



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

### ETA-10/0356 of 12 December 2017

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Injection system for use in concrete

AC MARCA ADHESIVES, S.A. Av. Carrilet 293-299 08907 L¿HOSPITALET DE LI. SPANIEN

AC MARCA ADHESIVES S.A., Plant1 Germany

21 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



### European Technical Assessment ETA-10/0356

Page 2 of 21 | 12 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 21 | 12 December 2017

#### Specific Part

#### 1 Technical description of the product

The "Ceys Injection system TACO QUÍMICO VINYLESTER for concrete" is a bonded anchor consisting of a cartridge with injection mortar TACO QUÍMICO VINYLESTER snow and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                          | Performance          |
|---------------------------------------------------|----------------------|
| Characteristic resistance tension and shear loads | See Annex C 1 to C 5 |
| Displacements under tension and shear loads       | See Annex C 6 / C 7  |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                     |
|--------------------------|-------------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for<br>Class A1 |
| Resistance to fire       | No performance assessed                         |

#### 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

#### 3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.



## European Technical Assessment ETA-10/0356

Page 4 of 21 | 12 December 2017

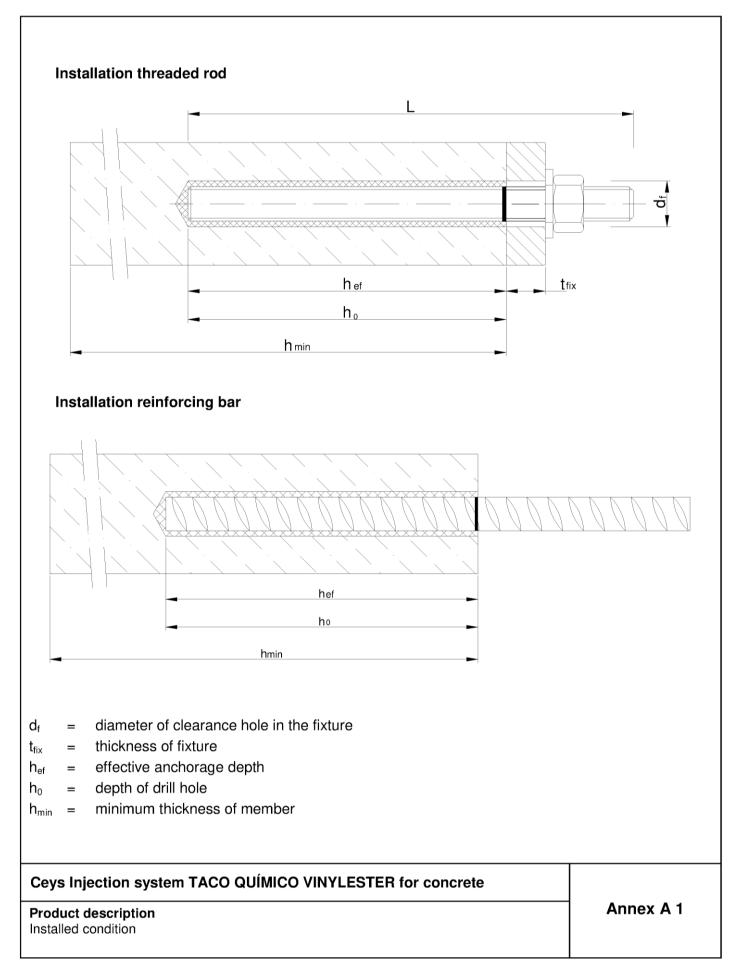
English translation prepared by DIBt

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

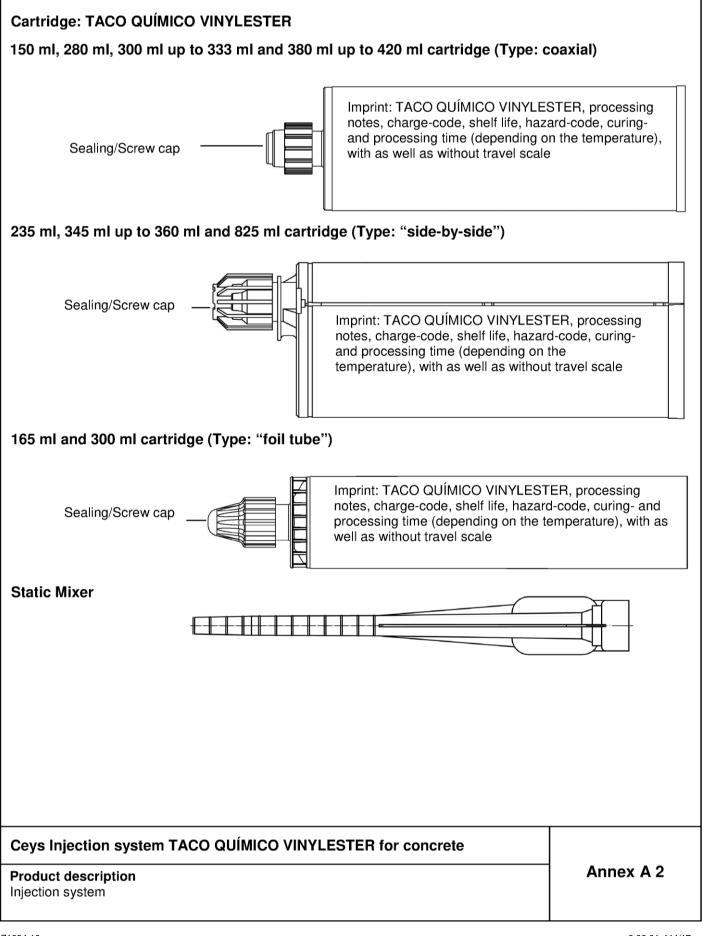
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

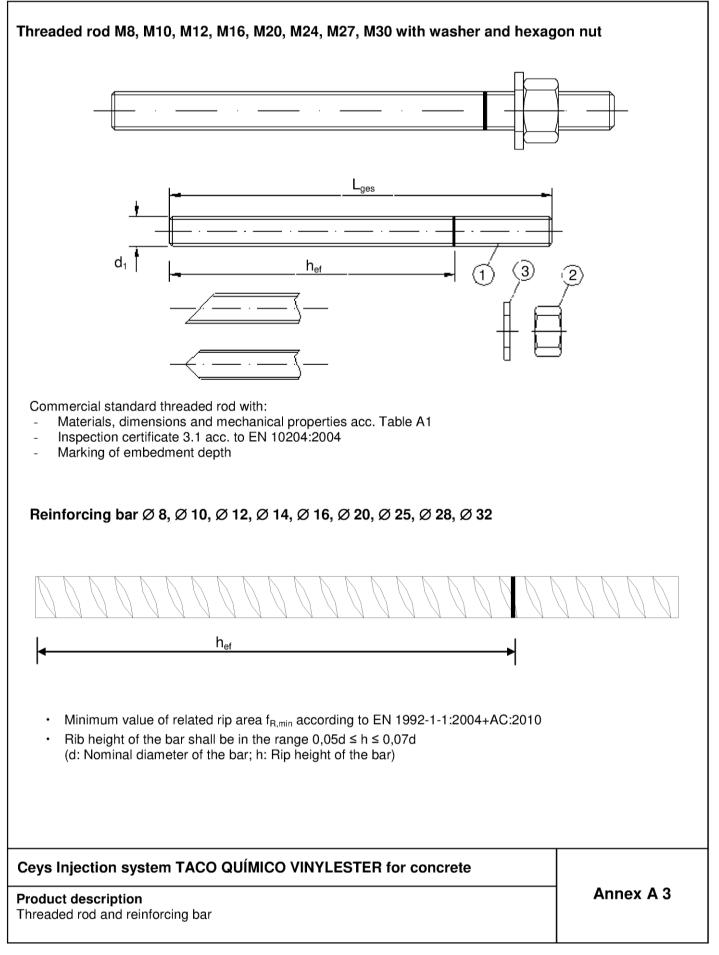
# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 December 2017 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

