

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0172 of 25 April 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Upat Drop-in Anchor USA

Deformation-controlled expansion anchor for use in non-cracked concrete

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

15 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

European Technical Assessment ETA-10/0172

Page 2 of 15 | 25 April 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-10/0172

Page 3 of 15 | 25 April 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Upat Drop-in Anchor USA is an anchor made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading, displacements	See Annex C 1 to C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

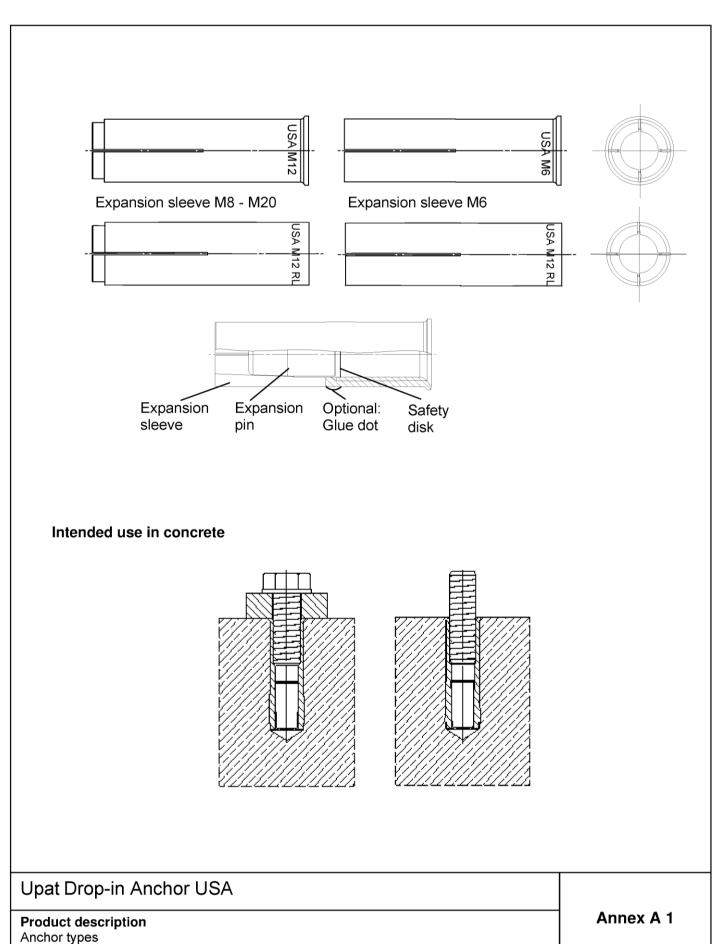
The system to be applied is: 1

European Technical Assessment ETA-10/0172

Page 4 of 15 | 25 April 2017

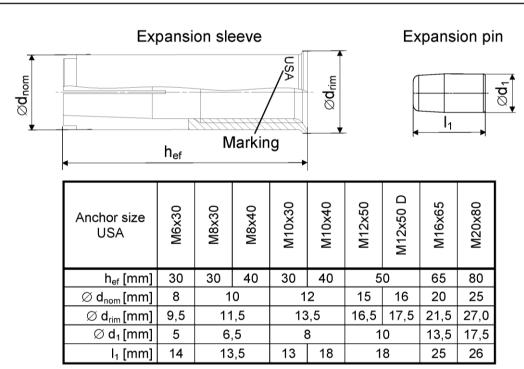
English translation prepared by DIBt

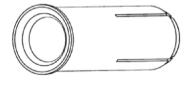
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

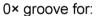

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

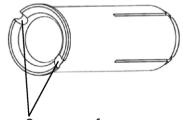
Issued in Berlin on 25 April 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow Head of Department beglaubigt:


Baderschneider




Installed condition



Distinctive feature

- USA M6x30..
- USA M8x30..
- USA M10x40..
- USA M12x50..
- USA M16x65..
- USA M20x80..

2× groove for:

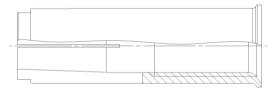
- USA M8x40..
- USA M10x30..

