------------------	----------

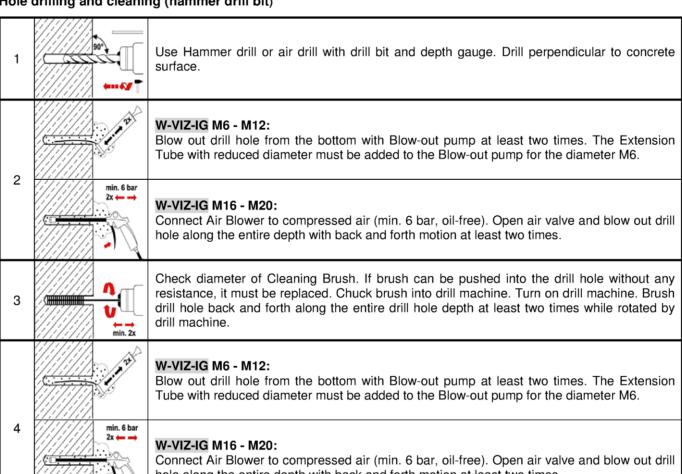
Anchor size W-VIZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Effective anchorage depth	h _{ef} =	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Depth of drill hole	$h_0\geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Diameter of cleaning brush	D≥	[mm]	10.8	10.8	13.0	13.0	15.0	15.0	19.0	19.0	19.0	23.0	25.0	27.0
Installation torque	$T_{inst} \leq$	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Available thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Minimum screw-in depth	L _{sdmin}	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110	110	110	130	150	170 160 ¹⁾	160	230 220 ¹⁾	230 220 ¹⁾
Cracked concrete														
Minimum spacing	S _{min}	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimum edge distance	C _{min}	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Uncracked concrete														
Minimum spacing	S _{min}	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimum edge distance	C _{min}	[mm]	40	40	50	50	55	55	50	60	60	80	80	80

¹⁾ The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through the ground of the drill hole shall be closed with high strength mortar. The full bonded length h_{ef} shall be achieved and any potential loss of injection mortar shall be compensated.

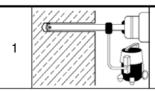
Injection System W-VIZ

Intended use Installation parameters W-VIZ-IG

Annex B12


Z22150.17

8.06.01-92/17


Installation instructions W-VIZ-IG

Hole drilling and cleaning (hammer drill bit)

hole along the entire depth with back and forth motion at least two times.

Hole drilling and cleaning (vacuum drill bit)

Drill hole perpendicular to concrete surface by using a vacuum drill bit (see Annex B1). The nominal underpressure of the vacuum cleaner must be at least 230 mbar / 23kPa. Make sure the dust extraction is working properly throughout the whole drilling process.

Additional cleaning is not necessary, go to step 5.

Injection System W-VIZ

Intended use

Installation instructions W-VIZ-IG

Drilling and cleaning (hammer drill bit or a vacuum drill bit)

