

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0169 of 22 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Upat Express Anchor IMC

Torque controlled expansion anchor for use in non-cracked concrete

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

14 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0169

Page 2 of 14 | 22 August 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 14 | 22 August 2017

European Technical Assessment ETA-10/0169 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Upat Express Anchor IMC is an anchor made of zinc plated, hot-dip galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads in concrete	See Annex C 1 and C 2
Edge distances and spacing	See Annex C 1 and C 2
Displacements under tension and shear loads	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

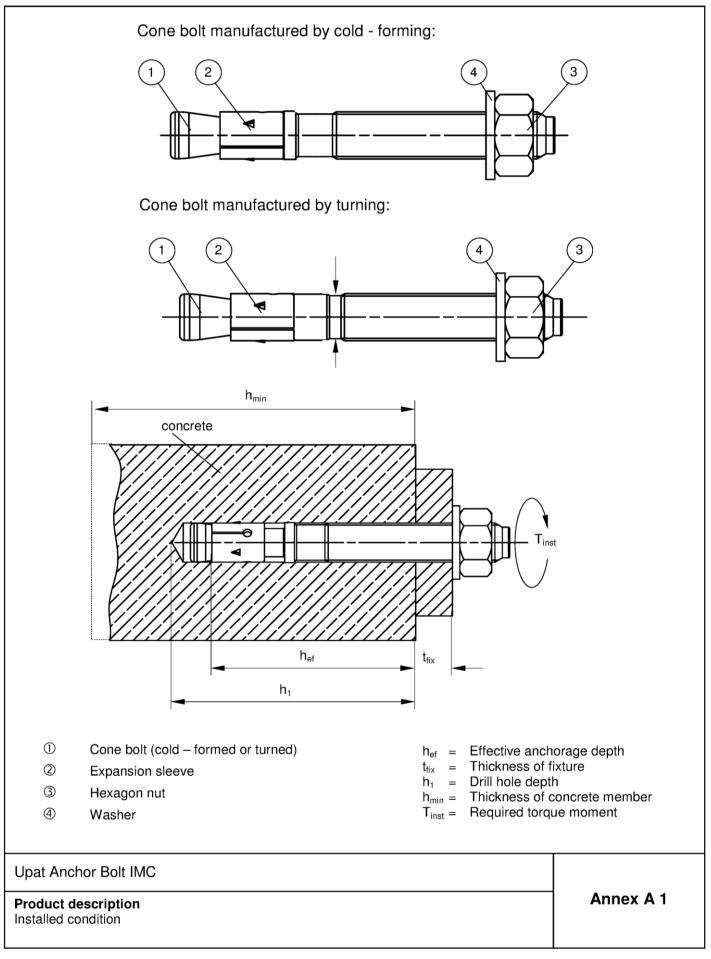
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

