

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0350 of 12 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system VME for concrete

Injection system for use in concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Werk 1,D und Werk 2, D

25 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-09/0350 issued on 24 November 2014

European Technical Assessment ETA-09/0350

Page 2 of 25 | 12 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z1991.18 8.06.01-367/17

European Technical Assessment ETA-09/0350

Page 3 of 25 | 12 December 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system VME for concrete" is a bonded anchor consisting of a cartridge with injection mortar VME or VM-ME and a steel element. The steel element consist of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod VMU-IG-M6 to VMU-IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 7		
Displacements	See Annex C 8 to C 10		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply..

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z1991.18 8.06.01-367/17

European Technical Assessment ETA-09/0350

Page 4 of 25 | 12 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

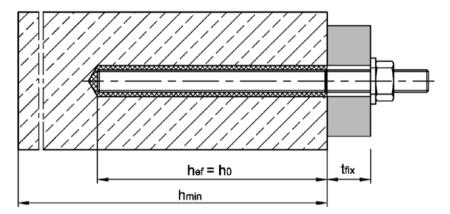
In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

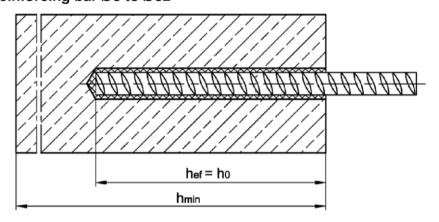
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 12 December 2017 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

Z1991.18 8.06.01-367/17


Installation threaded rod M8 to M30

Installation internally threaded anchor rod VMU-IG M6 to VMU-IG M20

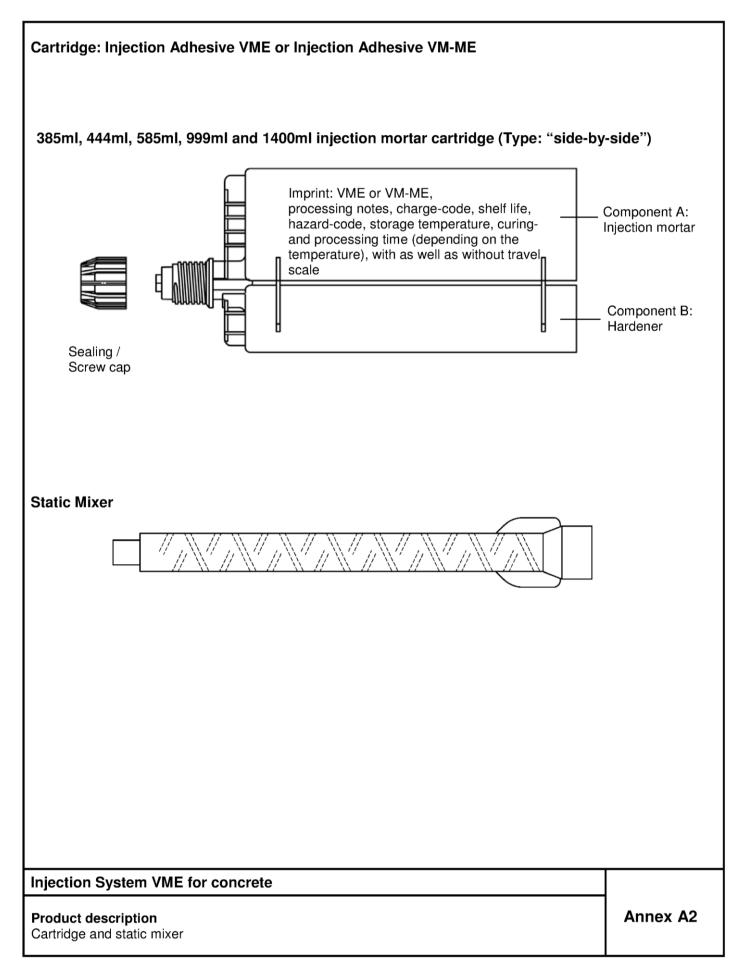
Installation reinforcing bar Ø8 to Ø32

 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

 $h_0 = depth of drill hole$

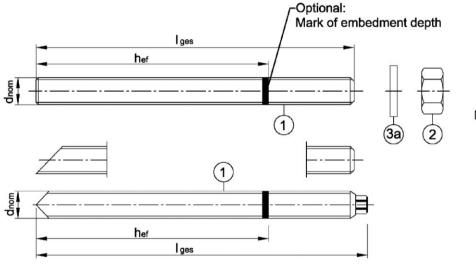
 h_{min} = minimum thickness of member


Injection System VME for concrete

Product description

Installed condition

Annex A1



Threaded rod

Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30

Threaded rod VM-A (material sold by the metre, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30