Annex B13

Z22150.17

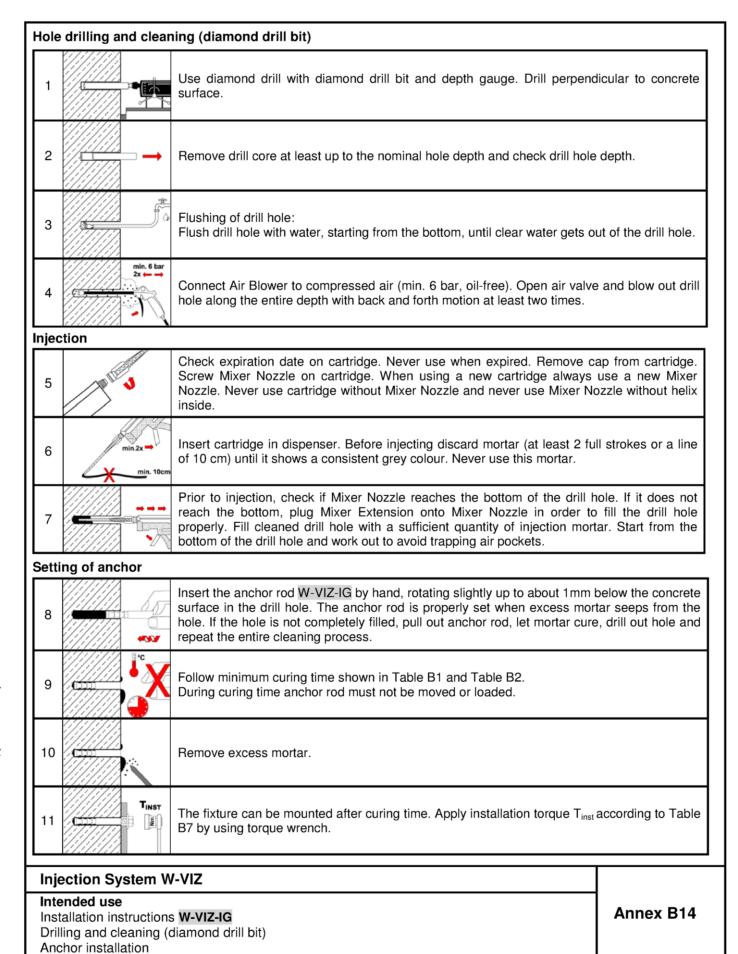


Table C1: Characteristic values for tension loads, W-VIZ-A M8 – M12, cracked concrete, static and quasi-static action

Anchor size W-VIZ-A						75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]						1.0					
Steel failure													
Characteristic tension	Steel, zinc plated	[kN]	15	18	2	5	35	49	5	4		57	
resistance N _{Rk,s}	A4, HCR	[kN]	15	18	2	5	35	49	5	4		57	
Partial safety factor	γMs	[-]						1.5					
Pull-out													
Characteristic resistance N _{Rk,p}	50°C / 80°C ²⁾	[kN]						1)					
in concrete C20/25	72°C / 120°C ²⁾	[kN]	5	7.5	12	12	12	16	20	20	30	30	30
Increasing factor	Ψς	[-]					$\left(\frac{f_{c}}{f_{c}}\right)$	ck,cube 25	0,5				
Concrete cone failure													
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]						7.2					
1\													

¹⁾ Pull-out failure is not decisive

Table C2: Characteristic values for tension loads, W-VIZ-A M16 – M24, cracked concrete, static and quasi-static action

Anchor size W-VIZ-A			90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Installation safety factor	γ ₂ =γ _{inst}	[-]		1.0									
Steel failure			•										
Characteristic tension	Steel, zinc plated	[kN]	88	95	11	1	97	96	18	8		222	
resistance N _{Rk,s}	A4, HCR	[kN]	88	95	11	1	97	114	16	5		194	
Partial safety factor	γMs	[-]	1.5 1.68 1.5					1.5					
Pull-out													
Characteristic resistance	50°C / 80°C ²⁾	[kN]						1)					
N _{Rk,p} in concrete C20/25	72°C / 120°C ²⁾	[kN]	25	30	5	0	51	30	6	0		75	
Increasing factor	Ψс	[-]	$\left(\frac{f_{\mathrm{ck,cube}}}{25}\right)^{0.5}$										
Concrete cone failure													
Effective anchorage dept	th h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Factor acc. to CEN/TS 1992-4 k _{cr} [-]								7.2					

¹⁾ Pull-out failure is not decisive

Injection System W-VIZ

Performance

Characteristic values for **tension loads**, **W-VIZ-A** in **cracked concrete**, static and quasi-static action

Annex C1

²⁾ Maximum long term temperature / Maximum short term temperature

²⁾ Maximum long term temperature / Maximum short term temperature

Table C3: Characteristic values for tension loads, W-VIZ-A M8 – M12 in uncracked concrete, static and quasi-static action

