

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0164 of 24 January 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Highbond-Anchor FHB II

Torque controlled bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

22 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-05/0164 issued on 22 November 2016

European Technical Assessment ETA-05/0164

Page 2 of 22 | 24 January 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z2816.17 8.06.01-11/17

European Technical Assessment ETA-05/0164

Page 3 of 22 | 24 January 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Highbond-Anchor FHB II is a torque controlled bonded anchor consisting of a mortar cartridge with mortar fischer FIS HB or fischer mortar capsule FHB II–P(F) and an anchor rod FHB II - A L or FHB II - A S with hexagon nut and washer.

The glass capsule is set into a drilled hole in the concrete. The special formed anchor rod is driven into the glass capsule by machine with simultaneous hammering and turning. For the injection system the anchor rod is placed into a drilled hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under tension and shear load	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 and C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z2816.17 8.06.01-11/17

European Technical Assessment ETA-05/0164

Page 4 of 22 | 24 January 2017

English translation prepared by DIBt

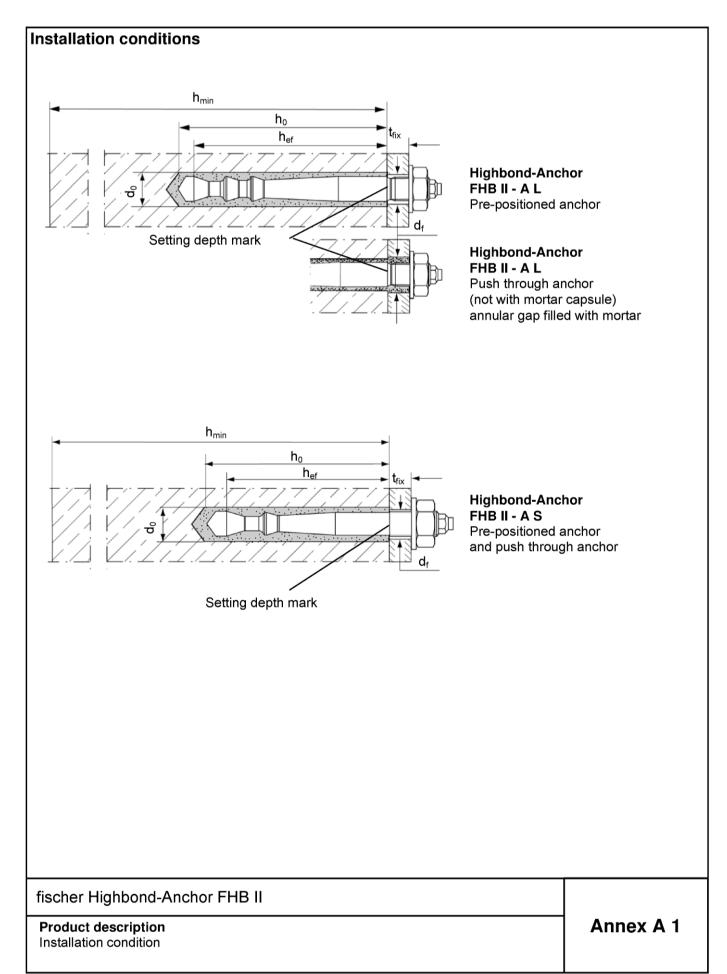
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

