

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0302 of 22 November 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti ETICS nailed-in anchor SDK-FV 8

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

Hilti AG
Feldkircherstraße 100
9494 Schaan
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

12 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

European Technical Assessment ETA-07/0302

Page 2 of 12 | 22 November 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-07/0302

Page 3 of 12 | 22 November 2017

English translation prepared by DIBt

Specific part

1 Technical description of the product

The Hilti ETICS screwed-in anchor D 8-FV with a plate made of virgin polypropylene and an accompanying specific expansion pin of glass fibre reinforced virgin polyamide.

The anchor may in addition be combined with the slip-on plates HDT 90 and HDT 140.

An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Displacements	See Annex C 2

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance		
Point thermal transmittance	See Annex C 2		

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

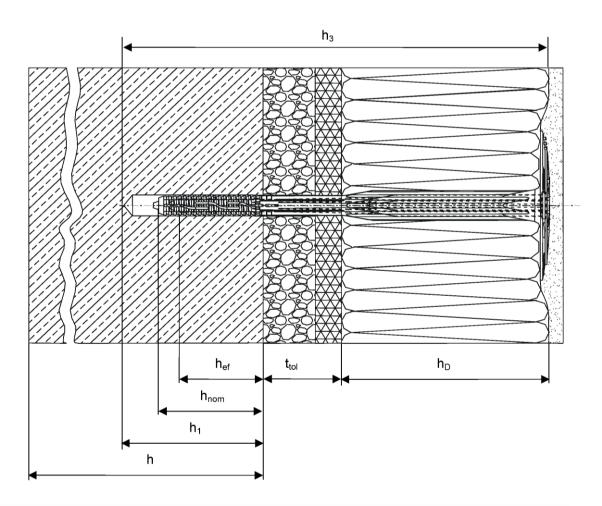
European Technical Assessment ETA-07/0302

Page 4 of 12 | 22 November 2017

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 22 November 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Ziegler

Hilti ETICS hammer-in anchor SDK-FV 8

Intended use: Fixing of external thermal insulation composite systems in concrete and masonry

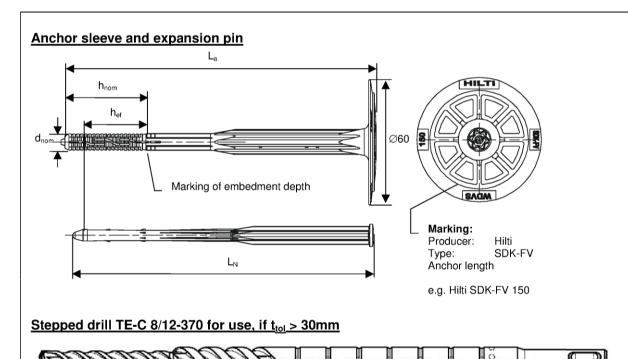
Legend:

= thickness of member (wall)

 h_1 = depth of drilled hole to the deepest point

h₃ = total length of bore hole from insulation surface to the deepest point

 $h_{ef} \quad = \quad effective \ anchorage \ depth$


h_{nom} = overall plastic anchor embedment depth in the base material

h_D = insulation thickness

t_{tol} = thickness of equalizing layer or non-load-bearing layer

HILTI ETICS hammer-in anchor SDK-FV	
Product description Installed condition	Annex A 1

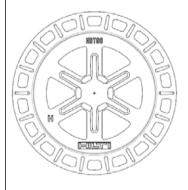
Table A1: Anchor types and dimensions [mm]

Anchor type	Anchor sleeve				Expansion pin
	d _{nom}	h _{ef}	h_{nom}	La	L_N
SDK-FV 8x70	8	30	40	70	65
SDK-FV 8x90	8	30	40	90	85
SDK-FV 8x110	8	30	40	110	105
SDK-FV 8x130	8	30	40	130	125
SDK-FV 8x150	8	30	40	150	145
SDK-FV 8x170	8	30	40	170	165
SDK-FV 8x190	8	30	40	190	185
SDK-FV 8x210	8	30	40	210	205
SDK-FV 8x230	8	30	40	230	225
SDK-FV 8x250	8	30	40	250	245
SDK-FV 8x270	8	30	40	270	265
SDK-FV 8x290	8	30	40	290	285
SDK-FV 8x310	8	30	40	310	305