Marking on anchor body

galvanize	ed steel (gvz)	stainless steel (A4)						
with rim	rimless	with rim	rimless					
USA M6x30	USA M6x30 RL	USA M6x30 A4	USA M6x30 RL A4					
USA M8x30	USA M8x30 RL	USA M8x30 A4	USA M8x30 RL A4					
USA M8x40	USA M8x40 RL	USA M8x40 A4	USA M8x40 RL A4					
USA M10x30	USA M10x30 RL	USA M10x30 A4	USA M10x30 RL A4					
USA M10x40	USA M10x40 RL	USA M10x40 A4	USA M10x40 RL A4					
USA M12x50	USA M12x50 RL	USA M12x50 A4	USA M12x50 RL A4					
USA M12x50 D	USA M12x50 RLD	USA M12x50 DA4	USA M12x50 RL DA4					
USA M16x65	USA M16x65 USA M16x65 RL		USA M16x65 RL A4					
USA M20x80	USA M20x80 RL	USA M20x80 A4	USA M20x80 RL A4					

Upat Drop-in Anchor USA

Product description


Anchor types

Annex A 2

Z31816.17

Expansion pin

Table A1: Materials

	Material							
Designation	galvanised steel (≥ 5 µm)	stainless steel						
Expansion sleeve	EN 10277:2008 or EN 10084:2008 or							
Expansion pin	EN 10111:2008 or EN 10263:2001 or EN 10087:1998 or ASTM A29/A29M	EN 10088:2005						
Fastening screw or threaded rod	steel, property class 4.6, 5.6, 5.8 or 8.8 according to EN ISO 898-1:2012	property class 50, 70 or 80 according to EN ISO 3506:2009						

Upat Drop-in Anchor USA

Product description
Material

Annex A 3

English translation prepared by DIBt

Specifications of Intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- · Non-cracked concrete: all sizes

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel)

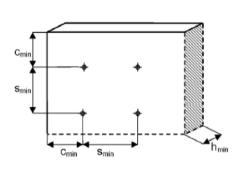
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking into account the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Design of fastenings in accordance to FprEN 1992-4:2016 and EOTA Technical Report TR 055.
- · Fasteners can be used as a single fixing for use in structural application.

Installation:

electronic copy of the eta by dibt: eta-10/0172


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Create drill hole with hammer drill or with hollow drill and vacuum cleaner
- The anchor may only be used once
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load
- Anchor expansion by impact using the setting tools given in Annex B 3. The anchor is property set if the stop
 of the setting tool reaches the expansion sleeve. The manual setting tool with installation control leaves a
 visible mark on the sleeve, as illustrated in Annex B 3 and B 4

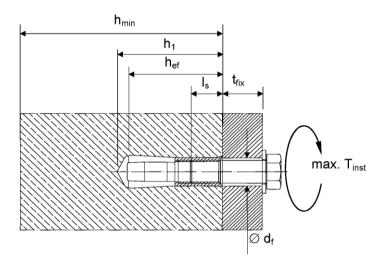

Upat Drop-in Anchor USA	
Intended Use Specifications	Annex B 1

Table B2: Installation parameters for concrete C20/25 to C50/60

Anchor size											
			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50D	M16x65	M20x80
Nominal drill hole diameter	d ₀	[mm]	8	1	0	1	2	15	16	20	25
Effective anchorage depth	h _{ef}	[mm]	30	30	40	30	40	5	0	65	80
Maximum installation torque	max. T _{inst}	[Nm]	4	8	3	1	5	3	5	60	120
Minimum drill hole depth	h₁	[mm]	32	33	43	33	43	5	4	70	85
Minimum screw-in depth	$I_{s,min}$	[mm]	6	8	3	1	0	1	2	16	20
Maximum screw-in depth	I _{s,max}	[mm]	14	1	4	14	17	2	2	28	34
Clearance of hole diameter	Ø d _f ≤	[mm]	7	9)	1	2	1	4	18	22
$h_{min} = 80 \text{ mm}$											
Minimum spacing	S _{min}	[mm]	70	110	200	20	00	-	-	-	-
Minimum edge distance	C _{min}	[mm]	150	15	50	18	50	-	-	-	-
$h_{min} = 100 \text{ mm}$											
Minimum spacing	S _{min}	[mm]	65	7	0	90	150	20	00	-	-
Minimum edge distance	C _{min}	[mm]	115	11	15	160	180	20	30	-	-
h _{min} = 120 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	-	-
Minimum edge distance	C _{min}	[mm]	115	11	15	140	150	20	00	-	-
h _{min} = 160 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	180	-
Minimum edge distance	C _{min}	[mm]	115	11	15	140	150	20	00	240	-
h _{min} = 200 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	180	190
Minimum edge distance	C _{min}	[mm]	115	11	15	140	150	20	00	240	280