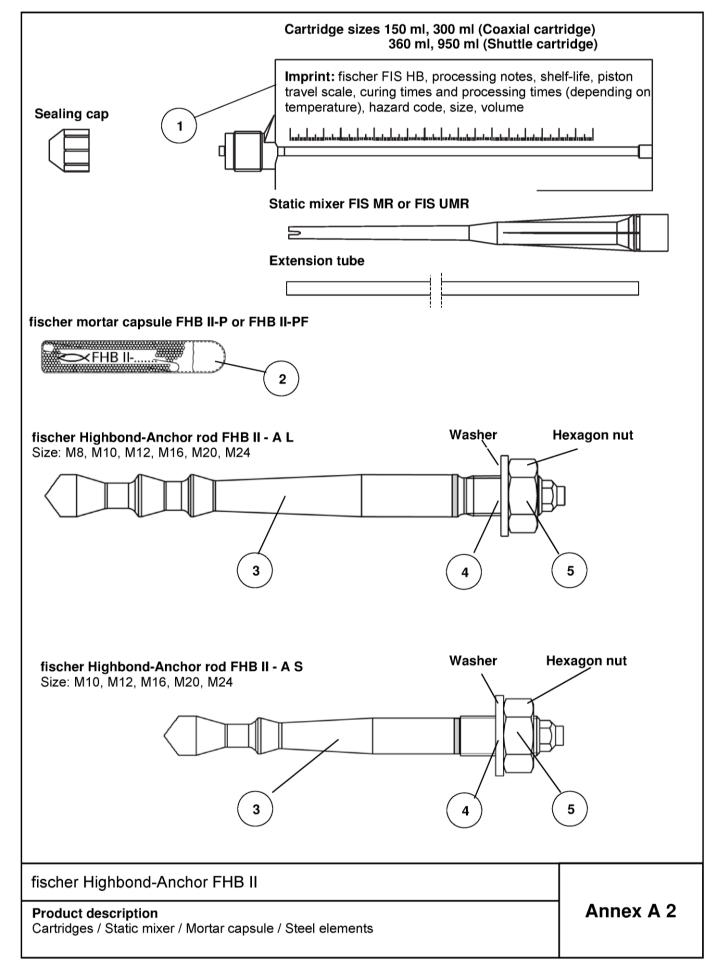
In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 24 January 2017 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider

Z2816.17 8.06.01-11/17

Z2820.17

electronic copy of the eta by dibt: eta-05/0164

Tabl	e A1: Materials							
Part	Designation	Material						
1	Mortar cartridge	Mortar, hardener, filler						
2	Mortar capsule	Mortar, hardener, filler						
	Steel grade	Steel, zinc plated	Steel, zinc plated Stainless steel A4					
3	fischer Highbond- Anchor rod FHB II - A L or FHB II - A S	Property class 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation	Property class 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation				
4	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
5	Hexagon nut	Property class 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				

fischer Highbond-Anchor FHB II	
Product description Materials	Annex A 3

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages sub	oject to	fischer Injection mortar FIS HB or fischer mortar capsule FHB II-P or FHB II-PF with						
		FHB II – A L FHB II – A S						
Hammer drilling with standard drill bit	E4444000000000000000000000000000000000	Alls	izes					
Static or quasi	uncracked concrete	all sizes	all sizes					
static load, in	static load, in cracked concrete Tables: C1, C3, C		Tables: C2, C4, C6					
Use category	dry or wet concrete	all sizes						
ose category	flooded hole	all sizes (only with mortar capsule allowed)						
Kind of	Pre- positioned anchor	all s	izes					
intallation	Push through anchor	TODIV WITH INJECTION MONALETS OF THE ALL SIZES						
Installation temp	perature	-5 C to +40 C						
In-service temp	erature	-40°C to +80°C (max. long term temperature +50°C and max. short term temperature +80°C)						

fischer Highbond-Anchor FHB II	
Intended Use Specifications (part 1)	Annex B 1

English translation prepared by DIBt

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with
- EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4:2009

Installation:

electronic copy of the eta by dibt: eta-05/0164

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- · Observe the effective anchorage depth
- · Overhead installation is allowed

fischer Highbond-Anchor FHB II

Intended Use
Specifications (part 2)

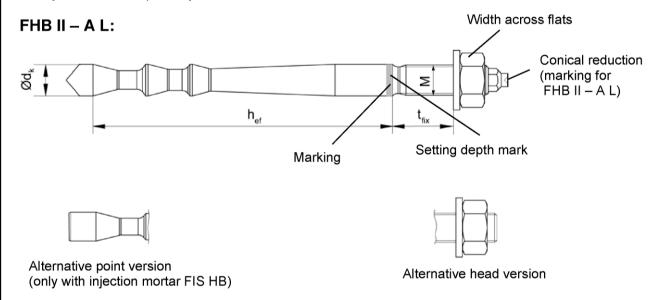

Annex B 2

Table B2: Installation parameters for	r fischer Highbond-Anchor rods FHB II – A L
---------------------------------------	---