ın uncracked	Concrete, St	alic a	nu qu	uasi-	Static	acii	OH						
Anchor size W-VIZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation safety factor	γ ₂ =γ _{inst}	[-]	1.0										
Steel failure													
Characteristic tension Si	teel, zinc plated	[kN]	15	18	25		35	49	5	4	57		
resistance N _{Rk,s}	A4, HCR	[kN]	15	18	2	:5	35	49	5	4		57	
Partial safety factor	γMs	[-]						1.5					
Pull-out													
Characteristic resistance N _{Rk,p} in	50°C / 80°C ²⁾	[kN]	9	1)	1)		1)		40	1)	50	50
uncracked concrete C20/25	72°C / 120°C ²⁾	[kN]	6	9	1	6	16	16	25	25	30	30	30
Splitting													
Splitting for standard thickness	of concrete men	nber (Th	ne high	er resis	stance o	of Case	1 and	Case 2	2 may b	e appli	ed.)		
Standard thickness of concrete	$h_{\text{std}} \geq 2~h_{\text{ef}}$	[mm]	1	00	120	150	150	140	160	190	200	220	250
Case 1 (N ⁰ _{Rk,c} has to be replaced by													
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	7.5	9	16	20	20	20	1)	30	40	40	40
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]						3 h _{ef}					
Case 2													
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	6	h _{ef}	5 h _{ef}	7 h _{ef}	7 h _{ef}	5 h _{ef}	3 h _{ef}	5 h _{ef}	4 h _{ef}	6 h _{ef}	5 h _{ef}
Splitting for minimum thickness	of concrete mer	mber (T	he high	er resi	stance	of Case	e 1 and	Case	2 may l	oe appl	ied.)		
Minimum thickness of concrete	$h_{\text{min}} \geq$	[mm]	8	0	1	00	110	110	110	125	130	140	160
Case 1 (N ⁰ _{Rk,c} has to be replaced by	$N^0_{Rk,sp}$												
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	7.5	-	1	6	16	20	25	25	30	30	30
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	3 h _{ef}	-	3	h _{ef}				3 h _{ef}			
Case 2													
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	6 h _{ef}	7 h _{ef}	6 h _{ef}	7 h _{ef}	7 h _{ef}	7 h _{ef}	6 h _{ef}	7 h _{ef}	6 h _{ef}	6 h _{ef}	6 h _{ef}
Increasing factor for $N_{Rk,p}$ and $N_{Rk,sp}^0$	[-]					$\left(\frac{f_{\epsilon}}{f_{\epsilon}}\right)$	25	0,5					
Concrete cone failure													
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]						10.1					

¹⁾ Pull-out failure is not decisive

Injection System W-VIZ

Performance

Characteristic values for **tension loads**, W-VIZ-A M8 – M12, **uncracked concrete**, static and quasi-static action

Annex C2

²⁾ Maximum long term temperature / Maximum short term temperature

Table C4:	Characteristic values for tension loads, W-VIZ-A M16 - M24,
	uncracked concrete, static and quasi-static action

uncr	acked concret	e, st	atic a	na qu	iasi-s	tatic a	action						
Anchor size W-VIZ-A			90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Installation safety facto	or $\gamma_2 = \gamma_{inst}$	[-]						1.0					
Steel failure													
Characteristic tension	Steel, zinc plated	[kN]	88	95	111	111	97	96	188	188	222	222	222
resistance N _{Rk,s}	A4, HCR	[kN]	88	95	111	111	97	114	165	165	194	194	194
Partial safety factor	γMs	[-]			1.5			1.68	1	.5		1.5	
Pull-out													
Characteristic resistance N _{Rk,p} in	50°C / 80°C ²⁾	[kN]		1)		75	90		1)			1)	
uncracked concrete C20/25	72°C / 120°C ²⁾	[kN]	25	35	50	50	53	40	75	75	95	95	95
Splitting													
Splitting for standard t l	hickness of concre	ete (Th	e higher	resista	nce of C	ase 1 a	nd Case	2 may b	e applie	d.)			
Standard thickness of concrete	$h_{\text{std}} \geq 2~h_{\text{ef}}$	[mm]	180	200	250	290	320	230	340	380	340	400	450
Case 1 (N ⁰ _{Rk,c} has to be													
Characteristic resistand uncracked concrete C2	N ² Di	[kN]	40	50	50	60	80	1)	115	1)	140
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]						3 h _{ef}					
Case 2													
Spacing (edge distance)	$S_{cr,sp}$ (= 2 $C_{cr,sp}$)	[mm]		4 h _{ef}	4 h _{ef}	4 h _{ef}	4 h _{ef}	3 h _{ef}	3 h _{ef}	4 h _{ef}	3 h _{ef}	3 h _{ef}	3.6 h _{ef}
Splitting for minimum t	thickness of concre	ete (Th	e highe	r resista	nce of C	case 1 a	nd Case	2 may l	oe applie	ed.)			
Minimum thickness of concrete	h _{min} ≥	[mm]	130	150	160	180	200	160	220	240	220	260	290
Case 1 (N ⁰ _{Rk,c} has to be									·			I	
Characteristic resistant uncracked concrete C2		[kN]	35	50	40	50	71	-	75	75	1)	115	115
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]						3 h _{ef}					
Case 2													
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	5 h _{ef}	5 h _{ef}	6 h _{ef}	5 h _{ef}	5 h _{ef}			4.4 h _{ef}	5.2 h _{ef}	4.4 h _{ef}	4.4 h _{ef}
Increasing factor for $N_{Rk,p}$ and $N_{Rk,sp}^0$	Ψс	[-]					(-	$\left(\frac{f_{ck,cube}}{25}\right)$	0,5				
Concrete cone failure	9												
Effective anchorage de	pth h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Factor acc. to CEN/TS	1992-4 k _{ucr}	[-]						10.1					