Fastening screw or threaded rod:

- Minimum property class and materials according to table A1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix} , admissible tolerances and maximum screw length $l_{\text{s,max}}$ as well as minimum screw-in depth $l_{\text{s,min}}$

Upat Drop-in Anchor USA	
Intended Use Installation parameters	Annex B 2

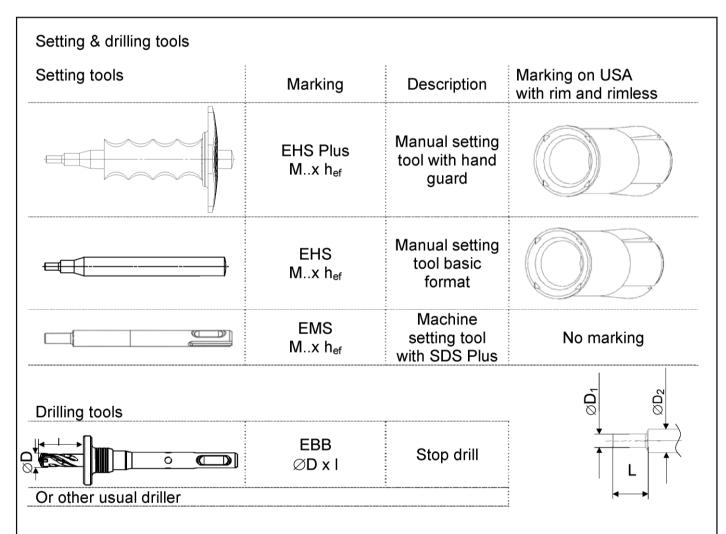
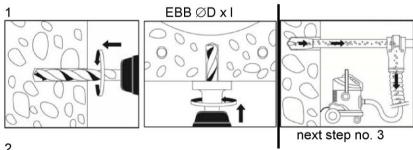
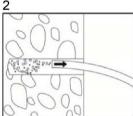
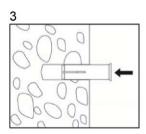


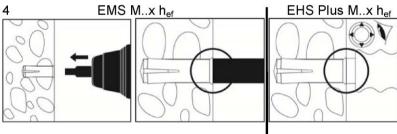
Table B3: Parameters of setting tools

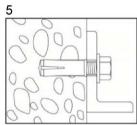
Manual setting tool	Machine setting tool	Stop drill For anchor size USA		Ø D1	Ø D2	L
EHS M6x25/30	EMS M6x25/30	EBB 8x30	USA M6x30	4,8	9,0	17,0
EHS M8x25/30	EMS M8x25/30	EBB 10x30	USA M8x30	6.4	44.0	18,0
EHS M8x40	EMS M8x40	EBB 10x40	USA M8x40	6,4	11,0	28,0
EHS M10x25/30	EMS M10x25/30	EBB 12x30	USA M10x30	7.0	12.0	18,0
EHS M10x40	EMS M10x40	EBB 12x40	USA M10x40	7,9	13,0	24,0
EHS M12x50	EMS M12x50	EBB 15x50	USA M12x50	10.0	16.5	20.0
EHS M12x50	EMS M12x50	EBB 16x50	USA M12x50 D	10,2	16,5	30,0
EHS M16x65	EMS M16x65	EBB 20x65	USA M16x65	13,5	22	36,0
EHS M20x80	EMS M20x80	EBB 25x80	USA M20x80	16,4	27	50,0