		M8x	M10x	М1	2x		M16x		M20x	M24x
Size FHB II – A L			95	100	120	125	145	160	210	210
sules	[-]	8x60	10x95	12x 100	12x 120	16x 125	16x 145	16x 160	20x 210	24x 210
d_k		9,4	10,7	12	12,5 16,8		16,8		23	3,0
SW		13	17	1	9		24		30	36
d_0] [10	12	1	4		18		25	
h_0] [75	110	115	135	140	160	175	23	35
h_{ef}		60	95	100	120	125	145	160	2	10
s _{min} = c _{min}	[mm]	40	0	5	0	55 60 70		9	0	
0.		9	12	14 18			22			
		11	14	16		20			2	6
\mathbf{h}_{min}		100	14	40 17		70	190	220	28	30
T _{inst}	[Nm]	15	20	4	0	60		10	00	
t _{Fix} ≤	[mm]					1500				
ׅ֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	SW d_0 h_0 h_{ef} $s_{min} = c_{min}$ ded_{ge} $d_f \leq g_e$ e^2 $d_f \leq g_h$ e^2 h_{min} T_{inst}		Solution Solution	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 95 100 Osules [-] $8x60$ $10x95$ $12x$ d_k $9,4$ $10,7$ 12 $3x$ $1x$ $1x$ $1x$ $3x$ $1x$ $1x$ $1x$ $3x$ $1x$ $1x$ $1x$ $4x$ $1x$ $1x$ $1x$ $4x$ $1x$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ For larger clearance holes in the fixture see EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4-:2009 Only with mortar capsule system

Marking:

Work symbol, size of anchor, setting depth. e. g.: M10x95

For stainless steel additional A4. For high corrosion resistant steel additional C. For high corrosion resistant steel additional marking C also on the face.

fischer Highbond-Anchor FHB II	
Intended Use Installation parameters fischer Highbond-Anchor rod FHB II – A L	Annex B 3

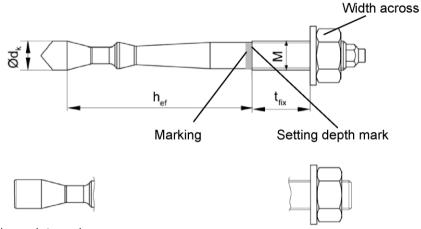


Table B3: Installation parar	neters	for fis	cher High	bond-An	chor rods	FHB II –	AS		
Size FUR II. A C			M10x		M12x	M16x	M20x	M24x	
Size FHB II – A S			60	75	75	95	170	170	
Correspondending mortar capsule FHB II-P or. FHB II-PF	es	[-]	10x60 10x75		12x75	16x95	20x170 24x170		
Cone diameter	d _k		9	,4	11,3	16,8	23,0		
Width across flats	SW		1	7	19	24	30 36		
Nominal drill bit diameter	d ₀		10		12	16	25		
Drill hole depth	h ₀		75 90		90	110	190		
Effective anchorage depth	h _{ef}		60 75		75	95	170		
Minimum spacing and minimum edge distance	= c _{min}	[mm]	40			50	80		
Diameter of clearance hole pre-positioned anchorage	d _f ≤		12		14	18	22	26	
in the fixture ¹⁾ push through anchorage	d _f ≤		12		12 14 18		2	6	
Minimum thickness of concrete member	h_{min}		100 120		20	150	24	40	
Installation torque	T_{inst}	[Nm]	15 30		30	50	100		

¹⁾ For larger clearance holes in the fixture see EOTA ETAG 001 Annex C, 08/2010 or CEN/TS 1992-4-:2009

FHB II - A S:

Thickness of fixure

Alternative point version (only with injection mortar FIS HB)