¹⁾ Pull-out failure is not decisive

Injection System W-VIZ

Performance

Characteristic values for **tension loads**, W-VIZ-A M16 – M24, **uncracked concrete**, static and quasi-static action

Annex C3

²⁾ Maximum long term temperature / Maximum short term temperature

Table C5: Characteristic values for shear load, W-VIZ-A M8 – M12, cracked and uncracked concrete, static and quasi-static action

							<u> </u>							
Anchor size W-VIZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12	
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1.0										
Steel failure without lev	er arm													
Characteristic Steel, zinc plated [kN]			1	14 21				34						
V _{Rk,s}	A4, HCR	[kN]	1	5	2	3				34				
Partial safety factor	γMs	[-]						1.25						
Factor for ductility	k ₂	[-]	1.0											
Steel failure with lever	arm													
Characteristic bending _	Steel, zinc plated	[Nm]	3	80	6	0				105				
moments M ⁰ _{Rk,s}	A4, HCR	[Nm]	3	80	6	0				105				
Partial safety factor	γMs	[-]						1.25	,					
Concrete pry-out failure	9													
Factor k acc. ETAG 001, Annex C or k₃ acc. CEN/TS 1992-4	k ₍₃₎	[-]	-] 2											
Concrete edge failure														
Effective length of ancho in shear load	r I _f	[mm]	40	50	60	75	75	70	80	95	100	110	125	
Diameter of anchor	d_{nom}	[mm]	n] 10 12 12 14											

Injection System W-VIZ
Performance

Characteristic values for **shear load**, W-VIZ-A M8 – M12, **cracked and uncracked concrete**, static and quasi-static action

Annex C4

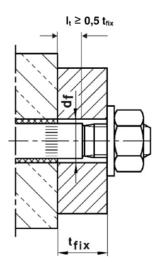


Table C6: Characteristic values for shear load, W-VIZ-A M16 – M24, cracked and uncracked concrete, static and quasi-static action

Anchor size W-VIZ-	Anchor size W-VIZ-A			105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Installation safety fac	ctor γ ₂ =γ _{inst}	[-]						1.0						
Steel failure withou	t lever arm													
Characteristic shear resistance	Steel, zinc plated	[kN]			63			70	(98)			178 ¹⁾ (141)		
V _{Rk,s}	A4, HCR	[kN]	63				86		1 ¹⁾ 6)		156 ^{f)} (123)			
Partial safety factor	γMs	[-]			1.25			1.4	1.2	25		1.25		
Factor for ductility	k_2	[-]	•					1.0						
Steel failure with le	ver arm													
Characteristic bending moments	Steel, zinc plated	[Nm]			266			392	51	9				
$M^0_{Rk,s}$	A4, HCR	[Nm]			266				454		784			
Partial safety factor	γ_{Ms}	[-]			1.25			1.4	1.2	25	1.25			
Concrete pry-out fa	ilure													
Factor k acc. ETAG 0 Annex C or k ₃ acc. CEN/TS 1992-4	01, k ₍₃₎	[-]		2										
Concrete edge failu	ire													
Effective length of anchor in shear load	I _f	[mm]	90	105	125	145	160	115	170	190	170	200	225	
Diameter of anchor	d_{nom}	[mm]	18					22	2	4	26			

¹⁾ This value may only be applied if $I_t \ge 0.5 t_{fix}$

Size M20 + M24:

Injection System	W-VIZ

Performance

Characteristic values for **shear load**, W-VIZ-A M16 – M24, **cracked and uncracked concrete**, static and quasi-static action

Annex C5

Table C7: Characteristic resistances for seismic loading
W-VIZ-A M10 – M12 performance category C1 and C2