Marking: M10

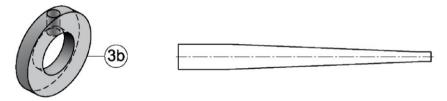
Identifying mark of manufacturing plant

M10 Size of thread

A4 additional marking for

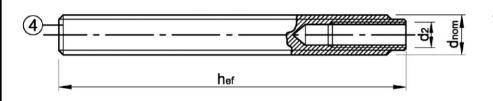
stainless steel

HCR additional marking for


high corrosion resistant

steel

Commercial standard threaded rod with:


- Materials, dimensions and mechanical properties see Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004

Washer with bore and reducing adapter for filling the gap between threaded rod and fixture

Internally threaded anchor rod

VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU-IG M20

Marking e.g.: M8

Identifying mark of manufacturing plant

M8 Size of internal thread A4 additional marking for

Internal thread

stainless steel

HCR additional marking for high corrosion resistant steel

Injection System VME for concrete

Product description

Threaded rod and internally threaded anchor rod

Annex A3

Z2008.18

3b

4

Washer with bore

Internally threaded anchor rod

English translation prepared by DIBt

Table	e A1: Ma	aterials					
Part	Designation	n	Material				
electro			42:1999 or hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 rdized ≥ 40μm acc. to EN ISO 17668:2016				
1	Threaded Property class 4.8 Property class 5.6			EN 10087:1998, EN 10263:2001; Commercial standard threaded rod: EN ISO 898-1:2013			
2			Steel, zinc plated Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.6 or 5.8 rod) Property class 8 (for class 8.8 rod)	EN ISO 898-2:2012			
3a	3a Washer Steel, zinc plated (e.g: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)						
3b	Washer with	Steel, zinc plated					
4	Internally thre	eaded anchor rod	Steel, electroplated, $A_5 > 8$ % fracture elongation Property class 5.8 and 8.8	EN 10087:1998			
Stainle	ess steel A4						
			Material 1.4401 / 1.4404 / 1.4571 / 1.4578 / 1.4362 / 1.4062	EN 10088-1:2014			
1 1	Threaded	Property class 50					
	rod	Property class 70 f_{uk} = 700 N/mm ² ; f_{yk} = 450 N/mm ² ; A ₅ > 12% fracture elongation M8 to M24		EN ISO 3506-1:2009			
2	Hexagon nut	:	Stainless steel A4 Property class 50 (for class 50 rod) Property class 70 (for class 70 rod; ≤ M24)	EN ISO 3506-2:2009			
3a	Washer		Stainless steel A4 (e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000)	EN 10088-1: 2014			
3b	Washer with	bore	Material 1.4401 / 1.4404 / 1.4571 / 1.4362				
4	Internally thre	eaded anchor rod	Material 1.4401 / 1.4404 / 1.4571 / 1.4362; A ₅ > 8 % fracture elongation Property class 50 (IG-M20) Property class 70 (IG-M8 to IG-M16)	EN 10088-1: 2014			
High c	corrosion res	istant steel HCR					
			Material 1.4529 / 1.4565	EN 10088-1: 2014			
1 1	Threaded	Property class 50	f_{uk} = 500 N/mm ² ; f_{yk} = 210 N/mm ² ; A_5 > 12% fracture elongation ¹⁾				
	rod	Property class 70	f_{uk} = 700 N/mm ² ; f_{yk} = 450 N/mm ² ; $A_5 > 12\%$ fracture elongation ¹⁾ M8 to M24	EN ISO 3506-1: 2009			
2	Hexagon nut	:	Material 1.4529 / 1.4565 Property class 50 ((for class 50 rod) Property class 70 (for class 70 rod; ≤ M24)	EN 10088-1: 2014 EN ISO 3506-2:2009			
3a	Washer		Material 1.4529 / 1.4565 (e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000)	EN 10088-1: 2014			

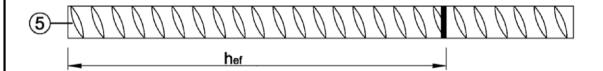
Property class 50 (IG-M20),

Property class 70 (IG-M8 to IG-M16)

Material 1.4529 / 1.4565

Injection System VME for concrete	
Product description Materials	Annex A4

Material 1.4529 / 1.4565, $A_5 > 8$ % fracture elongation


EN 10088-1: 2014

 $^{^{1)}}$ Fracture elongation A₅ > 8 % for applications <u>without</u> requirements for seismic performance category C2

Reinforcing bar

Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 28, Ø 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Material reinforcing bar

Part	Designation	Material
Reba	r	
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection System VME for concrete

