

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0456 of 22 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Berner simplex anchor BA

Torque controlled expansion anchor for use in non-cracked concrete

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6
Berner manufacturing plant 6

14 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

European Technical Assessment ETA-10/0456

Page 2 of 14 | 22 August 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z37822.17 8.06.01-39/17

European Technical Assessment ETA-10/0456

Page 3 of 14 | 22 August 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Berner simplex anchor BA is an anchor made of zinc plated, hot-dip galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads in concrete	See Annex C 1 and C 2
Edge distances and spacing	See Annex C 1 and C 2
Displacements under tension and shear loads	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z37822.17 8.06.01-39/17

European Technical Assessment ETA-10/0456

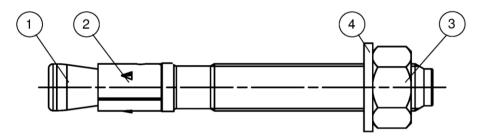
Page 4 of 14 | 22 August 2017

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

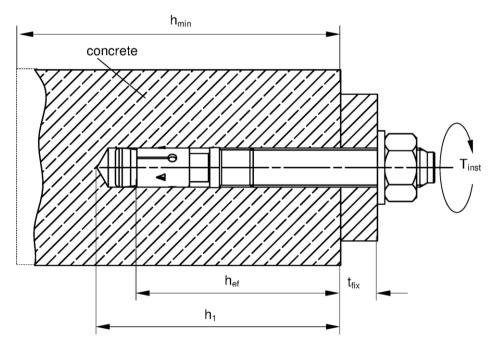
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 22 August 2017 by Deutsches Institut für Bautechnik


Lars Eckfeldt p.p. Head of Department

beglaubigt: Baderschneider

Z37822.17 8.06.01-39/17



Cone bolt manufactured by turning:

- ① Cone bolt (cold formed or turned)
- ② Expansion sleeve
- 3 Hexagon nut
- Washer

h_{ef} = Effective anchorage depth

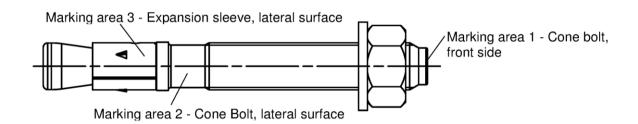
 t_{fix} = Thickness of fixture

 h_1 = Drill hole depth

 h_{min} = Thickness of concrete member

T_{inst} = Required torque moment

Berner simplex anchor BA


Product description

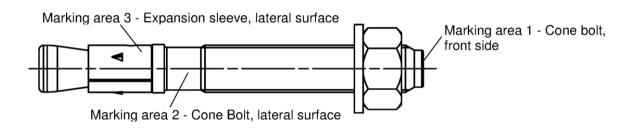
Installed condition

Annex A 1

BA for use with standard and reduced anchorage depth (hef, sta and hef, red)

Product marking, example:

Plant identification | type of anchor placed on marking area 2 or marking area 3


BA 12/10 A4

thread size / thickness of fixture (t_{fix}) for h_{ef, sta} identification A4 placed on marking area 2

Table A1: Letter-code on marking area 1 and maximum thickness of fixture t_{fix}:

marking		Α	В	С	D	Ε	F	G	Н	_	K	L	М	N	0	Р	R	S	Т	J	٧	W	Χ	Υ	Z
max. t_{fix} for $h_{ef, sta}$	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
max. t _{fix}	M12, 16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
for h _{ef, red}	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

BA K for use with reduced anchorage depth only (hef, red):

Product marking, example:

BA

Plant identification | type of anchor | thread size / thickness of fixture (t_{fix}) |
identification K for h_{ef, red} | identification A4 |
placed on marking area 2

Table A2: Letter-code on marking area 1 and maximum thickness of fixture t_{fix} :

marking	-A-	-B-	ç-	-D-	-E-	F-	Ġ	-H-	-	-K-	-Ļ-	-M-	-N-	-0-	-P-	-R-	-S-	-T-	÷	-V-	-W-	-X-	-Y-	-Z-
max. t _{fix} for h _{ef, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

Berner simplex anchor BA

Product description
Anchor Types

Annex A 2

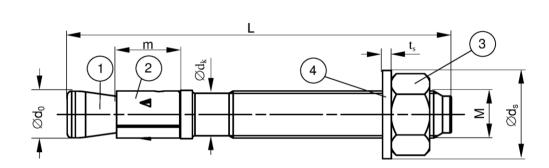


Table A3: Anchor dimensions [mm]

Port	Designation					BA, E	8A A4		
Part	Designation			М6	М8	M10	M12	M16	M20
		М	=	M6	M8	M10	M12	M16	M20
1	Cone bolt	$\varnothing d_0$	II	5,9	7,9	9,9	11,9	15,9	19,6
		\emptyset d _k	II	5,2	7,1	8,9	10,8	14,5	18,2
2	Expansion sleeve	m	II	10	11,5	13,5	16,5	21,5	33,5
3	Hexagon nut	SW	=	10	13	17	19	24	30
4	Washer	t _S	2	1,0	1,4	1,8	2,3	2,7	2,7
4	vvasriei	\varnothing d $_s$	\geq	11,5	15	19	23	29	36
Thickn	ess of fixture	+	2	0	0	0	0	0	0
THICKI	ess of fixture	t_{fix}	<u> </u>	200	200	250	300	400	500
Longth	of anchor	L_{min}	-	45	56	71	86	120	139
Lengu	i or anchor	L_{max}	-	245	261	316	396	520	654