Anchor size W-VIZ-A				60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension loads		-										
Installation safety factor	γ ₂ =γ _{inst}	[-]					1.0					
Steel failure, steel zir												
Characteristic resistant	$N_{Rk,s,seis,C1}$	[kN]	2	5	35	49	5	4		57		
Characteristic resistance C2 N _{Rk,s,seis,Ci}				2	5	35	49	5	4		57	
Steel failure, stainles	s steel A4, HCI	R										
Characteristic resistand	ce C1	$N_{Rk,s,seis,C1}$	[kN]	2	5	35	49	5	4		57	
Characteristic resistant	ce C2	$N_{Rk,s,seis,C2}$	[kN]	2	5	35	49	5	4		57	
Partial safety factor		$\gamma_{\text{Ms,seis}}$	[-]					1.5				
Pull-out												
Characteristic	NI	50°C / 80°C ¹⁾	[kN]	14	1.5	14	1.5	30).6	36.0	41.5	42.8
resistance C1	esistance C1 N _{Rk,p,seis,C1} 72°C / 120°C ¹		[kN]	10).9	10).9	20	0.0		30.0	
Characteristic resistance C2 N _{Rk,p,seis,C2} —		50°C / 80°C ¹⁾	[kN]	7	.4	7.4		8.7		17.6		
		72°C / 120°C ¹⁾	[kN]	5	.1	5.1		6.5		12.3		

Shear loads										
Steel failure without lever arm, steel zinc plated										
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	11.8	27.2						
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	12.6	27.2						
Partial safety factor	γ̃Ms,seis	[-]		1.25						
Steel failure without lever arm, stainless steel A4, HCR										
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	12.9	27.2						
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	13.8	27.2						
Partial safety factor	γ̃Ms,seis	[-]		1.25						
Steel failure with lever arm										
Characteristic bending moment C1	$M^0_{Rk,s,seis,C1}$	[Nm]		no performance determined						
Characteristic bending moment C2	$M^0_{Rk,s,seis,C2}$	[Nm]		no performance determined						

¹⁾ Maximum long term temperature / Maximum short term temperature

Injection System W-VIZ

Performance

Characteristic resistances for $seismic\ loading,\ W-VIZ-A\ M10-M12,$ performance category C1 and C2

Annex C6

Characteristic resistances for **seismic loading**W-VIZ-A M16 – M24 performance category C1 and C2 Table C8:

Anchor size W-VIZ-A		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension loads												
Installation safety factor γ ₂ =γ _{in}	st [-]						1.0					
Steel failure, steel zinc plated												
Characteristic resistance C1 N _{Rk,s,seis,C1}	[kN]	88	95	11	1	97	96	18	8		222	
Characteristic resistance C2 N _{Rk,s,seis,C2}	[kN]	88	95	11	1	97	96	18	8		222	
Steel failure, stainless steel A4, HCR	ł											
Characteristic resistance C1 N _{Rk,s,seis,C}	[kN]	88	95	11	1	97	114	16	5		194	
Characteristic resistance C2 N _{Rk,s,seis,C2}	[kN]	88	95	11	1	97	114	16	5		194	
Partial safety factor γ _{Ms,se}	s [-]			1.5			1.68	1.	.5		1.5	
Pull-out												
Characteristic N 50°C / 80°C	1) [kN]	30.7	38.7		43.7		44.4	88	.2		90.7	
resistance C1 N _{Rk,p,seis,C1} 72°C / 120°C	1) [kN]	25.0	30.0		38.5		29.4	55	.8		59.3	
Characteristic N 50°C / 80°C	1) [kN]	16.3	22.1		26.1		30.9	59	.7		59.7	
resistance C2 $N_{Rk,p,seis,C2} = \frac{1}{72^{\circ}C / 120^{\circ}C^{-1}}$		10.5	14.4		19.5		16.2	44	.4		44.4	

Shear loads												
Steel failure without lever arm, steel zinc plated												
Characteristic resistance C1	V _{Rk,s,seis,C1}	[kN]	39.1	39.1	82.3	107						
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	50.4	51.0	108.8 ¹⁾ (71.5)	154.9 ¹⁾ (122.7)						
Partial safety factor	γMs,seis	[-]	1.25	1.4	1.25	1.25						
Steel failure without leve	er arm, staink	ess ste	el A4, HCR									
Characteristic resistance C1	$V_{Rk,s,seis,C1}$	[kN]	39.1	39.1	72.2	93						
Characteristic resistance C2	$V_{Rk,s,seis,C2}$	[kN]	50.4	62.6	95.6 ¹⁾ (62.8)	135.7 ¹⁾ (107)						
Partial safety factor	γ _{Ms,seis}	[-]	1.25	1.4	1.25	1.25						
Steel failure with lever a	rm											
Characteristic bending moment C1	M ⁰ _{Rk,s,seis,C1}	[Nm]	m] no performance determined									
Characteristic bending moment C2	M ⁰ _{Rk,s,seis,C2}	[Nm]	no performance determined									