Product description

Product description and material reinforcing bar

Annex A5

Specifications of intended use

	Anchor rod	Internally threaded anchor rod				
Injection system VME	VMU-A, V-A, VM-A, commercial standard threaded rod	VMU-IG	rebar			
Static or quasi-static action	M8 - M30 (zinc plated, A4, HCR)	IG M6 - IG M20 (electroplated, A4, HCR)	Ø8 - Ø32			
Seismic action Performance Category C1	M8 - M30 (zinc plated ¹⁾ , A4, HCR)	-	Ø8 - Ø32			
Seismic action Performance Category C2	M12 and M16 (zinc plated ¹⁾ (class 8.8), A4, HCR)	7-				
	Reinforced or unreinforced normal weight concrete acc. to EN 206-1:2000					
Base material	Strength classes C20/25 to C50/60 acc. to EN 206-1:2000					
	Cracked and uncracked concrete					
Temperature Range I -40 °C to +40 °C	mperature Range I -40 °C to +40 °C max long term temperature +24 °C and max short term temperature					
Temperature Range II -40 °C to +60 °C	max long term temperature +4	13 °C and max short terr	n temperature +60 °C			
Temperature Range III -40 °C to +72 °C	max long term temperature +4	13 °C and max short terr	n temperature +72 °C			

¹⁾ except hot-dip galvanised

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
- Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- · Dry or wet concrete, flooded holes (not sea water)
- · Hole drilling by hammer or compressed air drill mode or vacuum drill mode
- · Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod

Injection System VME for concrete	
Intended use Specifications	Annex B1

Table B1: Installation parameters for threaded rod

Threaded rod			М8	M10	M12	M16 M20 M24 M27 M				M30
Nominal drill hole diameter	Nominal drill hole diameter $d_0 = [r]$		10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
Effective affortage deptif	h _{ef,max} =	[mm]	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Installation torque T _{ins}		[Nm]	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min}	[mm]	I	_{lef} + 30 mr ≥ 100 mm		h _{ef} + 2d ₀				
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum dnom + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of sleeve ²⁾	d _{nom} =	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ =	[mm]	12	14	18	24	28	35
Effective anaborage death	h _{ef,min} =	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef,max} =	[mm]	120	144	192	240	288	360
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I_{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	S _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120	150

For larger clearance hole see TR029 section 1.1

Table B3: Installation parameters for rebar

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter $d_0 =$		[mm]	12	14	16	18	20	24	32	35	40
Effective anchorage depth -	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
Effective afficilitiage depth	$h_{ef,max} =$	[mm]	96	120	144	168	192	240	300	336	384
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 2d ₀							
Minimum spacing s _{min} [mm]		40	50	60	70	80	100	125	140	160	
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

Injection System VME for concrete

Intended use

Installation parameters

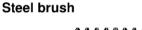
Annex B2

²⁾ With metric thread according to EN 1993-1-8:2005+AC:2009

Table B4: Parameter cleaning and setting	tools
--	-------

Threaded rod	Rebar	Internally threaded anchor rod	Drill bit ∅	Brush Ø	min. Brush Ø	Retaining washer					
	7777777777							ation directi retaining w			
[-]	Ø [mm]	[-]	d ₀ [mm]	d ь [mm]	d _{b,min} [mm]	[-]	•	→	1		
M8			10	12	10,5	-					
M10	8	VMU-IG M6	12	14	12,5	-	No retaining washer required				
M12	10	VMU-IG M8	14	16	14,5	-					
	12		16	18	16,5	-					
M16	14	VMU-IG M10	18	20	18,5	VM-IA 18					
	16		20	22	20,5	VM-IA 20					
M 20	20	VMU-IG M12	24	26	24,5	VM-IA 24					
M 24		VMU-IG M16	28	30	28,5	VM-IA 28	h _{ef} > h _{ef} > 250mm 250mm	all			
M 27	25		32	34	32,5	VM-IA 32		200111111			
M 30	28	VMU-IG M20	35	37	35,5	VM-IA 35					
	32		40	41,5	40,5	VM-IA 40					

Blow-out pump (volume 750ml) Drill bit diameter (d₀): 10 mm to 20 mm Bore hole depth $h_0 \le 10 d_{nom}$ see annex B4


Recommended compressed air tool (min 6 bar)

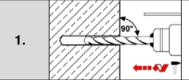
Drill bit diameter (do): all diameters

Retaining washer for overhead or horizontal installation

Drill bit diameter (d₀): 18 mm to 40 mm

Injection System VME for concrete

Intended use


Cleaning and setting tools

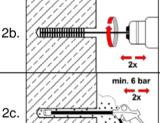
Annex B3

Installation instructions

Drilling of the hole


Drill a hole into the base material to the size and embedment depth required by the selected anchor (Annex B2). In case of aborted drill hole: the drill hole shall be filled with mortar.

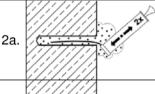
Cleaning


Attention! Standing water in the bore hole must be removed before cleaning!

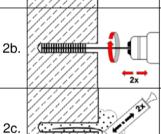
Cleaning with compressed air

cracked and uncracked concrete, all diameters

Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) a minimum of **two** times. If the bore hole ground is not reached an extension shall be used.


Attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of **two** times. If the bore hole ground is not reached, a brush extension shall be used.

Finally blow the hole clean again with compressed air (min. 6 bar) a minimum of **two** times. If the bore hole ground is not reached an extension shall be used.


2.

