

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0006 of 7 September 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Chemofast Injection system C-RE 385 for concrete

Bonded anchor for use in concrete

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

Chemofast Anchoring GmbH

23 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-09/0006 issued on 6 September 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-09/0006

Page 2 of 23 | 7 September 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 7 September 2017

Specific Part

1 Technical description of the product

The "Chemofast Injection system C-RE 385 for concrete" is a bonded anchor consisting of a cartridge with Chemofast injection mortar C-RE 385 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 7
Displacements	See Annex C 8 to C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply..

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-09/0006

Page 4 of 23 | 7 September 2017

English translation prepared by DIBt

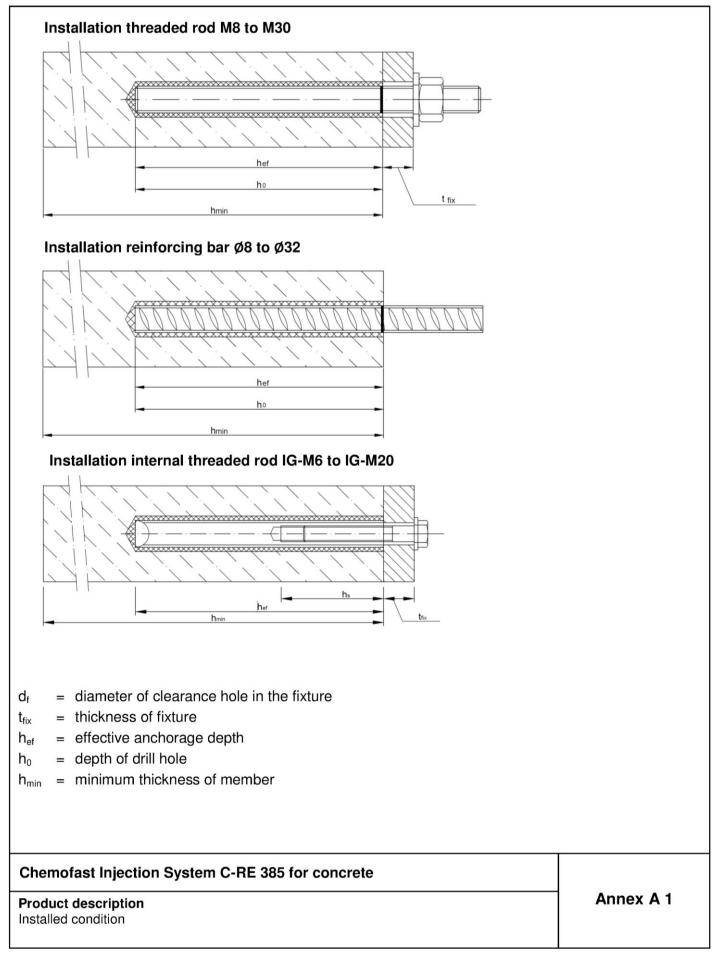
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

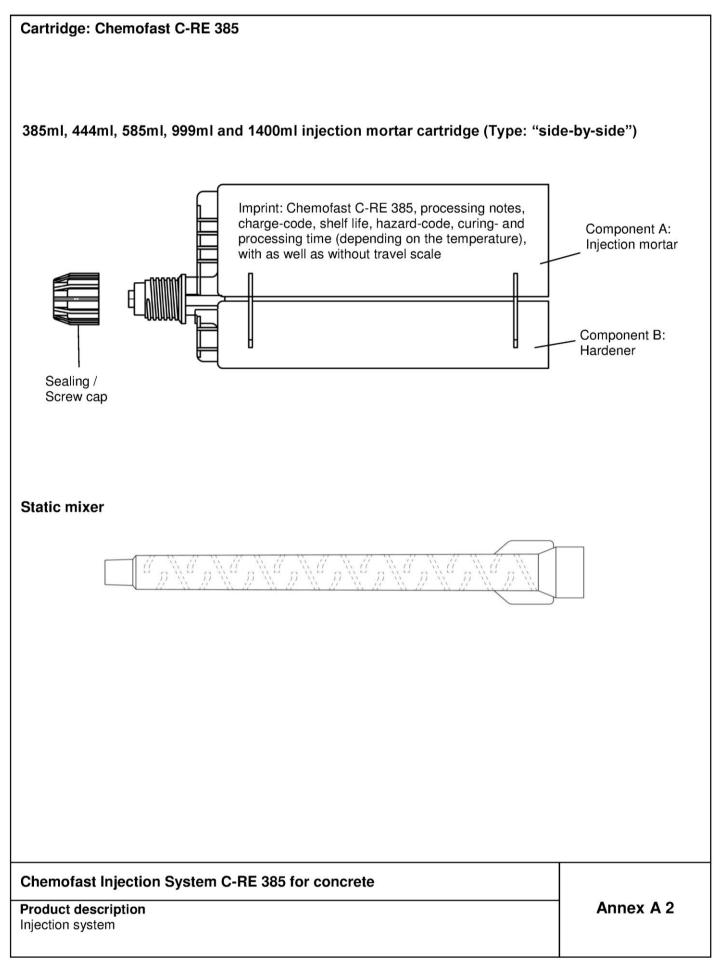
Technical details necessary for the implementation of the AVCP system, as provided for

in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 7 September 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow Head of Department