## Page 5 of European Technical Assessment ETA-10/0356 of 12 December 2017
















### Table A1: Materials

| Part   | Designation                                                                                | Material                                                                                                                                                                                     |                                        |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|--|
| Steel, | , zinc plated ≥ 5 μm acc. to EN ISO 4042:19<br>, hot-dip galvanised ≥ 40 μm acc. to EN ISO | 999 or                                                                                                                                                                                       | 2.2000                                 |  |  |  |  |  |  |
| 1      | Anchor rod                                                                                 | Steel, EN 10087:1998 or EN 10263:200<br>Property class 4.6, 4.8, 5.8, 8.8, EN 1993<br>$A_5 > 8\%$ fracture elongation                                                                        | 1                                      |  |  |  |  |  |  |
| 2      | Hexagon nut, EN ISO 4032:2012                                                              | Steel acc. to EN 10087:1998 or EN 102<br>Property class 4 (for class 4.6 or 4.8 rod)<br>Property class 5 (for class 5.8 rod) EN IS<br>Property class 8 (for class 8.8 rod) EN IS             | ) EN ISO 898-2:2012,<br>SO 898-2:2012, |  |  |  |  |  |  |
| 3      | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000      | Steel, zinc plated or hot-dip galvanised                                                                                                                                                     |                                        |  |  |  |  |  |  |
| Stain  | less steel                                                                                 |                                                                                                                                                                                              |                                        |  |  |  |  |  |  |
| 1      | Anchor rod                                                                                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                       |                                        |  |  |  |  |  |  |
| 2      | Hexagon nut, EN ISO 4032:2012                                                              | Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005,           Property class 50 (for class 50 rod) EN ISO 3506-2:2009           Property class 70 (≤ M24) (for class 70 rod) EN ISO 3506-2:2009 |                                        |  |  |  |  |  |  |
| 3      | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000      | Material 1.4401, 1.4404 or 1.4571, EN 1                                                                                                                                                      | 0088-1:2005                            |  |  |  |  |  |  |
| High   | corrosion resistance steel                                                                 |                                                                                                                                                                                              |                                        |  |  |  |  |  |  |
| 1      | Anchor rod                                                                                 | $ \begin{array}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                      |                                        |  |  |  |  |  |  |
| 2      | Hexagon nut, EN ISO 4032:2012                                                              | Material 1.4529 / 1.4565 EN 10088-1:20<br>Property class 50 (for class 50 rod) EN IS<br>Property class 70 ( $\leq$ M24) (for class 70 ro                                                     | SO 3506-2:2009                         |  |  |  |  |  |  |
| 3      | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000      | Material 1.4529 / 1.4565, EN 10088-1:20                                                                                                                                                      | 005                                    |  |  |  |  |  |  |
| Reinf  | orcing bars                                                                                |                                                                                                                                                                                              |                                        |  |  |  |  |  |  |
| 1      | Rebar<br>EN 1992-1-1:2004+AC:2010, Annex C                                                 | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$                                                                         | 1992-1-1/NA:2013                       |  |  |  |  |  |  |
|        | 1                                                                                          | 1                                                                                                                                                                                            |                                        |  |  |  |  |  |  |
| Cey    | s Injection system TACO QUÍMICO VI                                                         | NYLESTER for concrete                                                                                                                                                                        |                                        |  |  |  |  |  |  |
|        | luct description                                                                           |                                                                                                                                                                                              | Annex A 4                              |  |  |  |  |  |  |



### Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

#### **Base materials:**

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- · Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

#### **Temperature Range:**

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
  permanently damp internal condition, if no particular aggressive conditions exist
  (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
   particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
  - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
  - CEN/TS 1992-4:2009
- Anchorages under seismic actions are designed in accordance with:
  - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
  - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
  - Fastenings in stand-off installation or with a grout layer are not allowed.

#### Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Intended Use Specifications



| Anchor size                               |                             | M 8 | M 10                             | M 12 | M 16 | M 20 | M 24            | M 27 | M 30 |
|-------------------------------------------|-----------------------------|-----|----------------------------------|------|------|------|-----------------|------|------|
| Nominal drill hole diameter               | d <sub>0</sub> [mm] =       | 10  | 12                               | 14   | 18   | 24   | 28              | 32   | 35   |
| Effective encharge depth                  | h <sub>ef,min</sub> [mm] =  | 60  | 60                               | 70   | 80   | 90   | 96              | 108  | 120  |
| Effective anchorage depth                 | h <sub>ef,max</sub> [mm] =  | 160 | 200                              | 240  | 320  | 400  | 480             | 540  | 600  |
| Diameter of clearance hole in the fixture | d <sub>f</sub> [mm] ≤       | 9   | 12                               | 14   | 18   | 22   | 26              | 30   | 33   |
| Diameter of steel brush                   | d <sub>b</sub> [mm] ≥       | 12  | 14                               | 16   | 20   | 26   | 30              | 34   | 37   |
| Torque moment                             | T <sub>inst</sub> [Nm] ≤    | 10  | 20                               | 40   | 80   | 120  | 160             | 180  | 200  |
| Thickness of fixture                      | t <sub>fix,min</sub> [mm] > |     |                                  |      | (    | )    |                 |      |      |
| Thickness of fixture                      | t <sub>fix,max</sub> [mm] < |     |                                  |      | 15   | 00   |                 |      |      |
| Minimum thickness of<br>member            | h <sub>min</sub> [mm]       |     | <sub>ef</sub> + 30 m<br>≥ 100 mn |      |      |      | $h_{ef} + 2d_0$ |      |      |
| Minimum spacing                           | s <sub>min</sub> [mm]       | 40  | 50                               | 60   | 80   | 100  | 120             | 135  | 150  |
| Minimum edge distance                     | c <sub>min</sub> [mm]       | 40  | 50                               | 60   | 80   | 100  | 120             | 135  | 150  |

### Table B2: Installation parameters for rebar

| Rebar size                     |                            | Ø 8                                 | Ø 10 | Ø 12                              | Ø 14 | Ø 16 | Ø 20 | Ø 25 | Ø 28 | Ø 32 |  |  |
|--------------------------------|----------------------------|-------------------------------------|------|-----------------------------------|------|------|------|------|------|------|--|--|
| Nominal drill hole diameter    | d <sub>0</sub> [mm] =      | 12                                  | 14   | 16                                | 18   | 20   | 24   | 32   | 35   | 40   |  |  |
| Effective anchorage depth      | h <sub>ef,min</sub> [mm] = | 60                                  | 60   | 70                                | 75   | 80   | 90   | 100  | 112  | 128  |  |  |
| Effective anchorage depth      | h <sub>ef,max</sub> [mm] = | 160                                 | 200  | 240                               | 280  | 320  | 400  | 500  | 580  | 640  |  |  |
| Diameter of steel brush        | d <sub>b</sub> [mm] ≥      | 14                                  | 16   | 18                                | 20   | 22   | 26   | 34   | 37   | 41,5 |  |  |
| Minimum thickness of<br>member | h <sub>min</sub> [mm]      | h <sub>ef</sub> + 30 mm<br>≥ 100 mm |      | h <sub>ef</sub> + 2d <sub>0</sub> |      |      |      |      |      |      |  |  |
| Minimum spacing                | s <sub>min</sub> [mm]      | 40                                  | 50   | 60                                | 70   | 80   | 100  | 125  | 140  | 160  |  |  |
| Minimum edge distance          | c <sub>min</sub> [mm]      | 40                                  | 50   | 60                                | 70   | 80   | 100  | 125  | 140  | 160  |  |  |

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Intended Use

Annex B 2

Installation parameters



#### Steel brush RBT Table B3: Parameter cleaning and setting tools d<sub>b,min</sub> Piston Threaded $\mathbf{d}_0$ db Rebar min. Rod Drill bit - Ø Brush - Ø plug Brush - Ø (mm) (mm) (mm)(mm) (mm)(No.) M8 10 RBT10 12 10.5 M10 8 12 RBT12 14 12,5 No M12 14 10 RBT14 16 14.5 piston plug 12 16 RBT16 18 16,5 required 14 M16 18 RBT18 20 18,5 16 20 RBT20 22 20,5 24 VS24 M20 20 RBT24 26 24,5 M24 28 RBT28 30 28,5 VS28 M27 25 32 RBT32 VS32 34 32,5 M30 28 35 RBT35 37 35,5 VS35 32 40 RBT40 41,5 40,5 **VS40**



#### Hand pump (volume 750 ml) Drill bit diameter (d<sub>0</sub>): 10 mm to 20 mm – uncracked concrete



Recommended compressed air tool (min 6 bar) Drill bit diameter (d<sub>0</sub>): 10 mm to 40 mm