Determination of maximum thickness of insulation material h_D

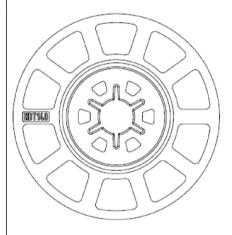
 $h_D = L_a - t_{tol} - h_{nom}$

e.g. $L_a = 210$ mm; $t_{tol} = 30$ mm $h_D = 210 - 30 - 40 = 140$ mm


Table A2 Material

Element	Material
Anchor sleeve	virgin Polypropylene, beige
Expansion pin	virgin Polyamide, fibre reinforced, nature

HILTI ETICS hammer-in anchor SDK-FV	
Product description Marking, dimensions and material of anchor sleeve and pin	Annex A 2



Slip-on plate HDT 90

Slip-on plate HDT 140

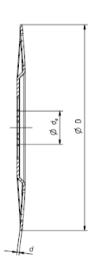


Table A3 Dimensions and materials of slip-on plates

Item	Ø D [mm]	Ø d _d [mm]	d [mm]	Material
HDT 90	90	23	1.5	Fibre reinforced polypropylene - white
HDT 140	140	23	1.5	Fibre reinforced polyamide - white

HILTI ETICS hammer-in anchor SDK-FV	
Product description Dimensions and materials of slip-on plates	Annex A 3

Specification of intended use

Anchorage subject to:

 The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system (ETICS).

Base materials:

- Normal weight concrete (use category A), according to Annex C 1
- Solid masonry (use category B), according to Annex C 1
- · Hollow or perforated masonry (use category C), according to Annex C 1
- For other base materials of the use categories A, B or C the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051 edition December 2016

Temperature range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

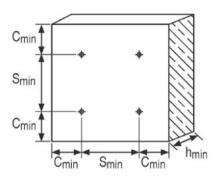
- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2.0$ and $\gamma_F = 1.5$, if there are no other national regulations.
- Verifiable calculation notes and drawings with anchor positions are prepared taking into account of the loads to be anchored.
- · Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Regard hole drilling mode according Annex C 1
- Anchor installation carried out by appropriate qualified personnel under the supervision of the person responsible for technical matters of the site
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

HILTI ETICS hammer-in anchor SDK-FV	
Intended use Specifications	Anhang B 1

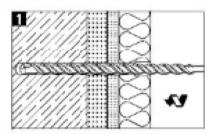
Table B1 Installation parameters

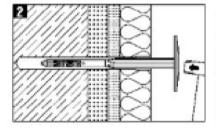

				SDK-FV
Nominal diameter of drill bit	$d_0 \\$	=	[mm]	8
Cutting diameter of drill bit	\mathbf{d}_{cut}	\leq	[mm]	8,45
Depth of drilled hole to deepest point	h ₁	\geq	[mm]	50
Effective anchorage depth	h _{ef}	=	[mm]	30
Overall plastic anchor embedment depth in the base material	h_{nom}	=	[mm]	40
thickness of equalizing layer or non-load bearing coating	t _{tol}	≤	[mm]	30 ¹⁾
Total length of bore hole from insulation surface to the deepest point	h ₃	≥	[mm]	L _a + 10mm

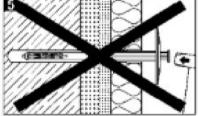
 $^{^{1)}}$ If stepped-drill TE-C 8/12-370 is used, t_{tol} can be greater

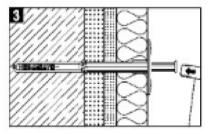
Table B2 Minimum thickness of base material, anchor spacing and edge distance