5

beglaubigt: Baderschneider

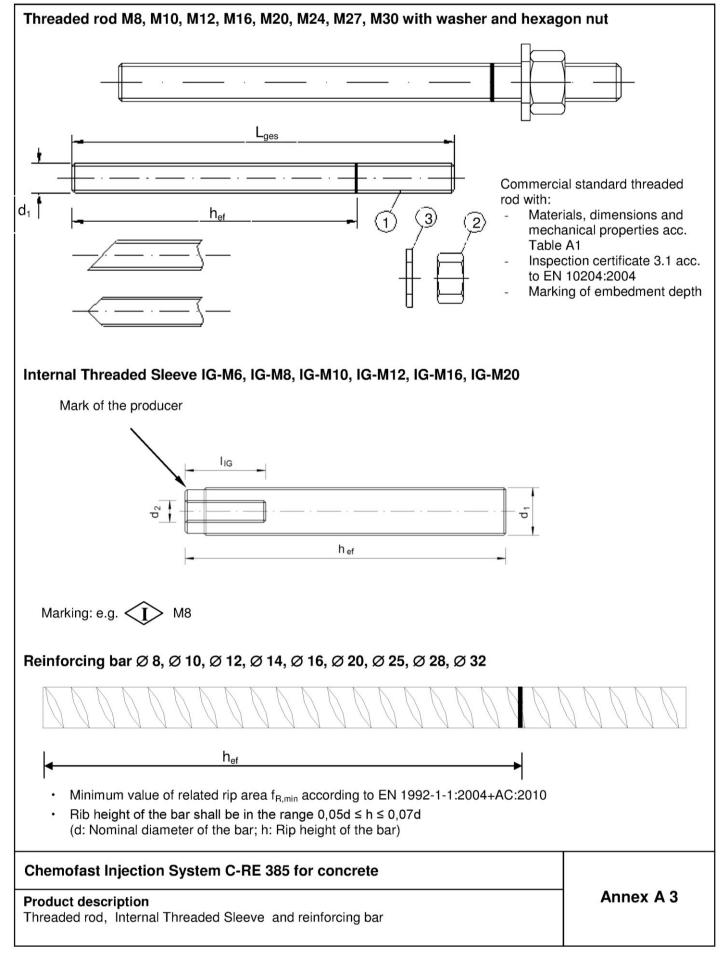


Table A1: Materials

Designation	Material						
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1	1999 or						
Steel, hot-dip galvanised ≥ 40 µm acc. to EN IS							
	Steel, EN 10087:1998 or EN 10263:200						
Anchor rod	Property class 4.6, 4.8, 5.8, 8.8, EN 1993	3-1-8:2005+AC:2009					
	$A_5 > 8\%$ fracture elongation						
	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 and 4.8 rod) EN ISO 898-2:20						
Hexagon nut, EN ISO 4032:2012							
	Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012						
Washer, EN ISO 887:2006, EN ISO 7089:2000,		0 030-2.2012					
EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised						
Internally threaded sleeve	Steel, zinc plated						
Stainless steel							
Stanless steel	Motorial 1 4401 / 1 4404 / 1 4571 EN 10	000 1:0005					
	Material 1.4401 / 1.4404 / 1.4571, EN 10 Property class 50 EN ISO 3506-1:2009	000-1.2005,					
Anchor rod	Property class 50 EN ISO 3506-1.2009 Property class 70 (≤ M24) EN ISO 3506-	1.2000					
	$A_5 > 8\%$ fracture elongation	1.2009					
	Material 1.4401 / 1.4404 / 1.4571 EN 100	088.2005					
Hexagon nut, EN ISO 4032:2012	Property class 50 (for class 50 rod) EN IS						
	Property class 70 (\leq M24) (for class 70 r						
Washer, EN ISO 887:2006, EN ISO 7089:2000,							
EN ISO 7093:2000 or EN ISO 7094:2000 Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005							
Internally threaded sleeve	Material 1.4401, 1.4404 or 1.4571, EN 1	0088-1:2005					
High corrosion resistance steel							
	Material 1.4529 / 1.4565, EN 10088-1:20	05					
	Property class 50 EN ISO 3506-1:2009	05,					
Anchor rod	Property class 70 (\leq M24) EN ISO 3506-	1.2009					
	$A_5 > 8\%$ fracture elongation	1.2005					
	Material 1.4529 / 1.4565 EN 10088-1:200	05.					
Hexagon nut, EN ISO 4032:2012	Property class 50 (for class 50 rod) EN IS						
C ,	Property class 70 (≤ M24) (for class 70 rd	od) EN ISO 3506-2:2009					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	05					
Internally threaded sleeve	Material 1.4529 / 1.4565, EN 10088-1:20	05					
Reinforcing bars							
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN	1992-1-1/NA:2013					
	$f_{uk} = f_{tk} = k \cdot f_{yk}$						
Chemofast Injection System C-RE 385 for	r concrete						
		Annex A 4					
Product description							

Materials

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- · Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 and M16 (except hot-dip galvanised rods).

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- · Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer for seismic loading are not allowed.

Installation:

- Dry or wet concrete.
- Flooded holes (not sea water).
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded sleeve.