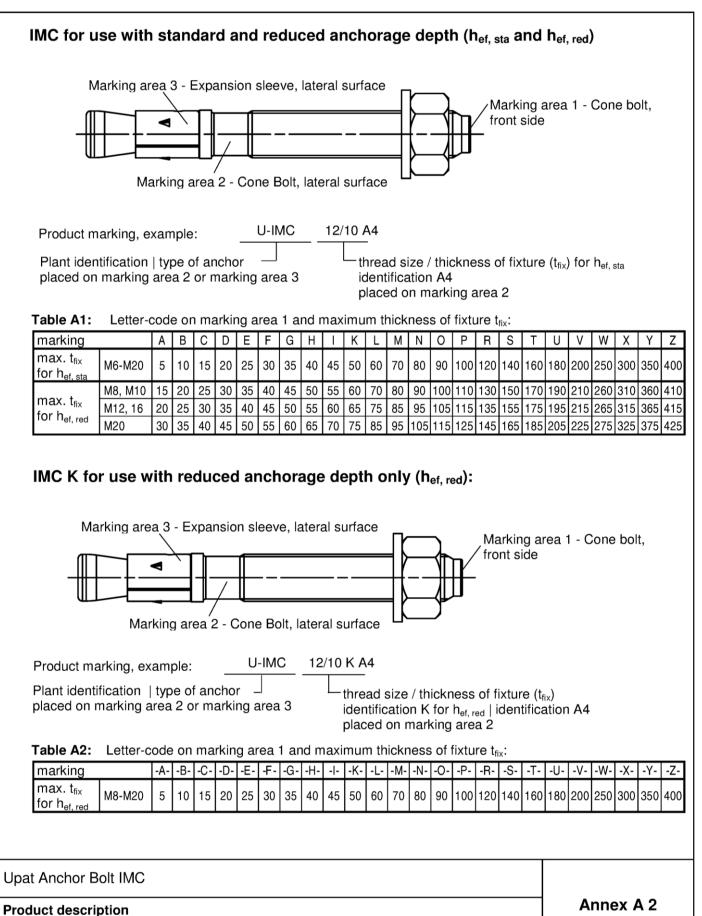
The system to be applied is: 1

European Technical Assessment ETA-10/0169 English translation prepared by DIBt

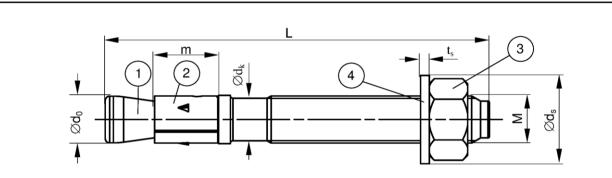
Page 4 of 14 | 22 August 2017


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 22 August 2017 by Deutsches Institut für Bautechnik

Lars Eckfeldt p.p. Head of Department *beglaubigt:* Baderschneider



electronic copy of the eta by dibt: eta-10/0169

Page 7 of European Technical Assessment ETA-10/0169 of 22 August 2017

English translation prepared by DIBt

Table A3: Anchor dimensions [mm]

Bart	Designation		IMC, IMCA4							
Fan	Part Designation				M8	M10	M12	M16	M20	
		М	=	M6	M8	M10	M12	M16	M20	
1	Cone bolt	$\oslash d_0$	=	5,9	7,9	9,9	11,9	15,9	19,6	
		$\oslash d_{k}$	=	5,2	7,1	8,9	10,8	14,5	18,2	
2	Expansion sleeve	m	=	10	11,5	13,5	16,5	21,5	33,5	
3	Hexagon nut	SW	=	10	13	17	19	24	30	
4	Washer	t _s	\geq	1,0	1,4	1,8	2,3	2,7	2,7	
4	washer	$\oslash d_{s}$	\geq	11,5	15	19	23	29	36	
Thickn	ess of fixture	+	\geq	0	0	0	0	0	0	
THICKH		t _{fix}	\leq	200	200	250	300	400	500	
Longth	Length of anchor		-	45	56	71	86	120	139	
Lengtr	I OF ANCHOR	L_{max}	-	245	261	316	396	520	654	

Upat Anchor Bolt IMC

Product description Anchor dimensions Annex A 3

Table A4: Materials IMC (zinc plated $\ge 5\mu$ m, DIN EN ISO 4042: 2001-01)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Cold strip ¹⁾
3	Hexagon nut	Steel, property class 8
4	Washer	Cold strip

¹⁾ Optional stainless steel

Table A5: Materials IMC (hot-dip galvanized \geq 50µm, ISO 10684: 2004 ¹)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Stainless steel
3	Hexagon nut	Steel, property class 8
4	Washer	Cold strip

 $^{1)}$ Alternative method sherardized $\geq 50~\mu m,~EN~13811{:}2003$

Table A6: Materials IMC A4

Part	Designation	Material
1	Cone bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Hexagon nut	Stainless steel, property class \ge 70
4	Washer	Stainless steel

Upat Anchor Bolt IMC

Product description Materials Annex A 4

Specifications of intended use								
Anchor Bolt IMC,	IMC A4	M6	M8	M10	M12	M16	M20	
Stool	Zinc plated	1						
Sleer	Hot-dip galvanized	-	- 🗸					
Stainless steel	A4			1				
and quasi-static	loads			1				
Reduced anchorage depth		-			1			
Uncracked concrete				1				
	Steel Stainless steel and quasi-static ced anchorage de	Anchor Bolt IMC, IMC A4 Steel Zinc plated Hot-dip galvanized Stainless steel A4 and quasi-static loads ced anchorage depth	Anchor Bolt IMC, IMC A4 M6 Steel Zinc plated Hot-dip galvanized - Stainless steel A4 and quasi-static loads ced anchorage depth -	Anchor Bolt IMC, IMC A4 M6 M8 Steel Zinc plated Hot-dip galvanized - Stainless steel A4 and quasi-static loads - ced anchorage depth -	Anchor Bolt IMC, IMC A4 M6 M8 M10 Steel Zinc plated Hot-dip galvanized / Stainless steel A4 and quasi-static loads / ced anchorage depth -	Anchor Bolt IMC, IMC A4 M6 M8 M10 M12 Steel Zinc plated Hot-dip galvanized ✓ Stainless steel A4 and quasi-static loads ✓ ced anchorage depth -	Anchor Bolt IMC, IMC A4 M6 M8 M10 M12 M16 Steel Zinc plated Hot-dip galvanized - Stainless steel A4 and quasi-static loads - ced anchorage depth -	