Alternative head version

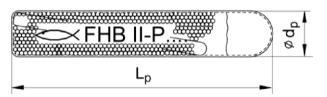
1500

Marking:

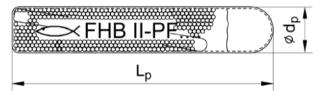
Work symbol, size of anchor, setting depth. e. g.: M10x75

t_{Fix}≤

[mm]


For stainless steel additional **A4**. For high corrosion resistant steel additional **C.** For high corrosion resistant steel additional marking **C** also on the face.

fischer Highbond-Anchor FHB II	
Intended Use Installation parameters fischer Highbond-Anchor rod FHB II – A S	Annex B 4



Capsule			8x		10x		12x		16x			20x		24x			
			60	60	75	95	75	100	120	95	125	145	160	170	210	170	210
Length of capsule	L_p	[mm]	8	5	90	115	95		120		150	15	55	185	210	185	210
Diameter of capsule	Ø d _p	[mm]		9		1	1	12	2,5	14,5		17			21	,5	

FHB II-P (standard)

FHB II-PF (fast curing)


Imprint: work symbol, marking, anchor size and effective anchorage depth.

e.g : FHB II-P 12x100 or.

FHB II-PF 12x100

Table B5: Parameters of steel brush FIS BS Ø (only when using injection mortar)

Drill bit diameter	d ₀	[1	10	12	14	16	18	25
Steel brush diameter	d_b	[mm]	11	14	16	2	0	27

fischer Highbond-Anchor FHB II

Intended Use
Dimensions of mortar capsules
Parameters of steel brush

Annex B 5

Table B6: Maximum processing time of the mortar **FIS HB** and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

System temperature	Maximum processing time	Minimum curing time1)
[°C]	t _{work} [minutes]	t _{cure} [minutes]
-5 to ±0		6 hours
> +1 to +5		3 hours
> +6 to +10	15	90
> +11 to +20	6	35
> +21 to +30	4	20
> +31 to +40	2	12

¹⁾ In wet concrete the curing times must be doubled

Table B7: Minimum curing time for mortar capsules FHB II-P and FHB II-PF (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Mortar capsule FHB II-P (standard)								
System temperature	Minimum curing time1)							
[°C]	t _{cure} [minutes]							
-5 to ±0	4 Stunden							
> +1 to +10	45							
> +11 to +20	20							
> +20	10							

Mortar capsule FHB II-PF (fast curing)									
Minimum curing time ¹⁾									
t _{cure} [minutes]									
8									
6									
4									
2									

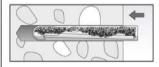
¹⁾ In wet concrete or flooded holes the curing times must be doubled

fischer Highbond-Anchor FHB II	
Intended Use Processing times and curing times	Annex B 6

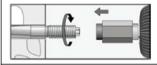
Installation instruction part 1

Installation with mortar capsule FHB II-P or FHB II-PF

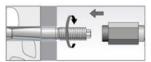
Drilling the hole



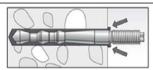
Drill the hole with hammer drill. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3


Cleaning of the bore hole is not necessary

Installation Highbond-Anchor rod FHB II – A L and FHB II – A S


2

Put the mortar capsule FHB II-P or FHB II-PF into the bore hole


Pre-positioned anchor: Only use Highbond-Anchor rods FHB II - A L or FHB II - A S with **roof-shaped point**. Drive in the Anchor rod using a hammer drill or impact drill. When reaching the setting depth mark stop the drill immediately.

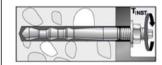
Push through anchor: Only use Highbond-Anchor rods **FHB II – A S** with **roof-shaped point.** Drive in the anchor rod using a hammer drill or impact drill. When reaching the setting depth mark stop the drill immediately.

4

3

After inserting the anchor, excess mortar must be emerged around the anchor.