Chemofast Injection System C-RE 385 for concrete

Intended Use Specifications Annex B 1

Anchor size		r	и в 🛛 м	10 N	/ 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d₀ [mm] =	10 .	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm		60 6	60	70	80	90	96	108	120
	h _{ef,max} [mm] =	96 1	20	144	192	240	288	324	360
Diameter of clearance hole in the fixture ¹⁾	d _f [mm	-		12	14	18	22	26	30	33
Torque moment	T _{inst} [Nm]≤			40	80	120	160	180	200
Minimum thickness of member	h _{min} [m	_	≥ 10	30 mm 0 mm			r	$n_{ef} + 2d_0$		_
Minimum spacing	s _{min} [m				60	80	100	120	135	150
Minimum edge distance	c _{min} [m	m]	40 5	50	60	80	100	120	135	150
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Table B2: Installation	on parameters	_								
Rebar size	d [mm] -	Ø8	Ø 10	Ø 12	Ø 14		_	Ø 25	Ø 28	
	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	168		240	300	336	384
Minimum thickness of member	h _{min} [mm]	h _{ef} +	30 mm 00 mm				h _{ef} + 2d			
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160
					•					
	on parameters	s for i	internal	-		sleeve	iG-M 1		M 16	
Anchor size	-	s for i 	IG-M 6	i IG-				12 IG-	M 16	IG-M 20 20
Anchor size Internal diameter of sleeve	d ₂ [mm] =	IG-M 6	5 IG-	M 8	IG-M 10	IG-M 1	12 IG-		IG-M 20
Table B3:InstallationAnchor sizeInternal diameter of sleeveOuter diameter of sleeve2)Nominal drill hole diameter	d_2 [$d_1 = d_{nom}$ [mm] = mm] =	IG-M 6 6 10	5 IG- 8	M 8	IG-M 10 10	IG-M 1	12 IG-	16	IG-M 20
Anchor size Internal diameter of sleeve Outer diameter of sleeve ²⁾ Nominal drill hole diameter	$d_{1} = d_{nom} \begin{bmatrix} d_{1} \\ d_{0} \end{bmatrix}$	mm] = mm] = mm] =	IG-M 6 6 10 12	5 IG- 8 1	M 8 3 2 4	IG-M 10 10 16 18	IG-M 1 12 20 24	12 IG-	16 24 28	IG-M 20 20 30 35
Anchor size Internal diameter of sleeve Outer diameter of sleeve ²⁾ Nominal drill hole diameter	d_2 [d_1 = d_{nom} [d_0 [h_e_f,min [mm] = mm] = mm] = mm] =	IG-M 6 6 10 12 60	5 IG- 1 1 7	M 8 3 2 4 0	IG-M 10 10 16 18 80	IG-M 1 12 20 24 90	12 IG-	16 24 28 96	IG-M 20 20 30 35 120
Anchor size Internal diameter of sleeve Outer diameter of sleeve ²⁾ Nominal drill hole diameter Effective anchorage depth Diameter of clearance	d ₂ [d ₁ = d _{nom} [d ₀ [h _{ef,max} [mm] = mm] = mm] = mm] =	IG-M 6 6 10 12 60 120	5 IG- 1 1 7	M 8 3 2 4	IG-M 10 10 16 18	IG-M 1 12 20 24	12 IG-	16 24 28	IG-M 20 20 30 35
Anchor size Internal diameter of sleeve Outer diameter of sleeve ²⁾	$d_{1} = d_{nom} [$ $d_{1} = d_{nom} [$ $d_{0} [$ $h_{ef,min} [$ $h_{ef,max} [$ $d_{f} [$	mm] = mm] = mm] = mm] = mm] =	IG-M 6 6 10 12 60 120 7	5 IG- 1 1 7 14 9	M 8 3 2 4 70 44	IG-M 10 10 16 18 80 192	IG-M 1 12 20 24 90 240	12 IG-	16 24 28 96 288	IG-M 20 20 30 35 120 360
Anchor size Internal diameter of sleeve Outer diameter of sleeve ²⁾ Nominal drill hole diameter Effective anchorage depth Diameter of clearance hole in the fixture ¹⁾	d ₂ [d ₁ = d _{nom} [d ₀ [h _{ef,min} [h _{ef,max} [d _f [T _{inst}	mm] = mm] = mm] = mm] = mm] =	IG-M 6 6 10 12 60 120 7 10	5 IG- 1 1 7 14 5 1 4	M 8 3 2 4 70 44 20 44 20 20 20 20 20 20 20 20 20 20 20 20 20	IG-M 10 10 16 18 80 192 12	IG-M 12 20 24 90 240 14	12 IG-	16 24 28 96 288 18	IG-M 20 20 30 35 120 360 22

¹⁾ For larger clearance hole see TR029 section 1.1
 ²⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

s_{min} [mm]

c_{min} [mm]

≥ 100 mm

60

60

50

50

80

80

Chemofast Injection System C-RE 385 for concrete

Intended Use Installation parameters Annex B 2

120

120

100

100

150

150

Steel brush RBT

Table B4: Parameter cleaning and setting tools

Threaded Rod	Rebar	Internal Threaded Sleeve	d₀ Drill bit - Ø	d _⊳ Brush - Ø		d _{b,min} min. Brush - Ø	Piston plug		
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]	[No.]		
M8			10	RBT10	12	10,5			
M10	8	IG-M6	12	RBT12	14	12,5			
M12	10	IG-M8	14	RBT14	16	14,5	No		
	12		16	RBT16	18	16,5	piston plug required		
M16	14	IG-M10	18	RBT18	20	18,5			
	16		20	RBT20	22	20,5			
M20	20	IG-M12	24	RBT24	26	24,5	VS24		
M24		IG-M16	28	RBT28	30	28,5	VS28		
M27	25		32	RBT32	34	32,5	VS32		
M30	28	IG-M20	35	RBT35	37	35,5	VS35		
	32		40	RBT40	41,5	40,5	VS40		

MAC: Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

CAC: Recommended compressed air tool (min 6 bar) Drill bit diameter (d_0): 10 mm to 40 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 40 mm

Chemofast Injection System C-RE 385 for concrete

Intended Use

Cleaning and setting tools

Annex B 3

Installation inst	ructions							
	1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1, B2 or B3). In hole: the drill hole shall be filled with mortar							
	Attention! Standing water in the bore hole must be removed	d before cleaning.						
2x	2a. Starting from the bottom or back of the bore hole, blow the hole compressed air (CAC) (min. 6 bar) or a hand pump (MAC) (Ann of two times. If the bore hole ground is not reached an extension	iex B 3) a minimum						
or	MAC: The hand-pump ¹⁾ can only be used for anchor sizes in ur either up to bore hole diameter 20mm or embedment depth up to CAC: Compressed air (min. 6 bar, oil-free) can be used for all s uncracked concrete.	to 240mm.						
	 Check brush diameter (Table B4) and attach the brush to a drilli or a battery screwdriver. Brush the hole with an appropriate size > d_{b,min} (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush ex shall be used (Table B4). 	ed wire brush						
or	 shall be used (Table B4). Finally blow the hole clean again with compressed air (CAC) (min. 6 bar) or a har pump (MAC) (Annex B 3) a minimum of two times. If the bore hole ground is not reached an extension shall be used. MAC: The hand-pump¹⁾ can <u>only</u> be used for anchor sizes in uncracked concret either up to bore hole diameter 20mm or embedment depth up to 240mm. CAC: Compressed air (min. 6 bar, oil-free) can be used for all sizes in cracked a uncracked concrete. 							
2x	After cleaning, the bore hole has to be protected against re an appropriate way, until dispensing the mortar in the bore the cleaning repeated has to be directly before dispensing In-flowing water must not contaminate the bore hole again. ¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an er 240 mm also in cracked concrete with hand-pump.	hole. If necessary, the mortar.						
	3. Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. For every working interruption longer than the recommended we (Table B5) as well as for new cartridges, a new static-mixer sha	orking time						
her +	4. Prior to inserting the anchor rod into the filled bore hole, the pose embedment depth shall be marked on the anchor rods.	ition of the						
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive components shows a consistent grey or red colour.							
Chemofast Injection	on System C-RE 385 for concrete							
Intended Use Installation instructior	IS	Annex B 4						

Installation inst	ructions (continuation)
	6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B5.
	7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.
	The anchor shall be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
20°C e.g.	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).
	 After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench.