**Piston plug for overhead or horizontal installation** Drill bit diameter (d<sub>0</sub>): 24 mm to 40 mm

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

### Intended Use

Cleaning and setting tools



| Installation inst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ructions                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1 or Table B2). I drill hole: the drill hole shall be filled with mortar                                                                                                                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attention! Standing water in the bore hole must be removed                                                                                                                                                                                                                                                                                                                                                     | d before cleaning.                                            |
| 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2a. Starting from the bottom or back of the bore hole, blow the hole<br>compressed air (min. 6 bar) or a hand pump (Annex B 3) a mini<br>the bore hole ground is not reached an extension shall be used                                                                                                                                                                                                        | mum of four times. If                                         |
| or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The hand-pump can <b>only</b> be used for anchor sizes in uncracked bore hole diameter 20mm or embedment depth up to 240mm.                                                                                                                                                                                                                                                                                    | d concrete up to                                              |
| 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Compressed air (min. 6 bar) can be used for all sizes in cracked concrete.                                                                                                                                                                                                                                                                                                                                     | d and uncracked                                               |
| <u>*******</u> ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>2b. Check brush diameter (Table B3) and attach the brush to a drilli or a battery screwdriver. Brush the hole with an appropriate size &gt; d<sub>b,min</sub> (Table B3) a minimum of four times.</li> <li>If the bore hole ground is not reached with the brush, a brush ex shall be used (Table B3).</li> </ul>                                                                                     | ed wire brush                                                 |
| or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2c. Finally blow the hole clean again with compressed air (min. pump (Annex B 3) a minimum of four times. If the bore hole gro an extension shall be used. The hand-pump can <u>only</u> be used to uncracked concrete up to bore hole diameter 20mm or embedm 240mm. Compressed air (min. 6 bar) can be used for all sizes in uncracked concrete.                                                             | und is not reached<br>for anchor sizes in<br>nent depth up to |
| 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | After cleaning, the bore hole has to be protected against re<br>an appropriate way, until dispensing the mortar in the bore<br>the cleaning repeated has to be directly before dispensing<br>In-flowing water must not contaminate the bore hole again.<br><sup>1)</sup> It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an er<br>240 mm also in cracked concrete with hand-pump. | hole. If necessary,<br>the mortar.                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use.<br>For every working interruption longer than the recommended we (Table B4) as well as for new cartridges, a new static-mixer sha                                                                                                                                           | orking time                                                   |
| the second secon | 4. Prior to inserting the anchor rod into the filled bore hole, the pose embedment depth shall be marked on the anchor rods.                                                                                                                                                                                                                                                                                   | ition of the                                                  |
| min. 3 full<br>stroke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive component shows a consistent grey colour. For foil tube cartridges is must be minimum of six full strokes.                                                                                                                                                                           | nts until the mortar                                          |
| Ceys Injection sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stem TACO QUÍMICO VINYLESTER for concrete                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| Intended Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                | Annex B 4                                                     |

Intended Use Installation instructions



| Installation inst | ructions (continuation)                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4. |
|                   | Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to<br>ensure positive distribution of the adhesive until the embedment depth is reached.                                                                                                                                                                                                                                                                      |
|                   | The anchor should be free of dirt, grease, oil or other foreign material.                                                                                                                                                                                                                                                                                                                                                                          |
|                   | 8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).                                                                                                                                                                 |
| +20°C             | 9. Allow the adhesive to cure to the specified time prior to applying any load or torque.<br>Do not move or load the anchor until it is fully cured (attend Table B4).                                                                                                                                                                                                                                                                             |
|                   | <ol> <li>After full curing, the add-on part can be installed with the max. torque<br/>(Table B2) by using a calibrated torque wrench.</li> </ol>                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Intended Use Installation instructions (continuation)



| Table B4 |          |          | /orking time and minimum curing<br>IICO VINYLESTER | time                                                 |
|----------|----------|----------|----------------------------------------------------|------------------------------------------------------|
| Concre   | te temp  | perature | Gelling- / working time                            | Minimum curing time<br>in dry concrete <sup>1)</sup> |
| -10 °C   | to       | -6°C     | 90 min <sup>2)</sup>                               | 24 h <sup>2)</sup>                                   |
| -5 °C    | to       | -1°C     | 90 min                                             | 14 h                                                 |
| 0 °C     | to       | +4°C     | 45 min                                             | 7 h                                                  |
| +5 °C    | to       | +9°C     | 25 min                                             | 2 h                                                  |
| + 10 °C  | to       | +19°C    | 15 min                                             | 80 min                                               |
| + 20 °C  | to       | +29°C    | 6 min                                              | 45 min                                               |
| + 30 °C  | to       | +34°C    | 4 min                                              | 25 min                                               |
| + 35 °C  | to       | +39°C    | 2 min                                              | 20 min                                               |
| >        | > + 40 ° | С        | 1,5 min                                            | 15 min                                               |
| Cartrido | ge temp  | perature | +5°C to                                            | +40°C                                                |

In wet concrete the curing time must be doubled. Cartridge temperature must be at min. +15°C. 2)

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Intended Use Curing time



| Size              |                |                                        |                                 |      | M 8  | M 10 | M 12 | M 16 | M 20 | M24   | M 27  | M 30  |  |
|-------------------|----------------|----------------------------------------|---------------------------------|------|------|------|------|------|------|-------|-------|-------|--|
|                   | acteristic ten | sion resistance, Steel failure         |                                 |      | мо   |      |      | MIO  | M 20 | 11/24 | WI 27 | WI 30 |  |
|                   | Property clas  | ,                                      | N <sub>Rk,s</sub>               | [kN] | 15   | 23   | 34   | 63   | 98   | 141   | 184   | 224   |  |
|                   | Property clas  |                                        | N <sub>Rk,s</sub>               | [kN] | 18   | 29   | 42   | 78   | 122  | 176   | 230   | 280   |  |
|                   | Property clas  |                                        | N <sub>Bk.s</sub>               | [kN] | 29   | 46   | 67   | 125  | 196  | 282   | 368   | 449   |  |
|                   |                | A4 and HCR, Property class 50          | N <sub>Rk,s</sub>               | [kN] | 18   | 29   | 42   | 79   | 123  | 177   | 230   | 281   |  |
|                   |                | A4 and HCR, Property class 70          | N <sub>Rk,s</sub>               | [kN] | 26   | 41   | 59   | 110  | 171  | 247   | -     | -     |  |
| Chara             | acteristic ten | sion resistance, Partial safety factor | · · · · · · · · ·               |      |      |      |      |      |      |       |       |       |  |
| Steel,            | Property clas  | s 4.6                                  | γ <sub>Ms,N</sub> <sup>1)</sup> | [-]  |      |      |      | 2    | ,0   |       |       |       |  |
| Steel,            | Property clas  | s 4.8                                  | γ <sub>Ms,N</sub> 1)            | [-]  |      |      |      | 1    | ,5   |       |       |       |  |
| Steel,            | Property clas  | s 5.8                                  | γ <sub>Ms,N</sub> 1)            | [-]  |      |      |      | 1    | ,5   |       |       |       |  |
| Steel,            | Property clas  | s 8.8                                  | γ <sub>Ms,N</sub> <sup>1)</sup> | [-]  | 1,5  |      |      |      |      |       |       |       |  |
| Stainl            | ess steel A4 a | and HCR, Property class 50             | γ <sub>Ms,N</sub> 1)            | [-]  | 2,86 |      |      |      |      |       |       |       |  |
| Stainl            | ess steel A4 a | and HCR, Property class 70             | γ <sub>Ms,N</sub> <sup>1)</sup> | [-]  |      |      |      | 1,   | 87   |       |       |       |  |
| Chara             | acteristic she | ar resistance, Steel failure           |                                 | _    |      |      |      |      |      |       |       |       |  |
| E                 | Steel, Prope   | erty class 4.6 and 4.8                 | $V_{Rk,s}$                      | [kN] | 7    | 12   | 17   | 31   | 49   | 71    | 92    | 112   |  |
| er a              | Steel, Prope   | erty class 5.8                         | $V_{Rk,s}$                      | [kN] | 9    | 15   | 21   | 39   | 61   | 88    | 115   | 140   |  |
| ıt lev            | Steel, Prope   | erty class 8.8                         | $V_{Rk,s}$                      | [kN] | 15   | 23   | 34   | 63   | 98   | 141   | 184   | 224   |  |
| Without lever arm | Stainless ste  | eel A4 and HCR, Property class 50      | $V_{Rk,s}$                      | [kN] | 9    | 15   | 21   | 39   | 61   | 88    | 115   | 140   |  |
| 3                 | Stainless ste  | eel A4 and HCR, Property class 70      | $V_{Rk,s}$                      | [kN] | 13   | 20   | 30   | 55   | 86   | 124   | -     | -     |  |
|                   | Steel, Prope   | erty class 4.6 and 4.8                 | $M_{Rk,s}$                      | [Nm] | 15   | 30   | 52   | 133  | 260  | 449   | 666   | 900   |  |
| arm               | Steel, Prope   | erty class 5.8                         | $M_{Rk,s}$                      | [Nm] | 19   | 37   | 65   | 166  | 324  | 560   | 833   | 1123  |  |
| evei              | Steel, Prope   | erty class 8.8                         | M <sub>Rk,s</sub>               | [Nm] | 30   | 60   | 105  | 266  | 519  | 896   | 1333  | 1797  |  |
| With lever        | Stainless ste  | eel A4 and HCR, Property class 50      | M <sub>Rk,s</sub>               | [Nm] | 19   | 37   | 66   | 167  | 325  | 561   | 832   | 1125  |  |
| ~                 | Stainless ste  | eel A4 and HCR, Property class 70      | M <sub>Rk,s</sub>               | [Nm] | 26   | 52   | 92   | 232  | 454  | 784   | -     | -     |  |
| Chara             | acteristic she | ar resistance, Partial safety factor   |                                 |      |      |      |      |      |      |       |       |       |  |
| Steel,            | Property clas  | s 4.6                                  | γ <sub>Ms,V</sub> 1)            | [-]  |      | 1,67 |      |      |      |       |       |       |  |
| -                 | Property clas  |                                        | γ <sub>Ms,V</sub> <sup>1)</sup> | [-]  |      |      |      | 1,   | 25   |       |       |       |  |
|                   | Property clas  |                                        | γ <sub>Ms,V</sub> <sup>1)</sup> | [-]  |      |      |      | ,    | 25   |       |       |       |  |
|                   | Property clas  |                                        | γ <sub>Ms,V</sub> <sup>1)</sup> | [-]  |      |      |      |      | 25   |       |       |       |  |
|                   |                | and HCR, Property class 50             | γ <sub>Ms,V</sub> <sup>1)</sup> | [-]  | 2,38 |      |      |      |      |       |       |       |  |
| Stainl            | ess steel A4 a | and HCR, Property class 70             | γ <sub>Ms,V</sub> 1)            | [-]  | 1,56 |      |      |      |      |       |       |       |  |