Upat Drop-in Anchor USA	
Intended Use Setting & Drilling tools	Annex B 3


electronic copy of the eta by dibt: eta-10/0172


Z31816.17




Installation instructions

No.	Description
1	Create drill hole with hammer drill or with hollow drill and vacuum cleaner
2	Clean from drill-dust
3	Set anchor till anchor is flush with surface of concrete
4	Expand the sleeve by driving the pin into the sleeve and control the correct setting
5	Fixation of fixture. Maximum installation torque max. Tiget must not be crossed

Upat Drop-in Anchor USA	
Intended Use Installation instructions	Annex B 4

Table C1: Characteristic values for tension loads

USA		property class	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80
Inastallation safety factor		[-]					1,0		_		
Steel failure	γinst	[-]					1,0				
Characteristic resistance	N [LN1]	A4-50	10,1	10	3,3	20	0,0	1	2,1	78,3	122,4
	N _{Rk,s} [kN]	A4-50	10, 1	10	5,3	28	,	42	2, 1	10,3	122,4
Partial safety factor	γMs						2,86				
Characteristic resistance	N _{Rk,s} [kN]	A4-70	14,1	19	9,6		l,9	45,1	59,0	73,8	117,2
Partial safety factor	$\gamma_{\sf Ms}$		1,87			1,5			1,87		,5
Characteristic resistance	N _{Rk,s} [kN]	A4-80	16,1	19	9,6	24	l,9	45,1	59,0	73,8	117,2
Partial safety factor	γ_{Ms}		1,6				1	,5			
Characteristic resistance	$N_{Rk,s}$ [kN]	steel 4.6	8,0	8,0 14,6 23,2			33	3,7	62,7	97,9	
Partial safety factor	$\gamma_{\sf Ms}$						2,0				
Characteristic resistance	N _{Rk,s} [kN]	steel 5.6	10,1	18	3,3	29	9,0	42	2,1	78,3	122,4
Partial safety factor	γ_{Ms}						2,0				
Characteristic resistance	N _{Rk,s} [kN]	steel 5.8	10,1	17	7,2	21,8		39,6	42,1	64,7	102,8
Partial safety factor	γ _{Ms}						1,5				
Characteristic resistance	N _{Rk,s} [kN]	steel 8.8	13,5	17	7,2	21	,8	39,6	53,3	64,7	102,8
Partial safety factor	γ _{Ms}						1,5				
Pull-out failure not decisive											
Concrete cone failure											
Effective anchorage depth	h _{ef}	[mm]	3	0	40	30	40	5	0	65	80
Characteristic spacing	S _{cr,N}	[mm]	9	0	120	90	120	1:	50	195	240
Characteristic edge distance	C _{cr,N}	[mm]	4	45 60		45	5 60 7		5	97	120
Factor k ₁	k _{ucr,N}	[-]	11,0								
Splitting failure											
Characteristic spacing	S _{cr,sp}	[mm]	2	10	280	210	320	3	50	455	560
Characteristic edge distance	C _{cr,sp}	[mm]	10	05	140	105	160	1	75	227	280

¹⁾ Only for application with statically indeterminate structural components.

Upat Drop-in Anchor USA	
Performances Characteristic values for tension loads	Annex C 1