Manual cleaning uncracked concrete: cracked concrete:

Bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d_{nom} Bore hole diameter 14mm $\le d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d_{nom}

Starting from the bottom or back of the bore hole, blow the hole clean with the blow-out pump minimum of **two** times. If the bore hole ground is not reached an extension shall be used.

Attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of **two** times. If the bore hole ground is not reached, a brush extension shall be used

Finally blow the hole clean again with the blow-out pump a minimum of **two** times. If the bore hole ground is not reached an extension shall be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Injection System VME for concrete

Intended use

Installation instruction

Annex B4

Installation instructions (continuation)

		one (commutation)
Inje	ction	
3.	3	Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
4.	her	Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rod or rebar.
5.	min.3x	Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.
6a.		Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the curing and working times given in Table B5.
6b.		For overhead and horizontal installation a retaining washer (Annex B 3) and extension nozzle shall be used. Observe the curing and working times given in Table B5.

Injection System VME for concrete

Intended use

Installation instructions (continuation)

Annex B5

Installation instructions (continuation)

Inserting the anchor Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure 7. positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material. Be sure that the rod is fully seated at the bottom of the hole and that excess mortar is visible at 8. the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not 9. move or load the rod until it is fully cured (attend Table B5). 10. Remove excess mortar. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B2) by using a calibrated torque wrench. Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore 12. replace regular washer by washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Table B5: Working and curing time

Bore hole temperature	Maximum working time	Minimum c	euring time
		dry concrete	wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40°C	12 min	4 h	8 h
Cartridge temperature		+ 5°C to + 40°C	

Injection System VME for concrete	
Intended use Installation instructions (continuation), Working and curing time	Annex B6

Thread	ed rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel fa	illure										
Tensio	n load										
ce	Steel, Property class 4.6 and 4.8			15	23	34	63	98	141	184	224
Characteristic tension resistance	Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
acte I resi	Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Char Ision	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
) ter	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	Steel, Property class 4.6	γMs,N	[-]				2	,0			
or	Steel, Property class 4.8	γMs,N	[-]				1	,5			
fact	Steel, Property class 5.6 $\gamma_{Ms,N}$ [-] 2,0										
Partial factor	Steel, Property class 5.8 and 8.8	γMs,N	[-]				1	,5			
P	Stainless steel A4 and HCR, Property class 50	[-]				2,	86				
	Stainless steel A4 and HCR, Property class 70	γMs,N	[-]			1,	87			-	-
Shear I	oad										
Steel fa	ilure <u>without</u> lever arm										
Characteristic shear resistance	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
acte resis	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Char ıear	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
) Sh	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel fa	ilure <u>with</u> lever arm										
nt	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
teristic moment	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
acte ng m	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending momer	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
9q)	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
	Steel, Property class 4.6	γMs,V	[-]	1,67							
٦٢	Steel, Property class 4.8	γMs,V	[-]	1,25							
Partial factor	Steel, Property class 5.6	γMs,V	[-]								
ırtial	Steel, Property class 5.8 and 8.8	γMs,V	[-]				1,	25			
9	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38			
	Stainless steel A4 and HCR, Property class 70	γMs,V	[-]	1,56					_		