<sup>1)</sup> in absence of national regulation

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

#### Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

electronic copy of the eta by dibt: eta-10/0356



| Anchor size threaded                                     | rod                      |                                          |                      | M 8                                                                                       | M 10       | M 12       | M 16            | M 20              | M24     | M27                    | M30      |
|----------------------------------------------------------|--------------------------|------------------------------------------|----------------------|-------------------------------------------------------------------------------------------|------------|------------|-----------------|-------------------|---------|------------------------|----------|
| Steel failure                                            |                          |                                          |                      |                                                                                           |            |            |                 |                   |         |                        |          |
| Characteristic tension re                                | eistance                 | N <sub>Rk,s</sub>                        | [kN]                 |                                                                                           |            |            | see Ta          | able C1           |         |                        |          |
|                                                          |                          | N <sub>Rk,s,C1</sub>                     | [kN]                 |                                                                                           |            |            |                 | $N_{Rk,s}$        |         |                        |          |
| Partial safety factor                                    |                          | γMs,N                                    | [-]                  |                                                                                           |            |            | see Ta          | ble C1            |         |                        |          |
| Combined pull-out and                                    | l concrete failure       |                                          |                      |                                                                                           |            |            |                 |                   |         |                        |          |
| Characteristic bond resis                                | stance in non-cracked co | ncrete C20/25                            |                      |                                                                                           |            |            |                 |                   |         |                        |          |
| Temperature range I:                                     | dry and wet concrete     | $\tau_{Rk,ucr}$                          | [N/mm <sup>2</sup> ] | 10                                                                                        | 12         | 12         | 12              | 12                | 11      | 10                     | 9        |
| 40°C/24°C                                                | flooded bore hole        | $	au_{Rk,ucr}$                           | [N/mm <sup>2</sup> ] | 7,5                                                                                       | 8,5        | 8,5        | 8,5             |                   |         | Determin               | <u>,</u> |
| Temperature range II:                                    | dry and wet concrete     | $\tau_{Rk,ucr}$                          | [N/mm <sup>2</sup> ] | 7,5                                                                                       | 9          | 9          | 9               | 9                 | 8,5     | 7,5                    | 6,5      |
| 80°C/50°C                                                | flooded bore hole        | $\tau_{\rm Rk,ucr}$                      | [N/mm <sup>2</sup> ] | 5,5                                                                                       | 6,5        | 6,5        | 6,5             |                   |         | Determin               | <u>,</u> |
| Temperature range III: 120°C/72°C                        | dry and wet concrete     | $	au_{Rk,ucr}$                           | [N/mm <sup>2</sup> ] | 5,5                                                                                       | 6,5        | 6,5        | 6,5             | 6,5               | 6,5     | 5,5                    | 5,0      |
|                                                          | flooded bore hole        | τ <sub>Rk,ucr</sub>                      | [N/mm <sup>2</sup> ] | 4,0                                                                                       | 5,0        | 5,0        | 5,0             | No Perf           | ormance | Determin               | ed (NPD  |
| Characteristic bond resi                                 | stance in cracked concre | 1                                        | [b] //0]             | 1.0                                                                                       | 50         |            | 5.5             |                   |         | 0.5                    | 0.5      |
|                                                          | dry and wet concrete     | $\tau_{\rm Rk,cr}$                       | [N/mm <sup>2</sup> ] | 4,0                                                                                       | 5,0        | 5,5        | 5,5             | 5,5               | 5,5     | 6,5                    | 6,5      |
| Temperature range I:<br>40°C/24°C                        |                          | τ <sub>Rk,C1</sub>                       | [N/mm <sup>2</sup> ] | 2,5<br>4,0                                                                                | 3,1<br>4,0 | 3,7<br>5,5 | 3,7<br>5,5      | 3,7               | 3,8     | 4,5                    | 4,5      |
| 40 0/24 0                                                | flooded bore hole        | τ <sub>Rk,cr</sub>                       | [N/mm <sup>2</sup> ] | 2,5                                                                                       | 2,5        | 3,7        | 3,7             |                   |         | Determine<br>Determine | · ·      |
|                                                          |                          | $\tau_{\rm Rk,C1}$                       | [N/mm <sup>2</sup> ] | 2,5                                                                                       | 3,5        | 4,0        | 4,0             | 4,0               | 4,0     | 4,5                    | 4,5      |
| Temperature range II:                                    | dry and wet concrete     | τ <sub>Rk,cr</sub>                       | [N/mm <sup>2</sup> ] | 1,6                                                                                       | 2,2        | 2,7        | 2,7             | 2,7               | 2,8     | 3,1                    | 3.1      |
| 80°C/50°C                                                |                          | τ <sub>Rk,C1</sub><br>τ <sub>Rk,cr</sub> | [N/mm <sup>2</sup> ] | 2,5                                                                                       | 3.0        | 4,0        | 4,0             | ,                 | ,-      | Determine              | ,        |
|                                                          | flooded bore hole        | τ <sub>Rk.C1</sub>                       | [N/mm <sup>2</sup> ] | 1,6                                                                                       | 1,9        | 2,7        | 2,7             |                   |         | Determin               |          |
|                                                          |                          | τ <sub>Rk,cr</sub>                       | [N/mm <sup>2</sup> ] | 2,0                                                                                       | 2,5        | 3,0        | 3,0             | 3,0               | 3,0     | 3,5                    | 3,5      |
| Temperature range III:                                   | dry and wet concrete     | T <sub>Rk,C1</sub>                       | [N/mm <sup>2</sup> ] | 1,3                                                                                       | 1,6        | 2,0        | 2,0             | 2,0               | 2,1     | 2,4                    | 2,4      |
| 120°C/72°C                                               | flag da di bana bala     | τ <sub>Rk.cr</sub>                       | [N/mm <sup>2</sup> ] | 2,0                                                                                       | 2,5        | 3,0        | 3,0             | No Perf           | ormance | Determine              | ed (NPD  |
|                                                          | flooded bore hole        | τ <sub>Rk,C1</sub> [N/mm <sup>2</sup> ]  |                      | 1,3                                                                                       | 1,6        | 2,0        | 2,0             | No Perf           | ormance | Determin               | ed (NPD  |
|                                                          | •                        | C25                                      | 5/30                 |                                                                                           |            |            | 1,              | 02                |         |                        |          |
|                                                          |                          | C30                                      | )/37                 | 1,04                                                                                      |            |            |                 |                   |         |                        |          |
| Increasing factors for co<br>(only static or quasi-stati |                          | C35                                      | 5/45                 | 1,07                                                                                      |            |            |                 |                   |         |                        |          |
| $\Psi_c$                                                 |                          | C40                                      |                      | 1,08                                                                                      |            |            |                 |                   |         |                        |          |
|                                                          |                          | C45                                      |                      | 1,09                                                                                      |            |            |                 |                   |         |                        |          |
|                                                          |                          | C50                                      | )/60                 | 1,10                                                                                      |            |            |                 |                   |         |                        |          |
| Factor according to<br>CEN/TS 1992-4-5                   | Non-cracked concrete     | - k <sub>8</sub>                         | [-]                  |                                                                                           |            |            | 10              | ),1               |         |                        |          |
| Section 6.2.2.3                                          | Cracked concrete         | <b>N8</b>                                | [ [-]                |                                                                                           |            |            | 7               | ,2                |         |                        |          |
| Concrete cone failure                                    |                          |                                          |                      |                                                                                           |            |            |                 |                   |         |                        |          |
| Factor according to                                      | Non-cracked concrete     | k <sub>ucr</sub>                         | [-]                  |                                                                                           |            |            | 10              | ),1               |         |                        |          |
| CEN/TS 1992-4-5<br>Section 6.2.3.1                       | Cracked concrete         | k <sub>cr</sub>                          | [-]                  |                                                                                           |            |            | 7               | ,2                |         |                        |          |
| Edge distance                                            |                          | C <sub>cr,N</sub>                        | [mm]                 |                                                                                           |            |            |                 | i h <sub>ef</sub> |         |                        |          |
| -                                                        |                          |                                          |                      |                                                                                           |            |            |                 |                   |         |                        |          |
| Axial distance Splitting                                 |                          | S <sub>cr,N</sub>                        | [mm]                 |                                                                                           |            |            | 3,0             | h <sub>ef</sub>   |         |                        |          |
| Spinning                                                 |                          |                                          |                      |                                                                                           |            |            | (               |                   | \       |                        |          |
| Edge distance                                            |                          | C <sub>cr,sp</sub>                       | [mm]                 | ] $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot$ |            |            | h <sub>ef</sub> |                   |         |                        |          |
| Axial distance                                           |                          | S <sub>cr,sp</sub>                       | [mm]                 |                                                                                           |            |            | 2 c             | cr,sp             |         |                        |          |
| Installation safety factor                               | (dry and wet concrete)   | $\gamma_2 = \gamma_{inst}$               |                      | 1,0                                                                                       |            |            |                 | 1,2               |         |                        |          |
| Installation safety factor                               | (flooded bore bole)      | $\gamma_2 = \gamma_{inst}$               |                      |                                                                                           | 1,         | 4          |                 | No Dorf           |         | Determin               |          |