For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges)



5

electronic copy of the eta by dibt: eta-05/0164

Wait for the specified curing time t_{cure} see **Table B7**

Mounting the fixture T_{inst} see **Tables B2 and B3**

fischer Highbond-Anchor FHB II

Intended use

Installation instruction part 1

Annex B 7

Installation instruction part 2 Installation with injection mortar FIS HB Drilling and cleaning the hole Drill the hole with hammer drill. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3 Blow out the drill hole twice. If necessary, remove standing water out of the bore hole. min. 2x 2 For drill hole diameter For drill hole diameter $d_0 < 25$ mm with hand $d_0 = 25 \text{ mm}$ with oil-free blowout or oil-free compressed air (p ≥ 6 bar) compressed air Use a cleaning nozzle. Brush the bore hole twice. 3 Corresponding brushes see Table B5 min. 2x Blow out the drill hole twice. min.2x 4 For drill hole diameter For drill hole diameter d_0 < 25 mm with hand $d_0 = 25 \text{ mm with oil-free}$ Þ blowout or oil-free compressed air (p ≥ 6 bar) compressed air Use a cleaning nozzle. Preparing the cartridge Remove the sealing cap 5 Screw on the static mixer (the spiral in the static mixer must be clearly visible) 6 Place the cartridge into the dispenser Extrude approximately 10 cm of material until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey Observe the processing If the processing time is exceeded, use a new static time, twork mixer and if necessary remove encrusted material in see Table B6 the cartridge mouth. fischer Highbond-Anchor FHB II Annex B 8 Intended use Installation instruction part 2

Z2820.17

Installation instruction part 3 Injection of the mortar Fill approximately 2/3 of the drill hole with mortar. Exact quantity of mortar (travel scale on the cartridge) see instruction sheet. Fill the drill hole with mortar, always begin from the bottom of the hole to avoid bubbles Push-through installation: By using Highbond-Anchor rods FHB II-A L the drill hole in the fixture must be 8 also filled with mortar. FHB II-A S is this not necessary. For drill hole depth ≥ 170 mm use an extension tube Installation Highbond-Anchor rod FHB II – A L and FHB II – A S Only use clean and oil-free anchor rods. 9 Push the anchor rod down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor rod, excess mortar must be emerged around the anchor rod 10 For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges) Wait for the specified Mounting the fixture 11 12 curing time T_{inst} see t_{cure} see Table B6 Tables B2 and B3 fischer Highbond-Anchor FHB II Annex B 9 Intended use

Z2820.17

Installation instruction part 3

Table C1: Characte Highbo	eristic value nd-Ancho				r quas	i-static	tens	ion lo	ad for	fische	er	
				M8x	M10x	M1	2x		M16x		M20x	M24x
Size FHB II – A L				60	95	100	120	125	145	160	210	210
Bearing capacity und	er tensile lo	ad, ste	eel fail	ure								
	Steel, zinc	plated		25,1	34,4	49	9,8		96,6 1			7,6
Characteristic — resistance —	Stainless st	eel A4	[kN]									
N _{Rk,s}	•	gh corrosion stant steel C		25,1	34,4	49	9,8	96,6			137,6	
Partial safety factors1)			•									
	Steel, zinc	plated						1,5 ¹⁾				
Partial safety factor	Stainless st	eel A4	[-]					1,5 ¹⁾				
<u></u>	High corrosion resistant steel C							1,5 ¹⁾				
Pullout failure in crack	ed concrete	C20/2	5									
Characteristic resistance		$N_{Rk,p}$	[kN]					3)				
Pullout and splitting fa	ilure in uncr		concr	ete C20)/25							
Characteristic resistance		$N_{Rk,p}$	[kN]					3)				
Edge distance		C _{cr,sp}		300	476	380	600	375	500	580	63	30
Spacing		S _{cr,sp}	[mm]	150	238	190	300	188	250	290	3.	15
Pullout and splitting fa	ilure in uncr		concr	ete C20)/25							
Characteristic resistance	•	N _{Rk,p} ²⁾	[kN]	20	35	40	50	3)	75	95		-3)
Edge distance		C _{cr,sp}	r1					1,5h _{ef}	•		•	
Spacing		S _{cr,sp}	[mm]	3,0h _{ef}								
Factors for the compre	essive streng	th of c	oncre	te > C2	0/25							
	C25/30							1,10				
	C30/37			1,22								
Increasing factor	C35/45	176	٠,	1,34								
for N _{Rk,p}	C40/50	Ψ_{c}	[-]					1,41				
	C45/55							1,48				
	C50/60							1,55				
Factors acc. to CEN/TS	3 1992-4:200	9 Secti	on 6.2	.2.3								
Uncracked concrete	ncrete k _{ucr}		F 1					10,1				
Cracked concrete		k _{cr}	[-]					7,2				
Concrete cone failure												
Effective anchorage dep	oth	h _{ef}	[mm]	60	95	100	120	125	145	160	2	10
Partial safety factor ^{1) 5)}		γмс	[-]	1,5 ⁴⁾				1	,5			