Injection System VME for concrete

Performance

Characteristic steel resistances for threaded rods under tension and shear loads

Annex C1

Table C2: Characteristic values of **tension loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Ninus Ninu		er Statio, quasi-sta	iio aoti	011 6	11 IU								
No. EN No. EN No. EN No. EN No. N	Threaded rod					M8	M10	M12	M16	M20	M24	M27	M30
Characteristic tension resistance Name Entitle Name Nam	Steel failure		I							11 01			
Partial factor			N _{Rk,s}	<u> </u>	_								
Partial factor Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in gracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in gracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in gracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in gracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in gracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in gracked concrete Carbon Combined pull-out and concrete failure Characteristic bond resistance in gracked concrete failure Characteristic bond resistance in gracked concrete failure Carbon Combined failure Carbon Combined failure Characteristic bond resistance in gracked concrete failure Carbon Combined failure Carbon Com	Characteristic tension resis	tance	$N_{Rk,s,C1}$	[kl	۷]				1,0	• N _{Rk,s}			
Partial factor			N _{Rk.s.C2}	[kl	۱] [۱	N	PD	1,0 •	$N_{Rk,s}$	No Perfo	ormance [Determine	d (NPD)
Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete Capuze Characteristic bond resistance in uncracked concrete Capuze Ca	Partial factor			[-]	īП				see Ta	able C1			
Characteristic bond resistance in uncracked concrete Capta		ncrete failure	Į į MS,N										
Temperature range			ete C20/	25									
Agr C 24°C flooded bore hole 15m _{0.00}				FR 1/	m21	15	15	15	14	13	12	12	12
Temperature range	40°C / 24°C			E 1/									
60°C / 43°C flooded bore hole Time, temperature range III dry and wet concrete Time T	Temperature range II:	dry and wet concrete		-		9,5	9,5	9,0	8,5	_			
Temperature range III: dry and wet concrete \$\text{Temperature}\$ \$\text{flooded bore hole}\$ \$\text{Temperature}\$ \$Te	60°C / 43°C	flooded bore hole		[N/m	m²]	9,5	9,5	_	8,5	7,5	_	6,5	
Targed	Temperature range III:	dry and wet concrete		FA 1/	m²]	8,5	8,5	8,0	7,5		7,0		6,5
Armonic Control Con	72°C / 43°C	flooded bore hole			m²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Contract	Characteristic bond resis	tance in <u>cracked</u> concrete	C20/25										
Contract				[N/m	m²]	7,0	7,0	7,5	6,5	6,0	5,5	5,5	5,5
Temperature range 1:		dry and wet concrete		FA 1 /		5,9			6,2		5,5		
flooded bore hole Tracct N/mm² 5,9 7,0 7,1 5,8 4,8 4,5 4,0 4,	Temperature range I:			[N/m			PD		2,2	No Perfo	ormance D	Determine	d (NPD)
TRILOR N/mm² N/	flooded bore h		$\tau_{Rk,cr}$	[N/m	ım²]			_					
dry and wet concrete Caracked concrete		flooded bore hole	τ _{Rk,C1}	[N/m	ım²]			_	_				
Control of the con			τ _{Rk,C2}	_					_				
Temperature range II			$\tau_{Rk,cr}$	<u> </u>									
Flooded bore hole Trike		dry and wet concrete	τ _{Rk,C1}	<u> </u>									
flooded bore hole T _{RK,Cl} [N/mm²] 3,7 4,5 4,3 3,8 3,4 3,5 3,5 3,5 3,5 1,0			τ _{Rk,C2}	_	_			_					
TRILCE N/mm² NPD				_				_	_	,		,	
dry and wet concrete dry and wet concrete TFR.c. N/mm² 4,0 4,0 3,5 3,0		flooded bore hole		-									
Temperature range III: Tribute				EN I/									
Temperature range III: TRIK.CZ		dry and wat caparata		-		,			_		,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tamparatura ranga III:	dry and wel concrete		•		,	, -						
$ \begin{array}{ c c c c c }\hline & flooded bore hole \\\hline & \hline flooded bore hole flooded by flooded bore hole flo$				-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72 07 10 0	flooded bore hole		FR 17	_							_	
Increasing factor for concrete Increasing factor for cash of the factor fac		nooded bore note		•			,			-,-			- / -
Increasing factor for concrete $ \psi_{c} = \begin{bmatrix} C30/37 & 1,04 \\ C35/45 & 1,07 \\ C40/50 & 1,08 \\ C45/55 & 1,09 \\ C50/60 & 1,10 \\ \end{bmatrix} $			VHK,OZ	•	_			.,,0			,,,,,d,,,oo z		u ()
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	,07			
	increasing factor for concre	te	Ψc	C40	/50				1	,08			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C45	/55				1	,09			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C50	/60								
Concrete cone failure Factor acc. CEN/TS1992-4-5 section 6.2.3.1 uncracked concrete uncracked concrete k _{cr} [-] 10,1 Section 6.2.3.1 cracked concrete k _{cr} [-] 7,2 Edge distance C _{cr,N} [-] 1,5 h _{ef} Spacing s _{cr,N} [-] 3,0 h _{ef} Splitting failure Edge distance 2,0 > h/h _{ef} ≥ 2,0 th/h _{ef} > 1,3 th/h _{ef} 1,0 h _{ef} Edge distance 2,0 > h/h _{ef} > 1,3 th/h _{ef} 2*h _{ef} (2,5 - h/h _{ef}) Spacing s _{cr,sp} [mm] 2 c _{cr,sp} Installation factor (dry and wet concrete) γ ₂ = γ _{inst} [-] 1,2 1,4 Installation factor 1,4 1,4 1,4			le.	f'	,								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cracked concrete	N8	ι	1				7	7,2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Concrete cone failure												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		cracked concrete											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			S _{cr,N}	<u> </u>					3,0	J n _{ef}			
	Splitting failure	h/h > 2.2							4 /	2 h			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Edge distance			, ,									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eage distance		C _{cr,sp}	[mi	'''								
Installation factor (dry and wet concrete) $\gamma_2 = \gamma_{\text{inst}}$ [-] 1,2 1,4	Chaoina	n/n _{ef} ≤ 1,3		Inc.	m1								
(dry and wet concrete) $\gamma_2 = \gamma_{\text{inst}}$ [-] 1,2 1,4 Installation factor			S _{cr,sp}	Įmi	11]				2 (cr,sp			
Installation factor			$\gamma_2 = \gamma_{inst}$	[-]		1	,2			1	,4	
			-										
			$\gamma_2\!=\gamma_{inst}$	[-]]				1	,4			

Injection System VME for concrete

Performance

Characteristic values of $tension\ loads$ for $threaded\ rods$ under static, quasi-static action and seismic action C1 + C2