Base materials:

- Normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (IMC, IMC A4)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (IMC A4)

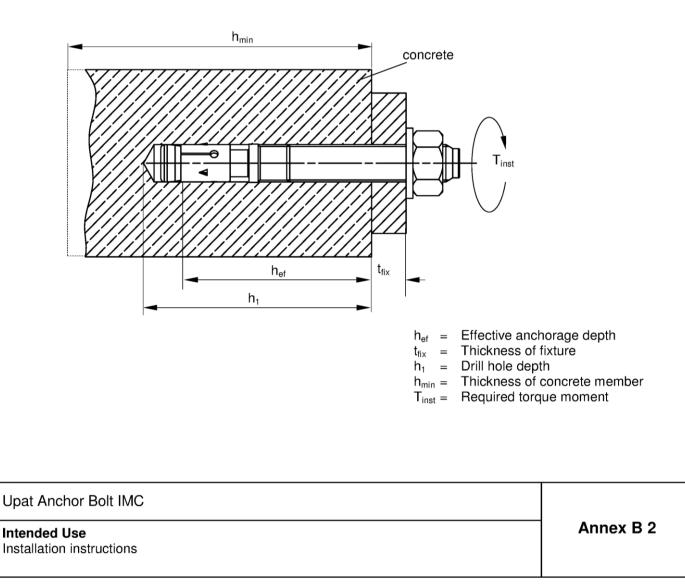
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Hammer or hollow drilling according to Annex B3


Upat Anchor Bolt IMC

Intended Use Specifications Annex B 1

able B1: Installation parameters											
Type of anchor / size IMC, I	MC A4		M6	M8	M10	M12	M16	M20			
Nominal drill hole diameter	$d_0 =$	[mm]	6	8	10	12	16	20			
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	6,45	8,45	10,45	12,5	16,5	20,55			
Effective anchorage depth	h _{ef} =	[mm]	30 ²⁾	40 (30 ^{1) 2)})	50 (40 ¹⁾)	65 (50 ¹⁾)	80 (65 ¹⁾)	105 (80 ¹⁾)			
Depth of drill hole in concrete	$h_1 \geq$	[mm]	40	56 (46 ^{1) 2)})	68 (58 ¹⁾)	85 (70 ¹⁾)	104 (89 ¹⁾)	135 (110 ¹⁾			
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14	18	22			
Required torque moment IMC (zinc plated)	T _{inst} =	[Nm]	4	15	30	50	100	200			
Required torque moment IMC (hot-dip galvanized)	T _{inst} =	[Nm]	-	15	30	40	70	200			
Required torque moment IMC A4	T _{inst} =	[Nm]	4	10	20	35	80	150			

¹⁾ Only for reduced anchorage depth ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

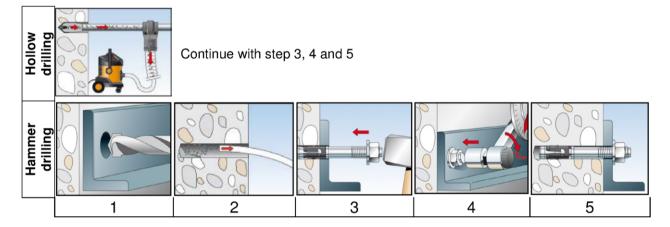


Table B2: Minimum thickness of concrete members, minimum spacing and minimum edge distance