fischer Highbond-Anchor FHB II Annex C 1 **Performances** Characteristic values under static or quasi-static tension load for fischer Highbond-Anchor FHB II – A L (uncracked or cracked concrete)

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ Proof of splitting failure acc. ETAG 001, Annex C, (Section 5.3). Instead of N 0 _{Rk,c} use N_{Rk,p}. $^{3)}$ Not decisive (proof of splitting failure acc. ETAG 001, Annex C)

With mortar capsule: $\gamma_{Mc} = 1.8$ $\gamma_{Mc} = 1.8$ $\gamma_{Mc} = 1.0$ is included

a a				M1	0x	M12x	M16x	M20x	M24x				
Size FHB II – A S				60	75	75	95	170	170				
Bearing capacity un	der tensile loa	ıd, ste	el fai	lure									
	Steel, zinc p	Steel, zinc plated		25	i,1	34,4	61,6	12	B,5				
Characteristic — resistance —	Stainless ste	el A4	[kN]										
N _{Rk,s}	High corr resistant st		[[]	25	i,1	34,4	61,6	12	128,5				
Partial safety factors	1)												
_	Steel, zinc plated			1,5 ¹⁾									
Partial safety factor	Stainless ste	el A4	- I-I ⊦	1,5 ¹⁾									
⁷ Мѕ,N	High corr resistant st		.,	1,5 ¹⁾									
Pullout failure in crac	cked concrete C	C20/2	5										
Characteristic resistance $N_{Rk,p}$ [k				3)									
Pullout and splitting	failure in uncra	cked	concr	ete C20/25									
Characteristic resistan	ce 1	$N_{Rk,p}$	[kN]	3)									
Edge distance	(C _{cr,sp}	[mm]	300 150			340	5	10				
Spacing	\$	S _{cr,sp}	[[[]]				170	25	55				
Pullout and splitting	failure in uncra	cked	concr	ete C20/25									
Characteristic resistan	ce N	J _{Rk,p} 2)	[kN]	20		25	40		3)				
Edge distance	(C _{cr,sp}	[mm]			1,5	5h _{ef}						
Spacing		S _{cr,sp}	[]			3,0)h _{ef}						
Factors for the comp	ressive strengt	th of c	oncre	te > C20/25	5								
_	C25/30					1,	10						
_	C30/37			1,22									
Increasing factor _	C35/45	Ψ_{c}	[-]	1,34									
for $N_{Rk,p}$	C40/50	1 C	'			1,	41						
_	C45/55					1,	48						
	C50/60			1,55									
Factors acc. to CEN/	TS 1992-4:2009		on 6.2	2.2.3									
Uncracked concrete		k _{ucr}	[-]	10,1									
Cracked concrete		k _{cr}	.,			7,2							
Concrete cone failure	•												
Effective anchorage de	epth	h_{ef}	[mm]	60		75	95	17	70				
Partial safety factor ¹⁾		γмс	[-]	1,5 ⁴⁾			1,5						

fischer Highbond-Anchor FHB II Annex C 2 **Performances** Characteristic values under static or quasi-static tension load for fischer Highbond-Anchor FHB II – A S (uncracked or cracked concrete)

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ Proof of splitting failure acc. ETAG 001, Annex C, (Section 5.3). Instead of $N^0_{Rk,c}$ use $N_{Rk,p}$.