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1)

Annex C 2



| Table C3: Characteristic valu<br>seismic action (per                                                                          |                                   |      |              |                          | tatic, o | quasi-                 | static                                 | actior  | and  |      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|--------------|--------------------------|----------|------------------------|----------------------------------------|---------|------|------|--|--|--|
| Anchor size threaded rod                                                                                                      |                                   |      | M 8          | M 10                     | M 12     | M 16                   | M 20                                   | M24     | M 27 | M 30 |  |  |  |
| Steel failure without lever arm                                                                                               |                                   |      |              |                          |          |                        |                                        |         |      |      |  |  |  |
| Characteristic shear resistance                                                                                               | $V_{Rk,s}$                        | [kN] |              |                          |          | see Ta                 | able C1                                |         |      |      |  |  |  |
| Characteristic shear resistance                                                                                               | $V_{Rk,s,C1}$                     | [kN] |              | 0,70 • V <sub>Rk,s</sub> |          |                        |                                        |         |      |      |  |  |  |
| Partial safety factor                                                                                                         | γms,v                             | [-]  | see Table C1 |                          |          |                        |                                        |         |      |      |  |  |  |
| Ductility factor according to<br>CEN/TS 1992-4-5 Section 6.3.2.1                                                              | k <sub>2</sub>                    |      |              |                          |          | 0                      | ,8                                     |         |      |      |  |  |  |
| Steel failure with lever arm                                                                                                  |                                   |      |              |                          |          |                        |                                        |         |      |      |  |  |  |
| Characteristic bending moment                                                                                                 | M <sup>0</sup> <sub>Rk,s</sub>    | [Nm] |              |                          |          | see Ta                 | able C1                                |         |      |      |  |  |  |
| Characteristic behaing moment                                                                                                 | M <sup>0</sup> <sub>Rk,s,C1</sub> | [Nm] |              |                          | No Perfo | ormance l              | Determine                              | d (NPD) |      |      |  |  |  |
| Partial safety factor                                                                                                         | γMs,∨                             | [-]  | see Table C1 |                          |          |                        |                                        |         |      |      |  |  |  |
| Concrete pry-out failure                                                                                                      |                                   |      |              |                          |          |                        |                                        |         |      |      |  |  |  |
| Factor $k_3$ in equation (27) of<br>CEN/TS 1992-4-5 Section 6.3.3<br>Factor k in equation (5.7) of<br>Technical Report TR 029 | k <sub>(3)</sub>                  |      | 2,0          |                          |          |                        |                                        |         |      |      |  |  |  |
| Installation safety factor                                                                                                    | $\gamma_2 = \gamma_{inst}$        |      | 1,0          |                          |          |                        |                                        |         |      |      |  |  |  |
| Concrete edge failure                                                                                                         |                                   |      |              |                          |          |                        |                                        |         |      |      |  |  |  |
| Effective length of anchor                                                                                                    | ŀ                                 | [mm] |              |                          |          | l <sub>f</sub> = min(h | ı <sub>ef</sub> ; 8 d <sub>nom</sub> ) |         |      |      |  |  |  |
| Outside diameter of anchor                                                                                                    | d <sub>nom</sub>                  | [mm] | 8            | 10                       | 12       | 16                     | 20                                     | 24      | 27   | 30   |  |  |  |
| Installation safety factor                                                                                                    | $\gamma_2 = \gamma_{inst}$        |      |              |                          |          | 1                      | ,0                                     |         |      |      |  |  |  |
|                                                                                                                               |                                   |      |              |                          |          |                        |                                        |         |      |      |  |  |  |