	Type of anchor / size IMC, IMC	A 4		M6	M8	M10	M12	M16	M20
	Effective anchorage depth	h _{ef, sta}	[mm]	30 ²⁾	40	50	65	80	105
age	Minimum thickness of member	\mathbf{h}_{\min}	[mm]	100	100	100	120	160	200
Standard anchorage depth	Minimum spacing	S _{min}	[mm]	40	40	50 (70 ¹⁾)	70	90 (120 ¹⁾)	120
an	Minimum edge distance	C _{min}	[mm]	40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80 ¹⁾)	120
	Effective anchorage depth	$h_{ef, red}$	[mm]	-	30 ²⁾	40	50	65	80
age h	Minimum thickness of member	\mathbf{h}_{\min}	[mm]	-	100	100	100	120	160
Reduced anchorage depth	Minimum spacing	S _{min}	[mm]	-	40 (50 ¹⁾)	50	70	90	120 (140 ¹⁾)
au	Minimum edge distance	C _{min}	[mm]	-	40 (45 ¹⁾)	80	100	120	120

¹⁾ Only for IMC A4 ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

Installation instructions

No.	Description						
1	Create drill hole with hammer drill	Create drill hole with hollow drill and vacuum cleaner					
2	Clean bore hole	-					
3	Se	t anchor					
4	Expand anchor with pres	scribed installation torque T _{inst}					
5	Finished installation						

		Types of drills	
	Hammer drill		
	Hollow drill	Ī	
Upa	Anchor Bolt IMC		
Minir	nded Use num spacing and edge distance Ilation instructions		Annex B 3

Table C1: Characteristic values of tension resistance for standard and reduced anchorage depth under static and quasi-static action

anchorage depin under static and quasi static action										
Type of anchor / size			M6	M8	M10	M12	M16	M20		
Steel failure for standard and	reduced	anchorage	e depth	IMC		-	-	-		
Characteristic resistance IMC	$N_{Rk,s}$	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Partial sensitivity factor	γ̈́мs	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Steel failure for standard and	e depth		4							
Characteristic resistance IMC A4	N _{Rk,s}	[kN]	10,6	16,5	27,2	41,6	78	111		
Partial sensitivity factor	γ́Ms	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Pullout failure for standard ar	nchorage	e depth IMC	, IMC A	4						
Characteristic resistance C20/25	N _{Rk,p}	[kN]	6 ²⁾			- ¹⁾				
Pullout failure for reduced an	chorage	depth IMC	, IMC A	4						
Characteristic resistance C20/25	N _{Rk,p}	[kN]	-	6 ²⁾		-	1)			
		C25/30	1,12							
	Ψc	C30/37	1,23							
ncreasing factors for $N_{Rk,p}$		C35/45	1,32							
		C40/50	1,41							
		C45/55	1,50							
		C50/60				58				
Factor for robustness	γinst	[-]				,0				
Concrete cone and splitting fa	ailure for							-		
Effective anchorage depth	h _{ef, sta}	[mm]	30 ²⁾	40	50	65	80	105		
Factor k1 for uncracked	$k_{ucr,N}$	[-]			11	,0				
concrete										
Spacing	S _{cr,N}	[mm]			<u>3 h</u>	ef, sta				
Edge distance	C _{cr,N}	[mm]	1002)	100	1,5 r	l _{ef, sta}	050	070		
Spacing (splitting failure)	S _{cr,sp}	[mm]	130 ²⁾ 65 ²⁾	190	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}	[mm]		95	100	145	175	185		
Concrete cone and splitting fa				ige dep				00		
Effective anchorage depth Factor k ₁ for uncracked	h _{ef, red}	[mm]	-	30 /	40	50	65	80		
concrete	$\mathbf{k}_{ucr,N}$	[-]	11,0							
Spacing	S _{cr,N}	[mm]	3 h _{ef, red}							
Edge distance	C _{cr,N}	[mm]			1,5 h	l _{ef, red}				
Spacing (splitting failure)	S _{cr,sp}	[mm]	-	190 ²⁾	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}	[mm]	-	95 ²⁾	100	145	175	185		

¹⁾ Pullout failure is not relevant

²⁾ Use restricted to anchoring of structural components which are statically indeterminate

Upat Anchor Bolt IMC

Performances

Characteristic values of tension resistance for standard and reduced anchorage depth

Annex C 1

electronic copy of the eta by dibt: eta-10/0169

Table C2: Characteristic values of shear resistance for standard and reduced anchorage depth under static and quasi-static action