³⁾ Not decisive (proof of splitting failure acc. ETAG 001, Annex C)

With mortar capsule: $\gamma_{Mc} = 1.8$

 $^{^{5)}}$ γ_2 = 1,0 is included

1,5

	haracteristic valu scher Highbond									concr	ete)	
Size FHB II – A	A L			M8x 60	M10x 95	M1 100	2x 120	125	M16x	160	M20x 210	M24x 210
Bearing capac	Bearing capacity under tensile load, steel fa					100	120	123	173	100	210	210
without lever	•	· · · · · · · · · · · · · · · · · · ·										
	Steel, zinc plated			13,7	20,8	30),3		56,3		87,9	126,9
Characteristic resistance	Stainless steel A4 and High corrosion resistant steel C	$V_{Rk,s}$	[kN]	15,2	23,2	33	3,7		62,7		97,9	141
with lever arm	<u> </u>											
	Steel, zinc plated			31	62	10)5		266		519	896
Characteristic bending moment	Stainless steel A4 and High corrosion resistant steel C	$M^0_{Rk,s}$	М ^о _{Rk,s} [Nm]	31	62	10)5	266			519	896
Partial safety	factors ¹⁾											
Partial safety fa	actor	γ _{Ms,V}	[-]					1,25				
	acc. to CEN/TS Section 6.3.2.1	k ₂	[-]					1,0				
Concrete pry-	out failure											
Factor k acc. TR029 Section 5.2.3.3 or. k ₃ acc.CEN/TS 1992-4-5:2009 Section 6.3.3		k ₍₃₎	[-]					2,0				
Partial safety factors ¹⁾		γмср	[-]					1,5				
Concrete edge	e failure											
Effective length	of anchor	I _f	[mm]	60	95	100	112	125	14	14	20	00
Calculation dia	meter	d	[mm]	10	12	1	4	18			25	

¹⁾ In absence of other national regulations

Partial safety factor1)

fischer	Highbond-Anchor	FHB	II

Leistungen

Charakteristische Werte für statische oder quasi-statische Querzugbelastung von fischer Highbond- Ankern FHB II – A L (ungerissener oder gerissener Beton)

[-]

Annex C 3

English translation prepared by DIBt

1,5

O:				M10x		M12x	M16x	M20x	M24x		
Size FHB II – A	A S			60	75	75	95	170	170		
Bearing capac	city under tensile lo	oad, ste	el fail	ure							
Without lever	arm										
	Steel, zinc plated			19,	,7	27,3	50,8	80,3	114,2		
Characteristic resistance	Stainless steel A4	$V_{Rk,s}$	[kN]	24,1		33,7	62,7	97,9	124,5		
	High corrosion resistant steel C			24,1		33,7	62,7	97,9	141		
With lever arm	n										
	Steel, zinc plated			62	2	105	266	519	896		
Characteristic bending moment	Stainless steel A4 and High corrosion resistant steel C	${\sf M^0}_{\sf Rk,s}$	[Nm]	62		105	266	519	896		
Partial safety	factors ¹⁾										
Partial safety fa	actor	γMs,V	[-]	[-] 1,25							
	acc. to CEN/TS Section 6.3.2.1	k ₂	[-]	1,0							
Concrete pryc	out failure										
Factor k acc. TR029 Section 5.2.3.3 or. k ₃ acc.CEN/TS 1992-4-5:2009 Section 6.3.3			[-]	2,0							
Partial safety factor ¹⁾ γ _{Mcp}				1,5							
Concrete edge	e failure										
Effective length	n of anchor	l _f	[mm]	60	7	75	95	17	70		
Calculation dia	meter	d	[mm]	10)	12	16	2	25		

¹⁾ In absence of other national regulations

Partial safety factor1)

fischer Highbond-Anchor FHB II	
Performances	Annex C 4
Characteristic values under static or quasi-static shear load for	
fischer Highbond-Anchor FHB II – A S (uncracked and cracked concrete)	