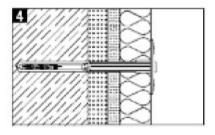
		SDK-FV
Minimum thickness of the base material	h _{min} [mm]	100
Minimum allowable spacing	s _{min} [mm]	100
Minimum allowable edge distance	c _{min} [mm]	100


Scheme of minimum thickness of base material, edge distance and anchor spacing




HILTI ETICS hammer-in anchor SDK-FV	
Intended use Installation parameters	Annex B 2




Installation instruction SDK-FV example of SDK-FV 8x110

HILTI ETICS hammer-in anchor SDK-FV

Intended use Installation instruction

Annex B 3

Table C1 Characteristic resistance to tension loads N_{Rk} in concrete and masonry for a single anchor

Base material	use cat.		Compressive strength class f _b	Remarks	Drill method	N _{Rk}
		[kg/dm³]	[N/mm²]			[kN]
Concrete						
C12/15	Α	-	-	-	hammer	0,5
EN 206-1:2000						
Concrete C16/20 – C50/60 EN 206-1:2000	Α	-	-		hammer	0,6
Solid clay brick, Mz e.g. according to DIN 105- 100:2012-01 / EN 771-1:2011	В	2,0	12	Cross section reduced by perforation vertically to the resting area up to 15%	hammer	0,6
Sand-lime solid brick, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	В	1,8	12	Cross section reduced by perforation vertically to the resting area up to 15%	hammer	0,6
Vertically perforated clay brick, Hlz e.g. according to DIN 105- 100:2012-01 / EN 771-1:2011	С	1,0	12	Cross section reduced by perforation vertically to the resting area more than 15% up to 50%, outer web thickness ≥ 14 mm	rotary only	0,41)
Vertically perforated sand-lime brick, KSL e.g. according to EN 771- 2:2011 / DIN V 106:2005-10	С	1,4	12	Cross section reduced by perforation vertically to the resting area more than 15% up to 50%, outer web thickness ≥ 23 mm	rotary only	0,5 ²⁾

Otherwise the characteristic resistance shall be determined by job-site pull-out tests

HILTI ETICS hammer-in anchor SDK-FV	
Performances Characteristic resistance to tension loads	Annex C 1

The value applies only for outer web thickness \geq 14 mm The value applies only for outer web thickness \geq 23 mm

Table C2 Point thermal transmittance according EOTA Technical Report TR 025

Anchor type	Insulation thickness h _D	Point thermal transmittance χ	
	[mm]	[W/K]	
SDK-FV	≥ 50	0,000	

Table C3 Plate stiffness and plate load resistance according EOTA Technical Report TR 026

Anchor type	Diameter of the anchor plate [mm]	Load resistance of the anchor plate [W/K]	Anchor plate stiffness [kN/mm]
SDK-FV	60	1,48	0,5

Table C4 Displacements

Base material	Bulk density class	Compressive strength class f _b	Tension Force N	$\delta_{\rm m}({f N})$
	[kg/dm³]	[N/mm²]	[kN]	[mm]
Concrete				
C12/15	-	≥ C12/15	0,15	0,4
EN 206-1:2000				
Concrete		≥ C16/20	0,20	0,6
C16/20 - C50/60	-	- 050/00	0.00	0.5
EN 206-1:2000		= C50/60	0,20	0,5
Clay brick, Mz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	2,0	12	0,20	0,5
Sand-lime solid brick, KS e.g. according to DIN V 106:2005-10 / EN 771-2:2011	1,8	12	0,20	0,7
Vertically perforated clay brick, Hlz e.g. according to DIN 105-100:2012-01 / EN 771-1:2011	1,0	12	0,15	1,2
Vertically perforated sand-lime brick, KSL e.g. according to DIN V 106:2005-10 / EN 771-2:2011	1,4	12	0,15	0,5

HILTI ETICS hammer-in anchor SDK-FV	
Performances Point thermal transmittance, plate stiffness and load resistance of plate, displacements	Annex C 2