¹⁾ This value may only be applied if $I_t \ge 0.5 \ t_{fix.}$ (see Annex C5)

ı		
	Injection System W-VIZ	
	Performance Characteristic resistances for seismic loading, W-VIZ-A M16 – M24, performance category C1 and C2	Annex C7

8.06.01-92/17 Z22150.17

Table C9:	Displacements und	er tension loads	, W-VIZ-A M8 –	M12
-----------	-------------------	------------------	----------------	-----

Anchor size W-VIZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension load in cracked concrete	N	[kN]	4.3	6.1	8.0	11.1	11.1	10.0	12.3	15.9	17.1	19.8	24.0
Displacement	δ_{N0}	[mm]	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7
Displacement	$\delta_{N\infty}$	[mm]						1.3					
Tension load in uncracked concrete	N	[kN]	4.3	8.5	11.1	15.6	15.6	14.1	17.2	19.0	24.0	23.8	23.8
Displacement	δ_{N0}	[mm]	0.2	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.6	0.6
Displacement	$\delta_{N^{\infty}}$	[mm]						1.3					
Displacements under seismic tens	ion loads	s C2											
Displacements for DLS $\delta_{N,s}$	eis,C2(DLS)	[mm]	-	-	1.	0	1.	0	1.	.3		1.1	
Displacements for ULS $\delta_{N,s}$	eis,C2(ULS)	[mm]	1	-	3.	0	3.	0	3	.9		3.0	

Table C10: Displacements under tension loads, W-VIZ-A M16 - M24

Anchor size W-VIZ	-A		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension load in cracked concrete	N	[kN]	14.6	18.4	24.0	30.0	34.7	21.1	38.0	44.9	38.0	48.5	57.9
Displacement	δ_{N0}	[mm]	0.7	0.7	0.7	0.8	1.2	0.7	0.8	0.8	8.0	0.9	0.9
Displacement	$\delta_{N\infty}$	[mm]			1.3		1.6	1.1	1	.3		1.3	
Tension load in uncracked concrete	N	[kN]	20.5	25.9	33.0	35.7	48.1	29.6	53.3	63.0	53.3	67.9	81.1
Displacement	δ_{N0}	[mm]	0.6	0.6	0.6	0.6	0.8	0.5	0.6	0.6	0.6	0.6	0.6
Displacement	$\delta_{N\infty}$	[mm]			1.3		1.6	1.1	1	.3		1.3	
Displacements unde	er seismic ter	nsion loa	ds C2										
Displacements for DLS	$\delta_{\text{N,seis,C2(DLS)}}$	[mm]	1	.6		1.5		1.7	1	.9		1.9	
Displacements for ULS	$\delta_{\text{N,seis,C2(ULS)}}$	[mm]	3	.7		4.4		4.0	4	.5		4.5	

Injection System W-VIZ	
Performance Displacements under tension loads, W-VIZ-A	Annex C8

Table C11:	Displacements under shear loads W-VIZ-A M8 – M1	2

Anchor size W-VIZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12	
Shear load	[kN]	8.	3	13	.3	19.3							
Dianlesamente	δ_{V0}	[mm]	2.4	2.5	2.	9	3.3						
Displacements	[mm]	3.6	3.6 3.8 4.4 5.0										
Displacements under seis	mic shear loa	ds C2											
Displacements for DLS	$\delta_{\text{V,seis,C2(DLS)}}$	[mm]	1	-	2.	1	2.5						
Displacements for ULS	$\delta_{\text{V,seis,C2(ULS)}}$	[mm]	-	-	3.	7 5.1							