Table B5: Minimum curing time

Concrete	temp	perature	Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete				
+ 5 °C	to	+ 9 °C	120 min	50 h	100 h				
+ 10 °C	to	+ 19 °C	90 min	30 h	60 h				
+ 20 °C	to	+ 29 °C	30 min	10 h	20 h				
+ 30 °C	to	+ 39 °C	20 min	6 h	12 h				
+ 4	40 °C	;	12 min	4 h	8 h				
Cartridge	temp	perature	+5°C to +40°C						
			•						

Chemofast Injection System C-RE 385 for concrete

Intended Use Installation instructions (continuation) Curing time Annex B 5

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods											
Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	cteristic tension resistance, Steel failure										L
Steel,	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Nichtro	ostender Stahl A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nichtro	ostender Stahl A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Chara	cteristic tension resistance, Partial safety factor										
Steel,	Property class 4.6	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 4.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 5.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 8.8	γ _{Ms,N} 1)	[-]	1,5							
Stainle	ess steel A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]	2,86							
Stainle	ess steel A4 and HCR, Property class 70	γ _{Ms,N} 1)	[-]	1,87							
Chara	cteristic shear resistance, Steel failure										
٤	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Without lever arm	Steel, Property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
t leve	Steel, Property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
ithou	Stainless steel A4 and HCR, Property class 50	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
8	Stainless steel A4 and HCR, Property class 70	V _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
With lever arm	Steel, Property class 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
lever	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Nith	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
_	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
Chara	cteristic shear resistance, Partial safety factor										
Steel,	Property class 4.6	γ _{Ms,V} 1)	[-]				1,	67			
Steel,	Property class 4.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 5.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 8.8	γ _{Ms,V} 1)	[-]				1,	25			
Stainle	ess steel A4 and HCR, Property class 50	γ _{Ms,V} 1)	[-]				2,	38			
Stainle	ess steel A4 and HCR, Property class 70	γ _{Ms,V} 1)	[-]				1,	56			

¹⁾ in absence of national regulation

Chemofast Injection System C-RE 385 for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Table C2: Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2) Anchor size threaded rod M8 M10 M12 M16 M20 M24 M 27 M 30 Steel failure [kN] N_{Rk,s} see Table C1 Characteristic tension resistance 1.0 • N_{Rk,s} N_{Rk,s,C1} [kN] N_{Rk,s,C2} NPD [kN] 1.0 • N_{Bk.s} No Performance Determined (NPD) Partial safety factor see Table C1 γMs,N [-] Combined pull-out and concrete cone failure Characteristic bond resistance in non-cracked concrete C20/25 dry and wet concrete [N/mm²] 15 15 15 14 13 12 12 12 Temperature range I: $\tau_{\rm Rk,uc}$ 40°C/24°C flooded bore hole [N/mm²] 15 14 13 10 9,5 8,5 7,5 7,0 $\tau_{Rk,ucr}$ Temperature range II: dry and wet concrete [N/mm²] 9,5 9,5 9,0 8,5 8,0 7,5 7,5 7,5 $\tau_{Rk,ucr}$ 60°C/43°C 7,0 [N/mm²] 9,5 9,5 9,0 8,5 7,5 6,5 6,0 flooded bore hole $\tau_{Rk,ucr}$ 7,5 8,5 7.0 7.0 6,5 8.5 8,0 6,5 Temperature range III: dry and wet concrete [N/mm²] $\tau_{Rk,ucr}$ 7,5 7,0 5,5 72°C/43°C flooded bore hole [N/mm²] 8,5 8,5 8,0 6,0 5,5 $\tau_{\rm Rk,uc}$ Characteristic bond resistance in cracked concrete C20/25 7.0 7.5 6.5 5.5 [N/mm²] 7.0 6.0 5.5 5.5 $\tau_{Rk,cr}$ dry and wet concrete [N/mm²] 5,9 7,0 7.1 6,2 5,7 5,5 5,5 5,5 $\tau_{Rk,C1}$ 2,4 Temperature range I: [N/mm²] NPD 2,2 No Performance Determined (NPD) τ_{Rk.C2} 40°C/24°C [N/mm²] 7,0 7,0 7,5 6,0 5,0 4,5 4,0 4,0 $\tau_{Rk,cr}$ flooded bore hole [N/mm²] 5,9 7,0 7.1 5,8 4.8 4.5 4.0 4.0 $\tau_{Rk,C1}$ [N/mm²] NPD 2,4 2,1 No Performance Determined (NPD) $\tau_{Rk,C2}$ 4.5 [N/mm²] 4,5 4,5 4.0 3,5 3,5 3.5 3.5 $\tau_{Rk,cr}$ dry and wet concrete [N/mm²] 3,7 4,5 4,3 3,8 3,4 3,5 3,5 3,5 τ_{Rk.C1} Temperature range II: [N/mm²] NPD 1,4 1,4 No Performance Determined (NPD) $\tau_{\rm Rk,C2}$ [N/mm²] 60°C/43°C 4.5 4.5 4.5 4.0 3.5 3.5 3.5 3.5 $\tau_{Rk,cr}$ flooded bore hole [N/mm²] 3,7 4,5 4,3 3,8 3,4 3,5 3,5 3,5 $\tau_{Rk,C1}$ [N/mm²] NPD 1,4 1,4 No Performance Determined (NPD) τ_{Rk.C2} [N/mm²] 4.0 4.0 4.0 3,5 3.0 3,0 3,0 3,0 $\tau_{\text{Rk,cr}}$ dry and wet concrete [N/mm²] 3,2 4,0 3,9 3,4 3,0 3,0 3,0 3,0 τ_{Rk,C1} Temperature range III: [N/mm²] NPD 1,3 1,2 No Performance Determined (NPD) τ_{Rk.C2} 3,0 72°C/43°C 4.0 3.5 [N/mm²] 4.0 4,0 3.0 3.0 3.0 $\tau_{Rk,cr}$ flooded bore hole [N/mm²] 3,2 4,0 3,9 3,4 3,0 3,0 3,0 3,0 $\tau_{Rk,C1}$ [N/mm²] NPD 1,3 1,2 No Performance Determined (NPD) $\tau_{Bk,C2}$ C25/30 1.02 C30/37 1,04 Increasing factors for concrete C35/45 1,07 C40/50 1,08 Ψc C45/55 1,09 C50/60 1,10 Factor according to Non-cracked concrete 10,1 CEN/TS 1992-4-5 k₈ [-] Cracked concrete 7.2 Section 6.2.2.3 Concrete cone failure Factor according to Non-cracked concrete [-] 10,1 kucr CEN/TS 1992-4-5 Cracked concrete 7,2 k_{cr} [-] Section 6.2.3.1 1,5 h_{ef} Edge distance C_{cr,N} [mm] Axial distance 3,0 h_{ef} [mm] Scr.N Splitting failure h/h_{ef} ≥ 2,0 1,0 h_{ef} h $2 \cdot h_{ef}$ 2.5 Edge distance 2,0> h/h_{ef} > 1,3 [mm] C_{cr,sp} h_{ef} h/h_{ef} ≤ 1,3 2,4 h_{ef} Axial distance [mm] 2 Ccr,sp S_{cr,sp} Installation safety factor 1,2 1,4 [-] $\gamma_2 = \gamma_{inst}$ (dry and wet concrete) Installation safety factor (flooded bore hole) [-] 1,4 $\gamma_2 = \gamma_{inst}$