Type of anchor / size			M6	M8	M10	M12	M16	M20			
Steel failure without lever arm for standard and reduced anchorage depth											
Charact. resistance IMC	$V_{Rk,s}$	[kN]	6,0	13,3	21,0	31,3	55,1	67			
Steel failure without lever arm for standard and reduced anchorage depth											
Charact. resistance IMC A4	$V_{Rk,s}$	[kN]	5,3	12,8	20,3	27,4	51	86			
Steel failure with lever arm for standard anchorage depth											
Charact. bending moment IMC	М ⁰ _{Rk,s}	[Nm]	9,4 ¹⁾	26,2	52,3	91,6	232,2	422			
Steel failure with lever arm for standard anchorage depth											
Charact. bending moment IMC A4	М ⁰ _{Rk,s}	[Nm]	8 ¹⁾	26	52	85	216	454			
Steel failure with lever arm for reduced anchorage depth											
Charact. bending moment IMC	${\sf M}^0_{\sf Rk,s}$	[Nm]	-	19,9 ¹⁾	45,9	90,0	226,9	349			
Steel failure with lever arm for red		horage de	epth								
Charact. bending moment IMC A4	М ⁰ _{Rk,s}	[Nm]	-	21 ¹⁾	47	85	216	353			
Partial sensitivity factor steel failure	γ́Ms	[-]	1,25								
Factor for ductility	k_7	[-]	1,0								
Concrete pryout failure for standa	rd ancho	rage deptl	n IMC, II	MC A4							
Factor for pry-out	k ₈	[-]	1,4 ¹⁾	1,8	2,1	2,3	2,3	2,3			
Factor for robustness	γinst	[-]	1,0								
Concrete pryout failure for reduce	d anchor	age depth	IMC, IN	IC A4							
Factor for pry-out	k ₈	[-]	-	1,8 ¹⁾	2,1	2,3	2,3	2,3			
Factor for robustness	γinst	[-]	1,0								
Concrete edge failure for standard anchorage depth IMC, IMC A4											
Effective length of anchor	l _{f,sta}	[mm]	30 ¹⁾	40	50	65	80	105			
Effective diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20			
Factor for robustness	γinst	[-]	1,0								
Concrete edge failure for reduced anchorage depth IMC, IMC A4											
Effective length of anchor	l _{f,red}	[mm]	-	30 ¹⁾	40	50	65	80			
Effective diameter of anchor	d_{nom}	[mm]	-	8	10	12	16	20			
Factor for robustness	γinst	[-]	1,0								

¹⁾ Use restricted to anchoring of structural components which are statically indeterminate

Upat Anchor Bolt IMC

Performances

Characteristic values of shear resistance for standard and reduced anchorage depth

Annex C 2

Table C3: Displacements due to tension loads									
Type of anchor / size IMC, IMC A4			M6	M8	M10	M12	M16	M20	
Standard anchorage depth	h _{ef, sta}	[mm]	30	40	50	65	80	105	
Tension load C20/25	Ν	[kN]	2,8	6,1	8,5	12,6	17,2	25,8	
Displacements	δ_{N0}	[mm]	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,0 ¹⁾)	
	δ _{N∞}	[mm]	3,1 (2,7 ¹)						
Reduced anchorage depth	h _{ef, red}	[mm]		30	40	50	65	80	
Tension load C20/25	Ν	[kN]	- [2,8	6,1	8,5	12,6	17,2	
Displacements	δ_{N0}	[mm]		0,4	0,7	0,7	0,9	1,0	
	δ_{N^∞}	[mm]	1,6 (1,7 ¹⁾)						

¹⁾ Only for IMC A4

Table C4: Displacements due to shear loads

Type of anchor / size IMC,	IMC A4		M6	M8	M10	M12	M16	M20
Shear load IMC	V	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Displacements IMC	δ_{V0}	[mm]	0,7	1,5	1,6	2,0	3,0	2,6
	$\delta_{V\infty}$	[mm]	1,1	2,3	2,4	3,0	4,5	3,9
Shear load IMC A4	V	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Displacements IMC A4	δ_{V0}	[mm]	1,5	1,4	2,1	2,6	2,7	4,6
	δ_{V^∞}	[mm]	2,3	2,2	3,2	3,9	4,1	7,0

Upat Anchor Bolt IMC

Performances Displacement under tension and shear loads

Annex C 3