Table C12: Displacements under shear loads W-VIZ-A M16 – M24

Anchor size W-VIZ	Anchor size W-VIZ-A			105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Shear load	V	[kN]			36			44	ı	5 9)		89 (71)		
Displacements	δ_{V0}	[mm]			3.8			3.0	4. (3.	_	4.6 (3.5)			
Displacements	$\delta_{V\infty}$	[mm]			5.7			4.5	6. (4.					
Displacements unde	er seismic sh	ear loa	ds C2											
Displacements for DLS	$\delta_{\text{V,seis,C2(DLS)}}$	[mm]			2.9				3.5		3.7			
Displacements for ULS	$\delta_{\text{V,seis,C2(ULS)}}$	[mm]			6.8				9.3		9.3			

Injection System W-VIZ	
Performance Displacements under shear loads, W-VIZ-A	Annex C9

7.2

Table C13: Charact	teristic values f	or te	nsio	n loa	ıd, W	/-VIZ	-IG ,	crac	ked	cond	crete			
Anchor size W-VIZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Installation safety factor	γ ₂ =γ _{inst}	[-]						1.	.0					
Steel failure														
Characteristic	Steel, zinc plated	[kN]	15	16	19	29	3	5		67		52	125	108
tension resistance N _{Rk,s}	A4, HCR	[kN]	1	1	19	21	3	3		47		65	88	94
Partial safety factor	γMs	[-]						1	.5					
Pull-out														
Characteristic resistance	50°C / 80°C ²⁾	[kN]						1)					
N _{Rk,p} in cracked concrete C20/25	72°C / 120°C ²⁾	[kN]	5	7.5	1	2	16	20	20	30	50	30	60	75
Increasing factor	Ψc	[-]						$\left(\frac{f_{ck,cu}}{25}\right)$	be 0,5					
Concrete cone failure														
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170

[-]

Factor according to CEN/TS 1992-4

Injection System W-VIZ	
Performance Characteristic values for tension load, W-VIZ-IG, cracked concrete	Annex C10

¹⁾ Pull-out failure is not decisive

Maximum long term temperature / Maximum short term temperature

teristic values	for t	ensi	on lo	oad,	W-VI	Z-IG,	unc	rack	ed c	oncr	ete		
		40 M6	50 M6	60 M8	75 M8	70 M 10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
γ ₂ =γ _{inst}	[-]						1-	0					
Steel, zinc plated	[kN]	15	16	19	29	3	5		67		52	125	108
A4, HCR	[kN]	1	1	19	21	3	3		47		65	88	94
γMs	[-]						1	.5					
50°C / 80°C ²⁾	[kN]	9	1)						1)				
72°C / 120°C ²⁾	[kN]	6	9	1	6	16	25	25	35	50	40	75	95
ckness of cond	rete (The hi	igher r	esistar	nce of	Case ⁻	1 and	Case 2	2 may	be app	olied.)		
ete $h_{std} \ge 2h_{ef}$	[mm]	10	0	120	150	140	160	180	200	250	230	340	340
ed by N ⁰ _{Rk,sp})													
$N^0_{Rk,sp}$	[kN]	7.5	9	16	20	20	1)	40	50	50	1)	1)
$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]						3	h _{ef}					
$S_{cr,sp}$ (= 2 $C_{cr,sp}$)	[mm]	6h _{ef}	6h _{ef}	5h _{ef}	7h _{ef}	5h _{ef}	3h _{ef}	4h _{ef}	4h _{ef}	4h _{ef}	3h _{ef}	3h _{ef}	3h _{ef}
ickness of con	crete	(The h	iigher	resista	ince of	Case	1 and	Case	2 may	be ap	plied.)		
	[mm]	8	0	100	110	11	0	130	150	160	160	220	220
ed by N ⁰ _{Rk,sp})													
$N^0_{Rk,sp}$	[kN]	7.5	-	1	6	20	25	35	50	40	-	75	1)
$S_{cr,sp}$ (= 2 $C_{cr,sp}$)	[mm]						3	h _{ef}					
						-							
$S_{cr,sp}$ (= 2 $C_{cr,sp}$)	[mm]	6 h _{ef}	7 h _{ef}	6 h _{ef}	7 h _{ef}	7 h _{ef}	6 h _{ef}	5 h _{ef}	5 h _{ef}	6 h _{ef}	5 h _{ef}	5.2h _{ef}	5.2h _{ef}
Ψc	[-]												
h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
	Steel, zinc plated A4, HCR γ_{Ms} $ 50^{\circ}\text{C} / 80^{\circ}\text{C}^{2} $ $ 72^{\circ}\text{C} / 120^{\circ}\text{C}^{2} $ $ \text{Steels of concepte } h_{std} \ge 2h_{ef} $ $ \text{Steed by } N^{0}_{Rk,sp} $ $ S_{cr,sp} (= 2 C_{cr,sp}) $ $ \text{Sickness of concepte } h_{min} \ge 2d \text{ by } N^{0}_{Rk,sp} $ $ \text{Scr,sp} (= 2 C_{cr,sp}) $ $ \text{Steel } h_{min} \ge 2d \text{ by } N^{0}_{Rk,sp} $ $ S_{cr,sp} (= 2 C_{cr,sp}) $ $ S_{cr,sp} (= 2 C_{cr,sp}) $ $ S_{cr,sp} (= 2 C_{cr,sp}) $			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40 50 60 75 70 80 90 105 125 M12 M12	M6 M6 M8 M8 M10 M10 M12 M12 M12 M16 M16	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Injection System W-VIZ	
Performance Characteristic values for tension loads, W-VIZ-IG, uncracked concrete	Annex C11