Chemofast Injection System C-RE 385 for concrete

Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2)

Table C3:	Characteristic v seismic action							si-stati	c actio	on and		
Anchor size thread	ded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure witho	ut lever arm											
		V _{Rk,s}	[kN]	see Table C1								
Characteristic shea	r resistance	V _{Rk,s,C1}	[kN]	0,87	V _{Rk,s}	(0,88 • V _{Rk,:}	5	0,80 • V _{Rk,s}			
		$V_{Rk,s,C2}$	[kN]	NF	PD	0,80	• V _{Rk,s}	No Perf	ormance [Determine	d (NPD)	
Partial safety factor		γMs,∨	[-]				see Ta	ble C1				
Steel failure with le	ever arm											
	M ⁰ _{Rk,s}	[Nm]	see Table C1									
Characteristic bending moment		M ⁰ _{Rk,s,C1}	[Nm]			No Porf	ormance [Determine				
		M ⁰ _{Rk,s,C2}	[Nm]	No Performance Determined (NPD)								
Partial safety factor		γms,∨	[-]	see Table C1								
Concrete pry-out f	ailure											
Factor k ₃ in equatio CEN/TS 1992-4-5 S Factor k in equatior Technical Report T	Section 6.3.3 ((5.7) of	k ₍₃₎	[-]				2,	,0				
Installation safety fa	actor	$\gamma_2 = \gamma_{inst}$	[-]				1,	,0				
Concrete edge fail	ure											
Effective length of a	Inchor	l _f	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})				
Outside diameter of	anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation safety fa	actor	$\gamma_2 = \gamma_{inst}$	[-]				1,	,0				

Chemofast Injection System C-RE 385 for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2) $\,$

Table C4: Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action Anchor size internally threaded sleeves IG-M 6 IG-M 8 IG-M 10 IG-M 12 IG-M 16 IG-M 20 Steel failure Characteristic tension resistance, N_{Rk.s} [kN] 10 17 29 42 76 123 Steel, strength class 5.8 Partial safety factor [-] 1,5 γMs,N Characteristic tension resistance, $N_{\mathsf{Rk},\mathsf{s}}$ [kN] 16 27 46 67 121 196 Steel, strength class 8.8 Partial safety factor [-] 1.5 γMs,N Characteristic tension resistance. Stainless Steel A4 N_{Rk,s} [kN] 14 26 41 59 110 172 Strength class 70 Partial safety factor [-] 1,87 γMs.N Combined pull-out and concrete cone failure Characteristic bond resistance in non-cracked concrete C20/25 dry and wet concrete 15 15 14 13 12 12 Temperature range I: [N/mm²] $\tau_{Rk,ucr}$ 40°C/24°C flooded bore hole 14 13 10 9,5 8,5 7,0 9,5 9,0 8,5 8,0 7,5 7,5 Temperature range II: dry and wet concrete [N/mm²] $\tau_{\text{Rk,ucr}}$ 60°C/43°C flooded bore hole 9.5 9,0 8.5 7,5 7,0 6,0 7,0 8,5 8,0 7.5 7,0 6,5 dry and wet concrete Temperature range III: $\tau_{\rm Rk,ucr}$ [N/mm²] 72°C/43°C 7,5 7,0 8,5 8,0 6,0 5,5 flooded bore hole Characteristic bond resistance in cracked concrete C20/25 dry and wet concrete 7,0 7,5 6,5 6,0 5,5 5,5 Temperature range I: [N/mm²] $\tau_{\text{Rk,cr}}$ 40°Ċ/24°C 7,0 6,0 4,0 7,5 5,0 4,5 flooded bore hole dry and wet concrete 4,5 4,5 4,0 3,5 3,5 3,5 Temperature range II: [N/mm²] $\tau_{Rk,cr}$ 60°C/43°C 4,5 4.5 4.0 3,5 3.5 3,5 flooded bore hole 3,5 dry and wet concrete 4,0 4.0 3,0 3.0 3.0 Temperature range III: [N/mm²] $\tau_{\text{Rk,cr}}$ 72°C/43°C flooded bore hole 4,0 4,0 3,5 3,0 3,0 3,0 C25/30 1,02 C30/37 1,04 C35/45 1,07 Increasing factors for concrete C40/50 1,08 Ψc C45/55 1,09 C50/60 1,10 Factor according to Non-cracked concrete 10,1 CEN/TS 1992-4-5 k₈ [-] Cracked concrete 7,2 Section 6.2.2.3 Concrete cone failure Factor according to Non-cracked concrete k_{ucr} [-] 10.1 CEN/TS 1992-4-5 k_{cr} Cracked concrete [-] 7.2 Section 6.2.3.1 Edge distance C_{cr,N} $1,5 h_{ef}$ [mm] 3,0 h_{ef} Axial distance [mm] S_{cr,N} Splitting failure h/h_{ef} ≥ 2,0 1,0 h_{ef} h $2 \cdot h_{ef}$ $2,0>h/h_{ef}>1,3$ 2,5 Edge distance [mm] C_{cr,sp} h_{ef} $h/h_{ef} \le 1,3$ 2,4 h_{ef} Axial distance $\mathbf{S}_{cr,sp}$ [mm] 2 ccr.sp Installation safety factor [-] 1,2 1,4 $\gamma_2 = \gamma_{inst}$ (dry and wet concrete) Installation safety factor (flooded bore hole) [-] 1,4 $\gamma_2 = \gamma_{inst}$