Annex C2

Table C3: Characteristic values of **shear loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30					
						11110								
Steel failure without lever arm														
	$V_{Rk,s}$	[kN]	N] see Table C1											
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]	0,86 • V _{Rk,s}		(0,88 • V _{Rk,}	s		0,80 • V _{Rk,}	s				
	$V_{Rk,s,C2}$	[kN]	NPD		0,80	• V _{Rk,s}	No Perf	ormance I	Determine	d (NPD)				
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1							
Steel failure with lever arm														
	$M^0_{Rk,s}$	[Nm]				see Ta	ible C1							
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]	No Performance Determined (NPD)											
	M ⁰ _{Rk,s,C2}	[Nm]			No Peri	ormance i	Jetermine	a (NPD)						
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1							
Concrete pry-out failure														
Factor k in equation (5.7) acc. to Technical Report TR 029 Factor k_3 in equation (27) acc. to CEN/TS 1992-4-5 section 6.3.3	k ₍₃₎	[-]	2,0											
Concrete edge failure														
Effective length of anchor	I f	[mm]				I _f = min(h	ef; 8 d _{nom})							
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	16	20	24	27	30				
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0							

Injection System VME for concrete	
Performance Characteristic values of shear loads for threaded rods under static, quasi-static action and seismic action C1 + C2	Annex C3

Table C4: Characteristic values of **tension loads** for **internally threaded anchor rods** under static and quasi-static action

under statio	c and quasi-static	actio	n								
Internally threaded anchor i	od			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Steel failure1)											
Characteristic tension resistance, Steel, strength class 5.8		N _{Rk,s}	[kN]	10	18	29	42	79	123		
Partial factor		γMs,N	[-]			1,	,5				
Characteristic tension resistance, Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor		γMs,N	[-]			1	,5				
Characteristic tension resistance, Stainless steel A4 / HCR, strengtl	n class 70	N _{Rk,s}	[kN]	14	14 26 41 59 110						
Partial factor		γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out and concrete failure											
Characteristic bond resistance		C20/25									
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	15	15	14	13	12	12		
40°C / 24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	14	13	10	9,5	8,5	7,0		
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	8,5	8,0	7,5	7,5		
60°C / 43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	8,5	7,5	7,0	6,0		
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,5	8,0	7,5	7,0	7,0	6,5		
72°C / 43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,0	7,5	7,0	6,0	5,5		
Characteristic bond resistance	in cracked concrete C2	0/25									
Temperature range I:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,5	6,5	6,0	5,5	5,5		
40°C / 24°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	7,0	7,5	6,0	5,0	4,5	4,0		
Temperature range II:	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,0	3,5	3,5	3,5		
60°C / 43°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,0	3,5	3,5	3,5		
Temperature range III:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,0	4,0	3,5	3,0	3,0	3,0		
72°C / 43°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	3,5	3,0	3,0	3,0		
			C25/30	1,02							
			C30/37			1,	04				
Increasing factor for concrete			C35/45	1,07							
increasing factor for concrete		Ψc	C40/50			1,	08				
			C45/55			1,	09				
			C50/60	1,10							
Factor acc. to CEN/TS1992-4-5	uncracked concrete	k ₈	[-]			10),1				
section 6.2.2.3	cracked concrete	1/8	[-]			7	,2				
Concrete cone failure											
Factor acc. to CEN/TS1992-4-5	uncracked concrete	k _{ucr}	[-]),1				
section 6.2.3.1	cracked concrete	k _{cr}	[-]				,2				
Edge distance		C _{cr,N}	[mm]			1,5					
Spacing		S _{cr,N}	[mm]			3,0	h _{ef}				
Splitting failure	h/h > 0.0					4.0	<u></u>				
	h/h _{ef} ≥ 2,0						h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]								
Chaoling	h/h _{ef} ≤ 1,3		[ma1	2,4 h _{ef} 2 c _{cr,sp}							
Spacing Installation factor		S _{cr,sp}	[mm]			2 0	cr,sp				
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]		1,2			1,4			
Installation factor (flooded bore hole)	,	$\gamma_2 = \gamma_{inst}$	[-]			1,	,4				

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Injection System VME for concrete

Performance

Characteristic values of **tension loads** for **internally threaded anchor rods** under static and quasi-static action

Annex C4

²⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C5: Characteristic values of **shear loads** for **internally threaded anchor rods** under static and quasi-static action