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Annex C 3



| Anchor size reinforcin                                                                                                                               | g bar                       |                   |                                                   |                                              | Ø8         | Ø 10     | Ø 12                  | Ø 14              | Ø 16                    | Ø 20                                 | Ø 25                  | Ø 28             | Ø 32      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|---------------------------------------------------|----------------------------------------------|------------|----------|-----------------------|-------------------|-------------------------|--------------------------------------|-----------------------|------------------|-----------|
| Steel failure                                                                                                                                        | <u> </u>                    |                   |                                                   |                                              |            |          | 10 ·                  |                   |                         |                                      | 10                    | 10 - 0           |           |
| Characteristic tension re                                                                                                                            | eistance                    |                   | N <sub>Rk,s</sub>                                 | [kN]                                         |            |          |                       |                   | $A_s \cdot f_{uk}^{T}$  |                                      |                       |                  |           |
|                                                                                                                                                      | 5313141100                  |                   | N <sub>Rk,s,C1</sub>                              | [kN]                                         |            |          |                       | 1,                | $0 \cdot A_{s} \cdot f$ | : 1)<br>uk                           |                       |                  |           |
| Cross section area                                                                                                                                   |                             |                   | As                                                | [mm²]                                        | 50         | 79       | 113                   | 154               | 201                     | 214                                  | 491                   | 616              | 804       |
| Partial safety factor                                                                                                                                |                             |                   | ΎMs,N                                             | [-]                                          |            |          |                       |                   | 1,4 <sup>2)</sup>       |                                      |                       |                  |           |
| Combined pull-out and                                                                                                                                |                             |                   |                                                   |                                              |            |          |                       |                   |                         |                                      |                       |                  |           |
| Characteristic bond resi                                                                                                                             | 1                           |                   | ncrete C20/                                       |                                              |            |          |                       |                   |                         |                                      |                       |                  |           |
| Temperature range I:<br>40°C/24°C                                                                                                                    | dry and wet                 |                   | $\tau_{\rm Rk,ucr}$                               | [N/mm <sup>2</sup> ]                         | 10         | 12       | 12                    | 12                | 12                      | 12                                   | 11                    | 10               | 8,5       |
|                                                                                                                                                      | flooded bor                 |                   | $\tau_{\rm Rk,ucr}$                               | [N/mm <sup>2</sup> ]                         | 7,5        | 8,5      | 8,5                   | 8,5               | 8,5                     |                                      | 1                     | Determine        | <u>``</u> |
| Temperature range II:<br>80°C/50°C                                                                                                                   | dry and wet                 |                   | τ <sub>Rk,ucr</sub>                               | [N/mm <sup>2</sup> ]<br>[N/mm <sup>2</sup> ] | 7,5<br>5,5 | 9<br>6,5 | 9<br>6,5              | 9<br>6,5          | 9<br>6,5                | 9<br>No Port                         | 8,0                   | 7,0<br>Determine |           |
|                                                                                                                                                      | dry and wet                 |                   | τ <sub>Rk,ucr</sub>                               | [N/mm <sup>2</sup> ]                         | 5,5<br>5,5 | 6,5      | 6,5                   | 6,5               | 6,5                     | 6,5                                  | 6,0                   | 5,0              | 4,5       |
| Temperature range III: 120°C/72°C                                                                                                                    | flooded bor                 |                   | $	au_{ m Rk,ucr}$                                 | [N/mm <sup>2</sup> ]                         | 4.0        | 5.0      | 5.0                   | 5.0               | 5.0                     |                                      | ,                     | Determine        | ,         |
| Characteristic bond resi                                                                                                                             |                             |                   | 1.1.1                                             | [10/1111]                                    | 4,0        | 0,0      | 0,0                   | 0,0               | 0,0                     |                                      | onnanoe               | Determine        |           |
|                                                                                                                                                      |                             |                   | $\tau_{\rm Rk,cr}$                                | [N/mm <sup>2</sup> ]                         | 4,0        | 5,0      | 5,5                   | 5,5               | 5,5                     | 5,5                                  | 5,5                   | 6,5              | 6,5       |
| Temperature range I:                                                                                                                                 | dry and wet                 | concrete          | τ <sub>Rk,C1</sub>                                | [N/mm <sup>2</sup> ]                         | 2,5        | 3,1      | 3,7                   | 3,7               | 3,7                     | 3,7                                  | 3,8                   | 4,5              | 4,5       |
| 40°C/24°C                                                                                                                                            | floorlad                    | a hala            | τ <sub>Rk,cr</sub>                                | [N/mm <sup>2</sup> ]                         | 4,0        | 4,0      | 5,5                   | 5,5               | 5,5                     | - /                                  | - / -                 | Determine        | ,         |
|                                                                                                                                                      | flooded bor                 | flooded bore hole |                                                   | [N/mm <sup>2</sup> ]                         | 2,5        | 2,5      | 3,7                   | 3,7               | 3,7                     | No Perf                              | ormance               | Determine        | d (NPC    |
|                                                                                                                                                      | dry and wat                 | concrete          | $\tau_{\rm Rk,cr}$                                | [N/mm²]                                      | 2,5        | 3,5      | 4,0                   | 4,0               | 4,0                     | 4,0                                  | 4,0                   | 4,5              | 4,5       |
| Temperature range II:                                                                                                                                | dry and wet concrete        |                   | $\tau_{\rm Rk,C1}$                                | [N/mm²]                                      | 1,6        | 2,2      | 2,7                   | 2,7               | 2,7                     | 2,7                                  | 2,8                   | 3,1              | 3,1       |
| 80°C/50°C                                                                                                                                            | flooded bore                | e hole            | $\tau_{\text{Rk,cr}}$                             | [N/mm²]                                      | 2,5        | 3,0      | 4,0                   | 4,0               | 4,0                     | No Perf                              | ormance               | Determine        | ed (NPD   |
|                                                                                                                                                      |                             |                   | $\tau_{\rm Rk,C1}$                                | [N/mm²]                                      | 1,6        | 1,9      | 2,7                   | 2,7               | 2,7                     |                                      |                       | Determine        | ,<br>,    |
|                                                                                                                                                      | dry and wet                 | concrete          | $\tau_{\rm Rk,cr}$                                | [N/mm <sup>2</sup> ]                         | 2,0        | 2,5      | 3,0                   | 3,0               | 3,0                     | 3,0                                  | 3,0                   | 3,5              | 3,5       |
| Temperature range III:                                                                                                                               |                             |                   | $\tau_{\rm Rk,C1}$                                | [N/mm <sup>2</sup> ]                         | 1,3        | 1,6      | 2,0                   | 2,0               | 2,0                     | 2,0                                  | 2,1                   | 2,4              | 2,4       |
| 120°C/72°C                                                                                                                                           | flooded bore                | e hole            | $\tau_{\rm Rk,cr}$                                | [N/mm <sup>2</sup> ]                         | 2,0        | 2,5      | 3,0                   | 3,0               | 3,0                     |                                      |                       | Determine        |           |
|                                                                                                                                                      |                             |                   | τ <sub>Rk,C1</sub>                                | [N/mm <sup>2</sup> ]                         | 1,3        | 1,6      | 2,0                   | 2,0               | 2,0                     | No Perf                              | ormance               | Determine        | ed (NPD   |
|                                                                                                                                                      |                             |                   | C25/30         1,02           C30/37         1,04 |                                              |            |          |                       |                   |                         |                                      |                       |                  |           |
| Increasing factors for co                                                                                                                            |                             |                   |                                                   | 5/45                                         |            |          |                       |                   | 1,04                    |                                      |                       |                  |           |
| (only static or quasi-stat                                                                                                                           | ic actions)                 |                   |                                                   | )/50                                         |            |          |                       |                   | 1,08                    |                                      |                       |                  |           |
| $\Psi_{c}$                                                                                                                                           |                             |                   |                                                   | 5/55                                         | 1,09       |          |                       |                   |                         |                                      |                       |                  |           |
|                                                                                                                                                      |                             |                   |                                                   | 0/60                                         |            | 1,10     |                       |                   |                         |                                      |                       |                  |           |
| Factor according to                                                                                                                                  | Non-cracke                  | d concrete        |                                                   |                                              |            |          |                       |                   | 10,1                    |                                      |                       |                  |           |
| CEN/TS 1992-4-5                                                                                                                                      |                             |                   | - k <sub>8</sub>                                  | [-]                                          |            |          |                       |                   |                         |                                      |                       |                  |           |
| Section 6.2.2.3                                                                                                                                      | Cracked co                  | ncrete            |                                                   |                                              |            |          |                       |                   | 7,2                     |                                      |                       |                  |           |
| Concrete cone failure                                                                                                                                |                             |                   |                                                   |                                              | 1          |          |                       |                   |                         |                                      |                       |                  |           |
| Factor according to<br>CEN/TS 1992-4-5                                                                                                               | Non-cracke                  | d concrete        | k <sub>ucr</sub>                                  | [-]                                          |            |          |                       |                   | 10,1                    |                                      |                       |                  |           |
| Section 6.2.3.1                                                                                                                                      | Cracked cor                 | ncrete            | k <sub>cr</sub>                                   | [-]                                          |            |          |                       |                   | 7,2                     |                                      |                       |                  |           |
| Edge distance                                                                                                                                        |                             |                   | C <sub>cr,N</sub>                                 | [mm]                                         |            |          |                       |                   | 1,5 h <sub>ef</sub>     |                                      |                       |                  |           |
| Axial distance                                                                                                                                       |                             |                   |                                                   | [mm]                                         |            |          |                       |                   | 3,0 h <sub>ef</sub>     |                                      |                       |                  |           |
| Splitting                                                                                                                                            |                             |                   | S <sub>cr,N</sub>                                 | [iiiii]                                      |            |          |                       |                   | 3,0 Hef                 |                                      |                       |                  |           |
| Spitting                                                                                                                                             |                             |                   |                                                   |                                              | 1          |          |                       |                   | (                       |                                      |                       |                  |           |
| Edge distance                                                                                                                                        |                             |                   | C <sub>cr,sp</sub>                                | [mm]                                         |            |          | 1,0 · h <sub>ef</sub> | ≤2·h <sub>e</sub> | <sub>əf</sub> (2,5 –    | $\left(\frac{n}{h_{ef}}\right) \leq$ | 2,4 · h <sub>ei</sub> |                  |           |
| Axial distance                                                                                                                                       |                             |                   | S <sub>cr,sp</sub>                                | [mm]                                         |            |          |                       |                   | 2 C <sub>cr,sp</sub>    |                                      |                       |                  |           |
| Installation safety factor                                                                                                                           | (dry and wet                | concrete)         | $\gamma_2 = \gamma_{inst}$                        |                                              | 1,0        |          |                       |                   |                         | ,2                                   |                       |                  |           |
| Installation safety factor                                                                                                                           |                             |                   | $\gamma_2 = \gamma_{inst}$                        |                                              |            |          | 1,4                   |                   |                         | í                                    | ormance               | Determine        | d (NPE    |
| <sup>1)</sup> f <sub>uk</sub> shall be tak<br><sup>2)</sup> in absence of                                                                            | en from the<br>national rec | specificati       |                                                   | forcing ba                                   | irs        |          |                       |                   |                         |                                      |                       |                  |           |
|                                                                                                                                                      |                             |                   | ÍMICO V                                           | INYLES                                       | TER f      | or coi   | ncrete                | ,                 |                         |                                      |                       |                  |           |
| Ceys Injection system TACO QUÍMICO VINYLESTER for concrete Performances Characteristic values of tension loads under static, quasi-static action and |                             |                   |                                                   |                                              |            |          |                       |                   | Annex C 4               |                                      |                       |                  |           |