Chemofast Injection System C-RE 385 for concrete

Performances

Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action

Anchor size for internally threaded	sleeves		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure without lever arm		1			1				
Characteristic shear resistance, Steel, strength class 5.8	V _{Rk,s}	[kN]	5	9	15	21	38	61	
Partial safety factor	γMs,V	[-]			1,2	25			
Characteristic shear resistance, Steel, strength class 8.8	V _{Rk,s}	[kN]	8	14	23	34	60	98	
Partial safety factor	γMs,V	[-]			1,2	25		<u> </u>	
Characteristic shear resistance, Stainless Steel A4 Strength class 70	V _{Rk,s}	[kN]	7	13	20	30	55	86	
Partial safety factor	γMs,V	[-]			1,5	6			
Steel failure with lever arm									
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325	
Partial safety factor	γms,v	[-]		1,25					
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519	
Partial safety factor	γMs,V	[-]			1,2	25		<u> </u>	
Characteristic bending moment, Stainless Steel A4 Strength class 70	М ⁰ _{Вк,s}	[Nm]	11	26	52	92	233	454	
Partial safety factor	γMs,V	[-]			1,5	6			
Concrete pry-out failure									
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k_3 in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]			2,	0			
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,	0			
Concrete edge failure	I	I							
Effective length of anchor	lf	[mm]			$I_f = min(h_e$	f; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30	
Installation safety factor	γ2 = γinst	[-]		I	1,0	0		<u> </u>	

Chemofast Injection System C-RE 385 for concrete

Performances

Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

Anchor size reinforci	ing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure	-		1		_					-		
Characteristic tension	resistance	$N_{Rk,s}$	[kN]					$A_s \cdot f_{uk}^{1}$)			
	resistance	N _{Rk,s,C1}	[kN]				1,	0 ∙ A _s ∙ f	: 1) uk			
Cross section area		As	[mm ²]	50	79	113	154	201	214	491	616	804
Partial safety factor		γMs,N	[-]					1,4 ²⁾				
,	nd concrete cone failure	71015,14						.,.				
	sistance in non-cracked co	oncrete C20/		_								
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	14 8,5	13 8,5	11 8,0	10 8.0	9,5 7,5	8,5 7,0	7,5 7,0	7,0 6,5	6,0 6,5
Temperature range II: 60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$ $\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5 8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
Characteristic bond re	sistance in cracked concre	ete C20/25										
T	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	7,0	7,0	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I: 40°C/24°C		τ _{Rk,C1}	[N/mm ²]	5,9 7,0	7,0 7,0	7,1 7,5	6,4 6,5	6,2 6,0	5,7 5,0	5,5 4,5	5,5 4,0	5,5 4,0
I OLI O	flooded bore hole	τ _{Rk,cr} τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,5	6,0	5,7	4,8	4,5	4,0	4,0
		τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,0
		τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,0
-	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III: 72°C/43°C		τ _{Rk,C1}	[N/mm ²]	3,2 4,0	4,0 4,0	3,9 4,0	3,2 3,5	3,3 3,5	2,9 3,0	3,0 3,0	3,0 3,0	3,0 3,0
72 0/43 0	flooded bore hole	τ _{Rk,cr} τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3.9	3,5	3,3	2.9	3,0	3,0	3,0
			25/30	0,2	1,0	0,0	0,2	1.02	2,0	0,0	0,0	0,0
			80/37					1,04				
Increasing factors for a	concrete		5/45					1,07				
			0/50					1,08				
10			5/55					1,09				
			60/60	1,10								
Factor according to	Non-cracked concrete			10,1								
CEN/TS 1992-4-5	Cracked concrete	− k ₈	[-]					7,2				
Section 6.2.2.3								7,2				
Concrete cone failure Factor according to		k	[[]					10.1				
CEN/TS 1992-4-5	Non-cracked concrete	K _{ucr}	[-]					10,1				
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h_{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure												
	h/h _{ef} ≥ 2,0	4						1,0 h _{ef}				
Edge distance	20 + b/b + 12		[mm]				$2 \cdot h_a$	_e 2,5 –	_h_)			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				2 · 11,	$f \left(2, 3 - \right)$	h _{ef}			
	h/h _{ef} ≤ 1,3	-						2,4 h _{ef}				
Axial distance	hinner = 1,0	S _{cr,sp}	[mm]					2 C _{cr,sp}				
	or (dry and wet concrete)		[-]			1,2		Z Ocr,sp		1	,4	
Installation safety facto		$\gamma_2 = \gamma_{inst}$ $\gamma_2 = \gamma_{inst}$	[-]			1,2		1,4			,-	
				re				1,4				
²⁾ in absence o	aken from the specificat of national regulation			5								
Chemofast Inje	ection System C-F	RE 385 fc	or concre	ete								
Performances	es of tension loads und	er static, q	uasi-static	action a	nd seis	mic acti	on		1	Anne	ex C 6	6