<u> </u>	asi-static a										
Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Steel failure without lever arm1)											
Characteristic shear resistance Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61			
Partial factor	$\gamma_{\text{Ms,V}}$	[-]			1,	25					
Characteristic shear resistance Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98			
Partial factor	γ _{Ms,V}	[-]			1,	25					
Characteristic shear resistance Stainless steel A4 / HCR strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾			
Partial factor	$\gamma_{\text{Ms,V}}$	[-]			1,56			2,38			
Steel failure with lever arm1)											
Characteristic bending moment, Steel, strength class 5.8	${\sf M^0}_{\sf Rk,s}$	[Nm]	8	19	37	66	167	325			
Partial factor	$\gamma_{Ms,V}$	[-]			1,	25					
Characteristic bending moment, Steel, strength class 8.8	${\sf M^0}_{\sf Rk,s}$	[Nm]	12	30	60	105	267	519			
Partial factor	$\gamma_{\text{Ms,V}}$	[-]			1,	25					
Characteristic bending moment, Stainless steel A4 / HCR strength class 70	M ⁰ _{Rk,s}	[Nm]	11	26	53	92	234	643 ²⁾			
Partial factor	$\gamma_{\text{Ms,V}}$	[-]			1,56			2,38			
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 Factor k_3 in equation (27) of CEN/TS 1992-4-5 section 6.3.3	k ₍₃₎	[-]	2,0								
Concrete edge failure											
Effective length of anchor	I _f	[mm]			I _f = min(h	_{ef} ; 8 d _{nom})					
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30			
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0								

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Injection System VME for concrete

Performance

Characteristic values of **shear loads** for **internally threaded anchor rods** under static and quasi-static action

Annex C5

²⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C6: Characteristic values of **tension loads** for **rebar** under static, quasi-static action and seismic action C1

Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
		N _{Rk,s}	[kN]					A _s • f _{uk} ¹⁾				
Characteristic tension resist	ance	N _{Rk,s,C1}	[kN]				1	,0 • N _{Rk}	,s			
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]		•	•		1,42)				
Combined pull-out and co	ncrete failure											
Characteristic bond resist	ance in <u>uncracked</u> concr	ete C20/2	25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C / 24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C / 43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C / 43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
Characteristic bond resist	ance in <u>cracked</u> concrete	C20/25										
	dry and wat same:-t-	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,0	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,1	6,4	6,2	5,7	5,5	5,5	5,5
40°C / 24°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	nooded bore note	τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,1	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5
60°C / 43°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	liboded bore rible	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
72°C / 43°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	niooded bote fiole	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
			C25/30					1,02				
			C30/37					1,04				
Increasing factor for concret	te	Ψc	C35/45 C40/50					1,07				
			C45/55					1,08				
			C50/60					1,10				
Factor acc.CEN/TS1992-4-5	uncracked concrete	1.						10,1				
section 6.2.2.3	cracked concrete	k ₈	[-]					7,2				
Concrete cone failure												
Factor acc. CEN/TS1992-4-		k _{ucr}	[-]					10,1				
section 6.2.3.1	cracked concrete	K _{cr}	[-]					7,2				
· ·	dge distance		[mm]					1,5 h _{ef}				
Spacing Splitting failure		S _{cr,N}	[mm]					3,0 h _{ef}				
Spiriting failure	h/h _{ef} ≥ 2,0	Г	Ι	Г				1,0 h _{ef}				
		_	[mm]				2*h		n/h .\			
Luge distance	$\frac{2,0>h/h_{ef}>1,3}{h/h_{ef}\leq 1,3}$	C _{cr,sp}			i/ Flet)							
Spacing	11/11 _{ef} ≥ 1,3		[mm]	2,4 h _{ef}								
Installation factor		S _{cr,sp}						2 c _{cr,sp}				
(dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]			1,2				1	,4	
Installation factor		Vo = V	[-]					1,4				
(flooded bore hole)		$\gamma_2 = \gamma_{inst}$	1.1					٠,٠				

¹⁾ fuk shall be taken from the specifications of reinforcing bar

Injection System VME for concrete

Performance

Characteristic values of tension loads for rebar under static, quasi-static action and seismic action C1

Annex C6

²⁾ in absence of national regulation

Table C7: Characteristic values of shear loads for rebar under static, quasi-static action and seismic action C1

under static, quasi-sta	tio dollor	i and 5	CISITII	o aon	-						
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	$V_{Rk,s}$	[kN]				0,50	O·A _s ·	$f_{uk}^{1)}$			
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]	0,80	0,80 · V _{Rk,s} 0,88 · V _{Rk,s}							
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]					1,5 ²⁾				
Steel failure with lever arm											
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾								
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]	No Performance Determined (NPD)								
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			1,5 ²⁾						
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 Factor k_3 in equation (27) of CEN/TS 1992-4-5 section 6.3.3	k ₍₃₎	[-]	2,0								
Concrete edge failure											
Effective length of anchor	I _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$								
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	$\gamma_2 = \gamma_{\text{inst}}$	[-]					1,0				

 $^{^{1)}\,}f_{\text{uk}}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System VME for concrete

Performance

Characteristic values of **shear loads** for **rebar** under static, quasi-static action and seismic action C1 **Annex C7**

Table C8:	Displacements under tension load ¹⁾	(threaded rod)	
-----------	--	----------------	--