| Table C5:Characteristic valueseismic action (perf                                                                          |                                    |         |                                                       |      | atic, | quas      | i-stat                 | ic ac              | tion a | nd    |      |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------|-------------------------------------------------------|------|-------|-----------|------------------------|--------------------|--------|-------|------|--|
| Anchor size reinforcing bar                                                                                                |                                    |         | Ø 8                                                   | Ø 10 | Ø 12  | Ø 14      | Ø 16                   | Ø 20               | Ø 25   | Ø 28  | Ø 32 |  |
| Steel failure without lever arm                                                                                            |                                    |         |                                                       |      |       |           |                        |                    |        |       |      |  |
|                                                                                                                            | V <sub>Rk,s</sub>                  | [kN]    | 0,50 • A <sub>s</sub> • f <sub>uk</sub> <sup>1)</sup> |      |       |           |                        |                    |        |       |      |  |
| Characteristic shear resistance                                                                                            | V <sub>Rk,s,C1</sub>               | [kN]    | 0,35 • A <sub>s</sub> • f <sub>uk</sub> <sup>1)</sup> |      |       |           |                        |                    |        |       |      |  |
| Cross section area                                                                                                         | As                                 | [mm²]   | 50                                                    | 79   | 113   | 154       | 201                    | 214                | 491    | 616   | 804  |  |
| Partial safety factor                                                                                                      | ŶMs,V                              | [-]     |                                                       |      |       |           | 1,5 <sup>2)</sup>      |                    |        |       |      |  |
| Ductility factor according to<br>CEN/TS 1992-4-5 Section 6.3.2.1                                                           | k <sub>2</sub>                     |         |                                                       |      |       | 0,8       | 0,8                    |                    |        |       |      |  |
| Steel failure with lever arm                                                                                               |                                    |         |                                                       |      |       |           |                        |                    |        |       |      |  |
| Observatoriatio handing managat                                                                                            | M <sup>0</sup> <sub>Rk,s</sub>     | [Nm]    | $1.2 \cdot W_{el} \cdot f_{uk}^{1)}$                  |      |       |           |                        |                    |        |       |      |  |
| Characteristic bending moment                                                                                              | M <sup>0</sup> <sub>Rk,s, C1</sub> | [Nm]    | No Performance Determ                                 |      |       |           |                        | rmined (NPD)       |        |       |      |  |
| Elastic section modulus                                                                                                    | W <sub>el</sub>                    | [mm³]   | 50                                                    | 98   | 170   | 269       | 402                    | 785                | 1534   | 2155  | 3217 |  |
| Partial safety factor                                                                                                      | ŶMs,V                              | [-]     |                                                       |      |       |           | 1,5 <sup>2)</sup>      |                    |        |       |      |  |
| Concrete pry-out failure                                                                                                   |                                    |         |                                                       |      |       |           |                        |                    |        |       |      |  |
| Factor k₃ in equation (27) of<br>CEN/TS 1992-4-5 Section 6.3.3<br>Factor k in equation (5.7) of<br>Technical Report TR 029 | k <sub>(3)</sub>                   | 2,0     |                                                       |      |       |           |                        |                    |        |       |      |  |
| Installation safety factor                                                                                                 | $\gamma_2 = \gamma_{inst}$         |         | 1,0                                                   |      |       |           |                        |                    |        |       |      |  |
| Concrete edge failure                                                                                                      |                                    |         |                                                       |      |       |           |                        |                    |        |       |      |  |
| Effective length of anchor                                                                                                 | h                                  | [mm]    |                                                       |      |       | $I_f = m$ | in(h <sub>ef</sub> ; 8 | d <sub>nom</sub> ) |        |       |      |  |
| Outside diameter of anchor                                                                                                 | d <sub>nom</sub>                   | [mm]    | 8                                                     | 10   | 12    | 14        | 16                     | 20                 | 25     | 28    | 32   |  |
| Installation safety factor                                                                                                 | $\gamma_2 = \gamma_{inst}$         |         |                                                       |      |       |           | 1,0                    |                    |        |       |      |  |
| <sup>1)</sup> f <sub>uk</sub> shall be taken from the specificatior<br><sup>2)</sup> in absence of national regulation     | is of reinforcir                   | ng bars |                                                       |      |       |           |                        |                    |        |       |      |  |
| Ceys Injection system TACO QUÍ                                                                                             |                                    | LESTE   | R for                                                 | conc | rete  |           |                        |                    | _      | • -   |      |  |
| Performances                                                                                                               |                                    |         |                                                       |      |       |           |                        |                    | Anne   | x C 5 | 5    |  |

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)



| Table C6:       Displacements under tension load <sup>1)</sup> (threaded rod) |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| led rod                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                | M 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M 27                                                                                                                                                                          | M 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| rete C20/25                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\delta_{N0}$ -factor                                                         | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,045                                                                                                                                                                         | 0,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\delta_{N\infty}\text{-factor}$                                              | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,065                                                                                                                                                                         | 0,071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\delta_{N0}$ -factor                                                         | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,110                                                                                                                                                                         | 0,119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\delta_{N\infty}$ -factor                                                    | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,159                                                                                                                                                                         | 0,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\delta_{N0}$ -factor                                                         | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,110                                                                                                                                                                         | 0,119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\delta_{N_{\infty}}$ -factor                                                 | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,159                                                                                                                                                                         | 0,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| C20/25                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\delta_{N0}$ -factor                                                         | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\delta_{N_{\infty}}$ -factor                                                 | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,105 0,105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\delta_{N0}$ -factor                                                         | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\delta_{N\infty}$ -factor                                                    | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\delta_{N0}$ -factor                                                         | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\delta_{N_{\infty}}$ -factor                                                 | [mm/(N/mm <sup>2</sup> )]                                                                                                                                                                                                                                                                                                                                                                      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                               | ded rod<br>rete C20/25<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>C20/25<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor<br>$\delta_{N0}$ -factor | $\frac{\delta_{N0} - factor}{\delta_{N0} - factor} \frac{[mm/(N/mm^2)]}{\delta_{N0} - factor} $ | Jed rod         M 8           rete C20/25 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,021 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,030 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,050 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,072 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,050 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,072           C20/25 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,0 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,2 | Med rod         M 8         M 10           rete C20/25 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,021         0,023 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,030         0,033 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,050         0,056 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,072         0,081 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,072         0,081 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,072         0,081           C20/25 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,090 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,105 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,219 $\delta_{No}$ -factor         [mm/(N/mm^2)]         0,219 | Med rod         M 8         M 10         M 12           rete C20/25 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,021         0,023         0,026 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,030         0,033         0,037 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,050         0,056         0,063 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090           C20/25 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,090 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219 | Med rod         M 8         M 10         M 12         M 16           rete C20/25 $\delta_{N0}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,021         0,023         0,026         0,031 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,030         0,033         0,037         0,045 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,050         0,056         0,063         0,075 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090         0,108 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090         0,108 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090         0,108 <b>C20/25</b> $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,090         0,108 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,090         0,108 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219         0,219 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219         0,219 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219         0,219 | Med         M 8         M 10         M 12         M 16         M 20           rete C20/25 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,021         0,023         0,026         0,031         0,036 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,030         0,033         0,037         0,045         0,052 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,050         0,056         0,063         0,075         0,088 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090         0,108         0,127 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090         0,108         0,127 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090         0,108         0,127 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,072         0,081         0,090         0,108         0,127           C20/25 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,0105         0,1         0,1 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219         0,1         0,1         0,1 $\delta_{No}$ -factor         [mm/(N/mm <sup>2</sup> )]         0,219         0,1 <t< td=""><td><math display="block">\begin{array}{c c c c c c c c c } \hline M &amp; &amp; M &amp; 10 &amp; M &amp; 12 &amp; M &amp; 16 &amp; M &amp; 20 &amp; M24 \\ \hline \begin{tabular}{ c c c c c c } \hline &amp; </math></td><td>ided rod         M 8         M 10         M 12         M 16         M 20         M24         M 27           rete C20/25           δ<sub>N0</sub>-factor         [mm/(N/mm²)]         0,021         0,023         0,026         0,031         0,036         0,041         0,045           δ<sub>No</sub>-factor         [mm/(N/mm²)]         0,030         0,033         0,037         0,045         0,052         0,060         0,065           δ<sub>No</sub>-factor         [mm/(N/mm²)]         0,050         0,056         0,063         0,075         0,088         0,100         0,110           δ<sub>No</sub>-factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,108         0,127         0,145         0,159           δ<sub>No</sub>-factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,108         0,127         0,145         0,159           δ<sub>No</sub>-factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,108         0,127         0,145         0,159           δ<sub>No</sub>-factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,070         0,159           δ<sub>No</sub>-factor         [mm/(N/mm²)]         0,219         0,170         0,170         0,245</td></t<> | $\begin{array}{c c c c c c c c c } \hline M & & M & 10 & M & 12 & M & 16 & M & 20 & M24 \\ \hline \begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $ | ided rod         M 8         M 10         M 12         M 16         M 20         M24         M 27           rete C20/25           δ <sub>N0</sub> -factor         [mm/(N/mm²)]         0,021         0,023         0,026         0,031         0,036         0,041         0,045           δ <sub>No</sub> -factor         [mm/(N/mm²)]         0,030         0,033         0,037         0,045         0,052         0,060         0,065           δ <sub>No</sub> -factor         [mm/(N/mm²)]         0,050         0,056         0,063         0,075         0,088         0,100         0,110           δ <sub>No</sub> -factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,108         0,127         0,145         0,159           δ <sub>No</sub> -factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,108         0,127         0,145         0,159           δ <sub>No</sub> -factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,108         0,127         0,145         0,159           δ <sub>No</sub> -factor         [mm/(N/mm²)]         0,072         0,081         0,090         0,070         0,159           δ <sub>No</sub> -factor         [mm/(N/mm²)]         0,219         0,170         0,170         0,245 |  |  |