	haracterist eismic actio						atic, c	uasi-	static	actio	n and	
Anchor size reinforcing	g bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without le	ver arm											
		V _{Rk,s}	[kN]				0,5	50 ∙ A _s ∙ f	: 1) uk			
Characteristic shear resi	stance	$V_{Rk,s,C1}$	[kN]	0,40 • /	A _s ∙ f _{uk} ¹)			0,4	14 • A₅ • 1	: 1) uk		
Cross section area		A _s	[mm²]	50	79	113	154	201	214	491	616	804
Partial safety factor		γMs,V	[-]					1,5 ²⁾				
Steel failure with lever	arm											
Obana daviatia banalian n		M ⁰ _{Rk,s}	[Nm]				1.2	2 ∙ W _{el} ∙ f	1) uk			
Characteristic bending n	Ioment	M ⁰ _{Rk,s,C1}	[Nm]			No F	Performar	nce Dete	rmined (N	NPD)		
Elastic section modulus		W _{ei}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial safety factor		γms,v	[-]					1,5 ²⁾				
Concrete pry-out failur	'e											
Factor k₃ in equation (27 CEN/TS 1992-4-5 Section Factor k in equation (5.7 Technical Report TR 029	on 6.3.3) of	k ₍₃₎	[-]					2,0				
Installation safety factor		$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Concrete edge failure												
Effective length of ancho	or	l _f	[mm]				$I_{f} = n$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of and	hor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor		$\gamma_2 = \gamma_{inst}$	[-]					1,0				
¹⁾ f _{uk} shall be tak ²⁾ in absence of	en from the spe national regula	ecifications of re tion	einforcin	g bars								
Chemofast Inject Performances Characteristic values (performance catego	s of shear loads					eismic ad	ction			Ann	ex C 🕻	7

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25 unde	r static and qua	si-statio	action	L					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C/24°Cັ	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Cracked concrete	C20/25 under sta	tic, quasi-static	and sei	smic C	1 action	1				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,05
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,21
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,06
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,24
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,06
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,24
Cracked concrete	C20/25 under sei	smic C2 action								
Temperature range I:	$\delta_{N,seis(DLS)}$ -factor	[mm/(N/mm²)]			0,03	0,05				
40°C/24°C	$\delta_{N,seis(ULS)}$ -factor	[mm/(N/mm ²)]	1		0,06	0,09	1			
Temperature range II:	$\delta_{N,seis(DLS)}$ -factor	[mm/(N/mm ²)]		ormance mined	0,03	0,05	No Porf	ormanaa	Dotormino	
		F (/h.l./ 0)]			0,06	0.00		formance Determined (NPI		
60°C/43°C	$\delta_{N,seis(ULS)}$ -factor	[mm/(N/mm ²)]] (NF			0,09				
60°C/43°C Temperature range III:	$\frac{\delta_{\text{N,seis(ULS)}} \text{-factor}}{\delta_{\text{N,seis(DLS)}} \text{-factor}}$	[mm/(N/mm ²)]		PD)	0,00	0,09				
60°C/43°C	$\begin{array}{ c c c c c }\hline \delta_{N,seis(DLS)} \mbox{-factor} \\ \hline \delta_{N,seis(ULS)} \mbox{-factor} \\ \hline e \mbox{ displacement} \\ \cdot \tau ; & \delta_{N,seis} \\ \end{array}$		ctor · τ;	,	0,03 0,06	,	r tension			
$\begin{array}{l} \hline 60^{\circ}\text{C}/43^{\circ}\text{C} \\ \hline \text{Temperature range III:} \\ 72^{\circ}\text{C}/43^{\circ}\text{C} \\ \end{array}$	$\begin{array}{ c c c c c }\hline \delta_{N,seis(DLS)} \mbox{-factor} \\ \hline \delta_{N,seis(ULS)} \mbox{-factor} \\ \hline e \mbox{ displacement} \\ \cdot \tau ; & \delta_{N,seis} \\ \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$	ctor $\cdot \tau$; ctor $\cdot \tau$;	τ: acti	0,03 0,06	0,05 0,09 stress for	r tension			
$\begin{array}{l} \hline 60^{\circ}\text{C}/43^{\circ}\text{C} \\ \hline \text{Temperature range III:} \\ 72^{\circ}\text{C}/43^{\circ}\text{C} \\ \end{array}$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \text{-factor} \\ \hline \delta_{N,seis(ULS)} \ \text{-factor} \\ e \ \text{displacement} \\ \cdot \ \tau; & \delta_{N,seis} \\ \cdot \ \tau; & \delta_{N,seis} \\ \text{splacements } \textbf{L} \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$	ctor $\cdot \tau$; ctor $\cdot \tau$;	τ: acti	0,03 0,06	0,05 0,09 stress for	r tension M 20	M24	M 27	M 30
$\begin{array}{c} 60^{\circ}\text{C}/43^{\circ}\text{C} \\ \hline \text{Temperature range III:} \\ 72^{\circ}\text{C}/43^{\circ}\text{C} \\ \end{array}$ $\begin{array}{c} ^{1)} \text{ Calculation of th} \\ \delta_{N0} = \delta_{N0}\text{-factor} \\ \delta_{N\infty} = \delta_{N\infty}\text{-factor} \\ \hline \text{Table C9: Di} \end{array}$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ displacement \\ \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear left	ctor · τ; ctor · τ; oad ¹⁾ (1 M 8	τ: action thread M 10	0,03 0,06 on bond ed rod M 12	0,05 0,09 stress for) M 16	M 20		M 27	M 30
$\frac{60^{\circ}\text{C}/43^{\circ}\text{C}}{\text{Temperature range III:}}$ $\frac{10^{\circ}\text{C}}{72^{\circ}\text{C}/43^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}C$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ displacement \\ \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear left	ctor · τ; ctor · τ; oad ¹⁾ (1 M 8	τ: action thread M 10	0,03 0,06 on bond ed rod M 12	0,05 0,09 stress for) M 16	M 20		M 27	M 30
$\frac{60^{\circ}\text{C}/43^{\circ}\text{C}}{\text{Temperature range III:}}$ $\frac{10^{\circ}\text{C}}{72^{\circ}\text{C}/43^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}\text{C}\text{C}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{C}\text{C}\text{C}\text{C}\text{C}\text{C}\text{C}\text{C}C$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear left to the second	ctor · τ; ctor · τ; oad ¹⁾ (t M 8 tatic, qu	τ: action thread M 10 uasi-stat	0,03 0,06 on bond ed rod M 12 tic and	0,05 0,09 stress for) M 16 seismic	M 20 C1 acti	on		0,03
$\frac{60^{\circ}\text{C}/43^{\circ}\text{C}}{\text{Temperature range III:}}$ $\frac{10^{\circ}\text{C}}{72^{\circ}\text{C}/43^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}\text{alculation of th}}{\delta_{N0} = \delta_{N0}\text{-factor}}$ $\frac{\delta_{N\infty}}{\delta_{N\infty}} = \delta_{N\infty}\text{-factor}$ Table C9: Di Anchor size thread Non-cracked and o All temperature	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear later the second s	ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 tatic, qu	τ: activ thread M 10 uasi-stat 0,06	0,03 0,06 on bond ed rod M 12 tic and 0,05	0,05 0,09 stress for) M 16 seismic 0,04	M 20 C1 act 0,04	on 0,03	0,03	0,03
Temperature range III: $72^{\circ}C/43^{\circ}C$ Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and of All temperature ranges Cracked concrete	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear later the second s	ctor · τ; ctor · τ; Dad¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: activ thread M 10 uasi-stat 0,06	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04	on 0,03	0,03	
$\frac{60^{\circ}\text{C}/43^{\circ}\text{C}}{\text{Temperature range III:}}$ $\frac{10^{\circ}\text{C}}{72^{\circ}\text{C}/43^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}$ $\frac{10^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}\text{C}}{1^{\circ}C$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ \ -factor \\ \hline \delta_{N,seis(ULS)} \ \ \ -factor \\ e \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)}-fa$ $(ULS) = \delta_{N,seis(ULS)}-fa$ Inder shear I (I) $[mm/(kN)]$ $[mm/(kN)]$ smic C2 action $[mm/kN]$	ctor · τ; ctor · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: active thread M 10 asi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,06	on 0,03	0,03 0,05	0,03
$\begin{array}{l} & 60^{\circ}\text{C}/43^{\circ}\text{C} \\ \hline \text{Temperature range III:} \\ & 72^{\circ}\text{C}/43^{\circ}\text{C} \\ \end{array} \\ \begin{array}{l} ^{1)} \text{ Calculation of th} \\ & \delta_{N0} = \delta_{N0}\text{-factor} \\ & \delta_{N\infty} = \delta_{N\infty}\text{-factor} \\ \hline \text{Table C9: Di} \\ \hline \text{Anchor size thread} \\ \hline Anchor size th$	$\begin{array}{c c} \delta_{N,seis(DLS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ \hline \delta_{N,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \ \tau; & \delta_{N,seis} \\ \hline splacements \ u \\ \hline splacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{V0} \ -factor \\ \hline \delta_{V0} \ -factor \\ \hline c20/25 \ under \ seis \\ \hline \delta_{V,seis(DLS)} \ -factor \\ \hline \delta_{V,seis(ULS)} \ -factor \\ \hline \delta_{V,seis(ULS)} \ -factor \\ \hline e \ displacement \\ \cdot \ V; \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis}(DLS)-fa$ $(ULS) = \delta_{N,seis}(ULS)-fa$ Inder shear later that the second sec	ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: action thread M 10 asi-stat 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,06	on 0,03 0,05	0,03 0,05	0,03