Z2820.17 8.06.01-11/17

[-]

eta-05/0164
9
0
Ñ
ö
I
70
ď
نند
Ö
=
_≥
9
m
ين
Ψ
(I)
حَ
+
≍
O
electronic copy of the eta by dibt:
Q
Q
O
O
-=
ີ
2
ぉ
ക
~
Ψ

Size FHB II – A L		M8x M10x		M12x		M16x			M20x	M24x
		60	95	100	120	125	145	160	210	210
Displacement	under te	ension lo	ad							
Cracked conc	rete									
Tension load	[kN]	6,6	15,9	17,1	22,5	24,0	30,0	34,7	52,2	52,2
δ_{N0}	[mama]		0),8				0,6		
$\delta_{N\infty}$	- [mm]		1,7							
Uncracked co	ncrete									
Tension load	[kN]	9,3	22,3	24,0	31,6	33,6	42,0	48,7	73,2	73,2
δ_{N0}	[mm]	0,2	0,2 0,4 0,6							,6
$\delta_{N\infty}$	- [mm]		1,7							
Displacement	under s	hear load								
Uncracked or	cracked	concrete	,							
Steel zinc plat	ed									
Shear load	[kN]	7,8	11,9	17	7,3	32,2		50,2	72,5	
δ_{V0}	- [mm]	1	,2			1,3			3	,5
$\delta_{V\infty}$	[iiiiii]	1	,8			2,0		5,3		
Stainless stee	I A 4									
Shear load	[kN]	8,7	13,3	19,3		35,8		55,9	80,6	
δ_{V0}	- [mm] -	1	,0	1	,1		2,2		3	,5
$\delta_{V\infty}$	[mm]	1	1,5		,7	3,				,3
High corrosion	n resista	nt steel (3							
Shear load	[kN]	8,7	13,3	19	19,3 35,8		55,9	80,6		
δ_{V0}	- [mm]	1	,2	1	,3		2,4		3,7	5,0
$\delta_{V\infty}$	[11111]	1,8		2,0		3,6			5,6	7,5
									•	

fischer Highbond-Anchor FHB II	
Performances Displacement for fischer Highbond-Anchor FHB II – A L	Annex C 5

electronic copy of the eta by dibt: eta-05/0164

English translation prepared by DIBt

0: FUD II		M10x		M12x	M16x	M20x	M24x
Size FHB II – A S		60	75	75	95	170	170
Displacement	under ten	sion load					
Cracked conc	rete						
Tension load	[kN]	6,6	1	11,1	15,9	38,0	
δ_{N0}	_ [mm]	0,8		0,3	0,4	0,6	
δ _{N∞}	_ [,,,,,,]			1	1,7		
Uncracked co	ncrete						
Tension load	[kN]	9,3	1	15,6	22,3	53	3,3
δ_{N0}	[mm]			0,2		0	,5
δ _{N∞}	— [mm]	1,7					
Displacement	under she	ar load					
Cracked or un	cracked c	oncrete					
Steel zinc plat	ed						
Shear load	[kN]	11	,3	12,7	29,0	45,9	65,3
δ_{V0}	[mm]	1,2		1,5		2,8	
$\delta_{V^{\infty}}$	— [mm]	1,	8 2		2,3	4,2	
Stainless stee	I A 4			•			
Shear load	[kN]	13	,8	19,3	35,8	55,9	71,1
δ_{V0}	[mana]	1,	0	1,1	2,2	3	,5
$\delta_{V\infty}$	— [mm]	1,	5	1,7	3,3	5,3	
High corrosio	n resistan	t steel C					
Shear load	[kN]	13	,8	19,3	35,8	55,9	80,6
δ_{V0}	— [mm] —	1,	2	1,3	2,4	3,7	5,0
	— ımmı ⊢	1,			3,6	5,6	7,5

fischer Highbond-Anchor FHB II	
Performances Displacement for fischer Highbond-Anchor FHB II – A S	Annex C 6