 $^{1)}$  Calculation of the displacement  $\delta_{N0}=\delta_{N0}\mbox{-factor}\,\cdot\,\tau;$ 

 $\tau$ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor  $\cdot \tau$ ;

## Table C7: Displacements under shear load<sup>1)</sup> (threaded rod)

| Anchor size thre                     |                                      | M 8                        | M 10  | M 12   | M 16   | M 20 | M24  | M 27 | M 30 |      |
|--------------------------------------|--------------------------------------|----------------------------|-------|--------|--------|------|------|------|------|------|
| For non-cracked                      | l concrete C2                        | 0/25                       |       |        |        |      |      |      |      |      |
| All temperature                      | $\delta_{V0}$ -factor                | [mm/(kN)]                  | 0,06  | 0,06   | 0,05   | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges                               | $\delta_{V_{\infty}}$ -factor        | [mm/(kN)]                  | 0,09  | 0,08   | 0,08   | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |
| For cracked con                      | crete C20/25                         |                            |       |        |        |      |      |      |      |      |
| All temperature                      | $\delta_{V0}$ -factor                | [mm/(kN)]                  | 0,12  | 0,12   | 0,11   | 0,10 | 0,09 | 0,08 | 0,08 | 0,07 |
| ranges $\delta_{V_{\infty}}$ -factor | [mm/(kN)]                            | 0,18                       | 0,18  | 0,17   | 0,15   | 0,14 | 0,13 | 0,12 | 0,10 |      |
|                                      | the displaceme<br>or → V;<br>or → V; | nt<br>V: action shear load |       |        |        |      |      |      |      |      |
| Ceys Injection                       | n system TA                          | CO QUÍMICO VINYL           | ESTER | for co | ncrete |      |      |      |      |      |

Performances Displacements (threaded rods) Annex C 6



| NI                                                                                                                      | Anchor size reinforcing bar   |                                  |             |                     | Ø 12                | Ø 14         | Ø 16                | Ø 20         | Ø 25                | Ø 28         | Ø 32         |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------|---------------------|---------------------|--------------|---------------------|--------------|---------------------|--------------|--------------|
| Non-cracked cond                                                                                                        | 25                            |                                  |             |                     |                     |              |                     |              |                     |              |              |
| Temperature range I:                                                                                                    | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     | 0,021       | 0,023               | 0,026               | 0,028        | 0,031               | 0,036        | 0,043               | 0,047        | 0,052        |
| 40°C/24°C                                                                                                               | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]        | 0,030       | 0,033               | 0,037               | 0,041        | 0,045               | 0,052        | 0,061               | 0,071        | 0,075        |
| Temperature range II:                                                                                                   | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]        | 0,050       | 0,056               | 0,063               | 0,069        | 0,075               | 0,088        | 0,104               | 0,113        | 0,126        |
| 80°C/50°C                                                                                                               | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]        | 0,072       | 0,081               | 0,090               | 0,099        | 0,108               | 0,127        | 0,149               | 0,163        | 0,181        |
| Temperature range III:                                                                                                  | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]        | 0,050       | 0,056               | 0,063               | 0,069        | 0,075               | 0,088        | 0,104               | 0,113        | 0,126        |
| 120°C/72°C                                                                                                              | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]        | 0,072       | 0,081               | 0,090               | 0,099        | 0,108               | 0,127        | 0,149               | 0,163        | 0,18         |
| Cracked concrete                                                                                                        | C20/25                        | -                                |             |                     |                     |              |                     |              |                     |              |              |
| Temperature range I:                                                                                                    | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]        | 0,090       |                     |                     |              |                     | 0,070        |                     |              |              |
| 40°C/24°Cັ                                                                                                              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )]        | 0,105       |                     |                     |              |                     | 0,105        |                     |              |              |
| Temperature range II:<br>80°C/50°C                                                                                      | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]        | 0,219       |                     |                     |              |                     | 0,170        |                     |              |              |
|                                                                                                                         | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]        | 0,255       |                     |                     |              |                     | 0,245        |                     |              |              |
| Temperature range III:                                                                                                  | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]        | 0,219       |                     |                     |              |                     | 0,170        |                     |              |              |
| 120°C/72°C                                                                                                              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm <sup>2</sup> )]        | 0,2         | 255                 |                     |              |                     | 0,245        |                     |              |              |
| <sup>1)</sup> Calculation of th<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor | · τ;<br>· τ;                  | t: action bond<br>τ: action bond |             |                     | ebar)               |              |                     |              |                     |              |              |
| Table C9: Di                                                                                                            |                               | Anchor size reinforcing bar      |             |                     |                     | ~ 1 4        | ~ 10                | ~ ~ ~        | ~ ~ -               |              | 1            |
|                                                                                                                         | orcing bar                    |                                  | Ø 8         | Ø 10                | Ø 12                | Ø 14         | Ø 16                | Ø 20         | Ø 25                | Ø 28         | Ø 32         |
| Anchor size reinfo                                                                                                      |                               | 25                               | Ø 8         | Ø 10                | Ø 12                | Ø 14         | Ø 16                | Ø 20         | Ø 25                | Ø 28         | Ø 32         |
|                                                                                                                         |                               | <b>25</b><br>[mm/(kN)]           | Ø 8<br>0,06 | Ø <b>10</b><br>0,05 | Ø <b>12</b><br>0,05 | Ø 14<br>0,04 | Ø <b>16</b><br>0,04 | Ø 20<br>0,04 | Ø <b>25</b><br>0,03 | Ø 28<br>0,03 | Ø 32<br>0,03 |

| All temperature              | 10-factor               | [mm/(kN)] | 0,12 | 0,12 | 0,11 | 0,11 | 0,10 | 0,09 | 0,08 | 0,07 | 0,06 |
|------------------------------|-------------------------|-----------|------|------|------|------|------|------|------|------|------|
| ranges $\delta_{V_{\infty}}$ | $_{I_{\infty}}$ -factor | [mm/(kN)] | 0,18 | 0,18 | 0,17 | 0,16 | 0,15 | 0,14 | 0,12 | 0,11 | 0,10 |

<sup>1)</sup> Calculation of the displacement  $\delta_{V0} = \delta_{V0}$ -factor  $\cdot V$ ;  $V_{0} = \delta_{V\infty}$ -factor  $\cdot V$ ;

V: action shear load

### Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Performances Displacements (rebar) Annex C 7

electronic copy of the eta by dibt: eta-10/0356