Table C10: Dis	splacements	under tension	load ¹⁾ (ir	nternally	threade	ed sleeve))	
Anchor size interna	ally threaded sl	eeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked conci	rete C20/25 und	er static and quas	i-static ac	tion				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029	0,035
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete	C20/25 under st	atic and quasi-sta	tic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,042	0,048	0,058
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,037	0,043	0,049	0,055	0,067
60°C/43°C ⊂	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,037	0,043	0,049	0,055	0,067
່72°C/43°Cັ	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C11: Displacements under shear load¹⁾ (internally threaded sleeve)

Anchor size in	ternally threade	ed sleeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked cor	crete C20/25 un	der static a	and quasi-s	tatic actior	1		
All temperature	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06
$\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -fac	stor · V;							

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25 under static	and qua	asi-stati	c action	้า					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,04
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,17
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,17
Cracked concrete	C20/25 u	nder static, qua	asi-statio	c and se	eismic C	1 actio	n				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,06
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,21
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,07
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,24
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,07
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: Di	τ; τ; isplacen	τ: action bond	hear lo	ad ¹⁾ (r	ebar)				I	I	Ι
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C13: D	τ; τ; isplacen	τ: action bond				Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C13: Di Anchor size reinfo	τ; τ; isplacen prcing bar	τ: action bond	hear lo Ø 8	ø ad¹⁾ (r ∉ Ø 10	ebar) Ø 12		Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \end{array}$	τ; τ; isplacen prcing bar	τ: action bond	hear lo Ø 8	ø ad¹⁾ (r ∉ Ø 10	ebar) Ø 12		Ø 16	Ø 20 0,04	Ø 25 0,03	Ø 28 0,03	Ø 32 0,03
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: Di Anchor size reinfo For concrete C20 / All temperature ranges ¹⁾ Calculation of th	τ; τ; isplacen prcing bar 25 under s δ_{V0} -factor $\delta_{V\infty}$ -factor in displacent	<pre> τ: action bond nent under s static, quasi-static, q</pre>	hear lo Ø 8 atic and	oad ¹⁾ (r Ø 10 seismid	ebar) Ø 12 c C1 act	ion					
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-factor} \end{split}$ Table C13: Di Anchor size reinfo For concrete C20/ All temperature ranges	τ; τ; isplacen prcing bar 25 under s δ_{Vo} -factor $\delta_{V\infty}$ -factor ie displacem V;	<pre> τ: action bond nent under s static, quasi-static, q</pre>	hear lo Ø 8 atic and 0,06 0,09	øad ¹⁾ (ro Ø 10 seismic 0,05	ebar) Ø 12 c C1 act 0,05	i on 0,04	0,04	0,04	0,03	0,03	0,03