Table C2: Characteristic values for shear loads

	property class	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80
k ₇ [-]						1,0)			
m										
$V_{Rk,s}$ [kN]	A4-50	5,0	9,	2	14	l,5	21	1,1	39,2	61,2
γ_{Ms}						2,38				
$V_{Rk,s}$ [kN]	A4-70	7,0	9,	8	12	2,4	22,6	29,5	37	59
γ_{Ms}		1,56			1,25			1,56	1,	25
$V_{Rk,s}$ [kN]	A4-80	8,0	9,	8	12	2,4	22,6	30,4	36,9	58,6
γ_{Ms}		1,33				1,	25			
$V_{Rk,s}$ [kN]	steel 4.6	4,0	7,	3	11	1,6	16	3,9	31	49
γ _{Ms}			1,67							
$V_{Rk,s}$ [kN]	steel 5.6	5,0	9,2 14,5		21	1,1	39	61		
γ _{Ms}		1,67								
$V_{Rk,s}$ [kN]	steel 5.8	5,0	5,0 8,6 10,9		19,8	21,1	32	51		
γ _{Ms}		1,25								
V _{Rk,s} [kN]	steel 8.8	6,8	8,	6	10),9	19,8	27	32	51
γ _{Ms}						1,25				
$M^0_{Rk,s}$ [Nm]	A4-50	8 19 37 66 16				166	324			
γ̃Ms						2,38				
M ⁰ _{Rk,s} [Nm]	A4-70	11	2	6	5	2	9	2	232	454
γ _{Ms}						1,56				
M ⁰ _{Rk,s} [Nm]	A4-80	12	3	0	6	0	10	05	266	519
γ̃Ms		1,33								
M ⁰ _{Rk,s} [Nm]	Stahl 4.6	6,1 15 30 52				133	259			
		1,67								
	Stahl 5.6	7,6 19 37 66 16				166	324			
γ_{Ms}		1,67								
	Stahl 5.8	7,6	1	9	3	7	6	6	166	324
γ̃Ms						1,25				
	Stahl 8.8	12				05	266	517		
		1,25								
	$\begin{array}{l} \mathbf{m} \\ V_{Rk,s} \left[kN \right] \\ \gamma_{Ms} \\ M^{0}_{Rk,s} \left[Nm \right] $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K ₇ [-] m	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

¹⁾ Only for application with statically indeterminate structural components.

Upat Drop-in Anchor USA	
Performances Characteristic values for shear loads	Annex C 2

Table C3: Characteristic values for shear loads

USA			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Concrete pry out failure											
Factor	k_8	[-]	1,	74	1,88	1,74	1,88	2,0			
Installation safety factor	γ̃inst	[-]	1,0								
Concrete edge failure											
Effective length of anchor in shear loading	$I_f = h_{ef}$	[mm]	30 40 30 40 50				65	80			
Effective diameter of anchor	\emptyset d_{nom}	[mm]	8	•	10	1	2	15	16	20	25

Upat Drop-in Anchor USA

Performances
Characteristic values for shear loads

Annex C 3

electronic copy of the eta by dibt: eta-10/0172

Table C4.1: Displacements under tension and shear loads for USA in galvanised steel

USA			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Tension load in C20/25 to C50/60	N	[kN]] 4,0 6,1 4,0 6,1 8,5				5	12,6	17,2		
Dieplacement	δ_{No}	[mm]	0,1								
Displacement $\frac{\delta_{No}}{\delta_{N\infty}}$ [mn				0,2							
Shear load in C20/25 to C50/60	V	[kN]	3,9	4,9		6,2		11,3	15,2	18,5	29,4
Dienlagement	δ_{Vo}	[mm]	0,95	95 1,00 1,05		05	1,10		1,40	1,80	
Displacement	$\delta_{V^{\infty}}$	[mm]	1,40	1,	1,50 1,60		60	1,70		2,10	2,70

Table C4.2: Displacements under tension and shear loads for USA in stainless steel

USA A4			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Tension load in C20/25 to C50/60	N	[kN]	4,0 6,1 4,0 6,1				8,5		12,6	17,2		
Displacement		[mm]	0,1									
Displacement	$\delta_{N\infty}$	[mm]	0,2									
Shear load in C20/25 to C50/60	V	[kN]	3,2	5,6	7,1			12,9	13,5	21,1	33,5	
Displacement	δ_{Vo}	[mm]	0,95	1,	00 1,05		05	1,10		1,40	1,80	
	$\delta_{V^{\infty}}$	[mm]	1,40	1,	50 1,60		1,70		2,10	2,70		

Upat Drop-in Anchor USA	
Performances Displacements	Annex C 4