¹⁾ Pull-out failure is not decisive 2) Maximum long term temperature / Maximum short term temperature

Table C15:	Characteristic values for shear load, W-VIZ-IG,
	cracked and uncracked concrete

Anchor size W-VIZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20	
Installation safety factor	γ ₂ =γ _{inst}	[-]	1.0												
Steel failure without leve															
Characteristic	Steel, zinc plated	[kN]	+		9.5	15	1	8	34		26	63	54		
shear resistance $V_{Rk,s}$	A4, HCR	[kN]			9.5	10	16		24			32	44	47	
Partial safety factor	γMs	[-]			1.25										
Factor for ductility	k ₂	[-]						1.	.0						
Steel failure with lever ar															
Characteristic bending moments M ⁰ _{Rk,s}	Steel, zinc plated	[kN]	12		30		60		105			212	266	519	
	A4, HCR	[kN]	8.	5	21		42		74		187	187	365		
Partial safety factor	γMs	[-]			1.25										
Concrete pry-out failure															
Factor k acc. ETAG 001, Annex C or k₃ acc. CEN/TS 1992-4	k ₍₃₎	[-]		2											
Concrete edge failure															
Effective length of anchor in shear load	I _f	[mm]	40	50	60	75	70	80	90	105	125	115	170	170	
Diameter of anchor	d_{nom}	[mm]	1	0	1	2	1	4		18		22	24	26	

Table C16: Displacements under tension loads, W-VIZ-IG

Anchor size W-VIZ-IG				50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16		170 M20
Tension load in cracked concrete N		[kN]	4.3	6.1	8.0	11.1	10.0	12.3	14.6	18.4	24.0	21.1	38.0	38.0
Dianlacement		[mm]	0.5		0.5	0.6	0.6		0.7			0.7	0.8	0.8
Displacement	δ_{N_∞}	[mm]		1.3								1.1	1.3	1.3
Tension load in uncracked concrete		[kN]	4.3	8.5	11.1	15.6	14.1	17.2	20.5	25.9	33.0	29.6	53.3	53.3
Displacement		[mm]	0.2	0.2 0.4 0.4 0.4 0.6							0.5	0.6	0.6	
		[mm]		1.3									1.3	1.3

Table C17: Displacements under shear loads, W-VIZ-IG

Anchor size W-VIZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20		
Shear load Steel, zinc plated	V	[kN]	4.6		5.4	8.4	10.1		19.3		14.8	35.8	30.7	
Diaplacement	δ_{V0}	[mm]	0.4		0.5	0.4	0.5		1.2		0.8	1.9	1.2	
Displacement	$\delta_{V\infty}$	[mm]	0.7		0.8	0.7	0.8		1.9		1.2	2.8	1.9	
Shear load Stainless steel A4 / HCR	V	[kN]	3.2		5.4	5.9	9.3		13.5			18.5	25.2	26.9
Displacement	δ_{V0}	[mm]	0.	3	0.5	0.3	0.	5		0.9		1.0	1.4	1.1
	$\delta_{V\infty}$	[mm]	0.	4	0.7	0.5	0.7		0.7 1.4		1.5	2.1	1.6	

Injection System W-VIZ

Performance

Characteristic values for shear load, W-VIZ-IG, cracked and uncracked concrete,

Displacements

Annex C12