							· · · · · ·				
Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Uncracked conc	rete C	20/25 under	static and qua	si-static	action						
Temperature range I:	ge I:	δ _{N0} - factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C / 24°C		$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature rang	ae II:	δ_{N0} - factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C / 43°C		δ _{N∞} - factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperature range III:	ae III:	δ _{N0} - factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°C / 43°C		$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concret	te C20	/25 under st	atic and quasi-	static ac	tion						
Temperature rang	ge I:	δ _{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,058
40°C / 24°C		δ _{N∞} - factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature rang	ge II:	δ _{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
60°C / 43°C		$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature rang	ge III:	δ _{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
72°C / 43°C		$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Cracked concret	te C20	/25 under so	eismic action (C	C2)							
All	$\delta_{N,seis}$ (_(DLS) – factor	[mm/(N/mm²)]	NDD		0,03	0,05	No Performance Determined (NPD			/NDD)
temperature — ranges	$\delta_{N,seis}$ (N,seis (ULS) - factor [mm/(N/mi		NPD		0,06	0,09	No Feriormance Determined (NPD)			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{- factor } \cdot \tau; \qquad \delta_{\text{N,seis}(\text{DLS})} = \delta_{\text{N,seis}(\text{DLS})}\text{- factor } \cdot \tau; \qquad \tau\text{: action bond stress for tension}$

 $\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-} \text{ factor } \cdot \tau; \qquad \delta_{\text{N,seis}(\text{ULS})} = \delta_{\text{N,seis}(\text{ULS})}\text{-} \text{ factor } \cdot \tau;$

Table C9: Displacements under shear load (threaded rod)

Threaded rod				M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Uncracked and cracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ _{V0} - factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V_{\infty}}$ - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete C20/25 under seismic action (C2)											
All temperature δ	, _{seis(DLS)} - factor	eis(DLS) - factor [mm/(kN)]		- NPD		0,1	No Performance Determined (NPD)				
ranges δ	/,seis(ULS) - factor	[mm/(kN)]	NFD		0,2	0,1	No renormance Determined (NFD)				

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{- factor } \cdot V; \qquad \delta_{V,seis(DLS)} = \delta_{V,seis(DLS)}\text{- factor } \cdot V; \qquad \qquad V\text{: action shear load}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-} \ \text{factor} \ \cdot \ V; \qquad \delta_{V,seis(ULS)} = \delta_{V,seis(ULS)}\text{-} \ \text{factor} \ \cdot \ V;$

Injection System VME for concrete

Performance

Displacements (threaded rod)

Annex C8

Table C10: Displacements under tension load 1) (internally threaded anchor rod)

Internally threaded anci	nor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concrete C2	0/25 under st	atic and quasi-st	atic action					
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	$[mm/(N/mm^2)]$	0,013	0,015	0,020	0,024	0,029	0,035
40°C / 24°C	$\delta_{N_{\infty}}$ - factor	$[mm/(N/mm^2)]$	0,052	0,061	0,079	0,096	0,024	0,140
Temperature range II:	$\delta_{\text{N0}}\text{-}$ factor	$[mm/(N/mm^2)]$	0,015	0,018	0,023	0,028	0,033	0,043
60°C / 43°C	$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,060	0,070	0 0,091	0,111	0,131	0,161
Temperature range III:	δ_{N0} - factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°C / 43°C	$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete C20/2	5 under stati	c and quasi-stati	c action					
Temperature range I:	δ_{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,042	0,048	0,058
40°C / 24°C	$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ _{N0} - factor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067
60°C / 43°C	$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ _{N0} - factor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067
72°C / 43°C	δ _{N∞} - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C11: Displacements under shear load (internally threaded anchor rod)

Internally threaded anchor rod			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked and cracked	concrete C20	0/25 under static	and quasi-	static actio	n			
All tomporative reason	δ_{V0} - factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
All temperature ranges	δ _{V∞} - factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Injection System VME for concrete

Performance

Displacements (internally threaded anchor rod)

Annex C9

Table C12: Displacements under tension load (rebar)

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C2	20/25 under	static and quas	i-static a	action							
Temperature range I:	$\delta_{\text{N0}}\text{-}$ factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C / 24°C	$\delta_{\text{N}_{\infty}}\text{-}$ factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{N0} - factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C / 43°C	$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III:	δ_{N0} - factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C / 43°C	$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete C20/	25 under sta	tic and quasi-s	tatic act	ion							
Temperature range I:	$\delta_{\text{N0}}\text{-}$ factor	[mm/(N/mm²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C / 24°C	$\delta_{N_\infty}\text{-}$ factor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C / 43°C	$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ _{N0} - factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C / 43°C	$\delta_{N_{\infty}}$ - factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C13: Displacements under shear load (rebar)

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 un	0/25 under static and quasi-static action										
All temperature ranges	$\delta_{\text{V0}}\text{-}$ factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor }\cdot V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Injection System VME for concrete

Performance

Displacements (rebar)

Annex C10