Berner simplex anchor BA	
Product description Anchor dimensions	Annex A 3

Table A4: Materials BA (zinc plated ≥ 5μm, DIN EN ISO 4042: 2001-01)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Cold strip 1)
3	Hexagon nut	Steel, property class 8
4	Washer	Cold strip

¹⁾ Optional stainless steel

Table A5: Materials BA (hot-dip galvanized ≥ 50μm, ISO 10684: 2004 ¹⁾)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Stainless steel
3	Hexagon nut	Steel, property class 8
4	Washer	Cold strip

¹⁾ Alternative method sherardized \geq 50 μ m, EN 13811:2003

Table A6: Materials BA A4

Part	Designation	Material
1	Cone bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Hexagon nut	Stainless steel, property class ≥ 70
4	Washer	Stainless steel

Berner simplex anchor BA

Product description
Materials

Annex A 4

Specifications of intended use

Bern	er simplex anchor	BA, BA A4	M6	M8	M10	M12	M16	M20
	Steel	Zinc plated			1			
<u> </u>	Sieei	Hot-dip galvanized	-			/		
Material	Stainless steel	A4			✓			
Stati	c and quasi-static	loads			/			
Redu	uced anchorage de	epth	-			/		
Uncr	acked concrete				/			

Base materials:

- Normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

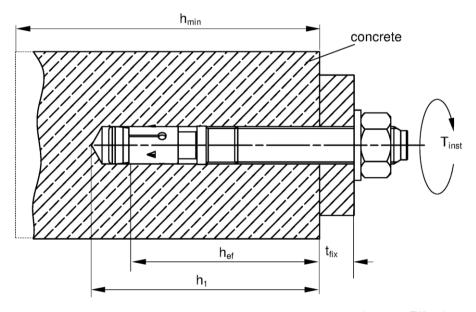
- Structures subject to dry internal conditions (BA, BA A4)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (BA A4)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Hammer or hollow drilling according to Annex B3

Berner simplex anchor BA	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters

Type of anchor / size BA, B	A A4		М6	М8	M10	M12	M16	M20
Nominal drill hole diameter	$d_0 =$	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	6,45	8,45	10,45	12,5	16,5	20,55
Effective anchorage depth	$h_{\text{ef}} =$	[mm]	30 ²⁾	40 (30 ^{1) 2)})	50 (40 ¹⁾)	65 (50 ¹⁾)	80 (65 ¹⁾)	105 (80 ¹⁾)
Depth of drill hole in concrete	$h_1 \geq$	[mm]	40	56 (46 ^{1) 2)})	68 (58 ¹⁾)	85 (70 ¹⁾)	104 (89 ¹⁾)	135 (110 ¹⁾)
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	7	9	12	14	18	22
Required torque moment BA (zinc plated)	$T_{\text{inst}} =$	[Nm]	4	15	30	50	100	200
Required torque moment BA (hot-dip galvanized)	$T_{\text{inst}} =$	[Nm]	-	15	30	40	70	200
Required torque moment BA A4	$T_{inst} =$	[Nm]	4	10	20	35	80	150

Effective anchorage depth

Thickness of fixture Drill hole depth

Thickness of concrete member

Required torque moment

Berner simplex anchor BA	
Intended Use Installation instructions	Annex B 2

8.06.01-39/17 Z39733.17

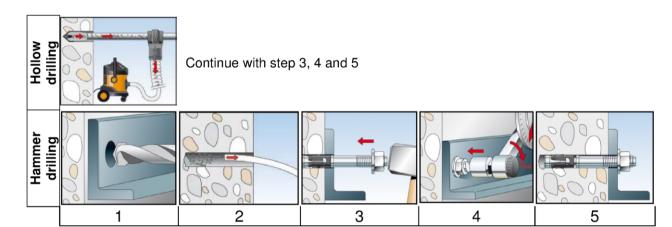

¹⁾ Only for reduced anchorage depth ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

Table B2: Minimum thickness of concrete members, minimum spacing and minimum edge distance

Type of anchor / size BA, BA A4					M8	M10	M12	M16	M20
	Effective anchorage depth	h _{ef, sta}	[mm]	30 ²⁾	40	50	65	80	105
age h	Minimum thickness of member	h_{min}	[mm]	100	100	100	120	160	200
Standard anchorage depth	Minimum spacing	S _{min}	[mm]	40	40	50 (70 ¹⁾)	70	90 (120 ¹⁾)	120
an an	Minimum edge distance	C _{min}	[mm]	40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80 ¹⁾)	120
	Effective anchorage depth	h _{ef, red}	[mm]	-	30 ²⁾	40	50	65	80
age h	Minimum thickness of member	h_{min}	[mm]	-	100	100	100	120	160
Reduced anchorage depth	Minimum spacing	S _{min}	[mm]	-	40 (50 ¹⁾)	50	70	90	120 (140 ¹⁾)
an a	Minimum edge distance	C _{min}	[mm]	•	40 (45 ¹⁾)	80	100	120	120

Installation instructions

No.	Description									
1	Create drill hole with hammer drill	Create drill hole with hollow drill and vacuum cleaner								
2	Clean bore hole	-								
3	Se	et anchor								
4	Expand anchor with prescribed installation torque T _{inst}									
5	Finished installation									

	Types of drills	
Hammer drill	E4444000000	
Hollow drill	Ī	

Berner simplex anchor BA	
Intended Use Minimum spacing and edge distance Installation instructions	Annex B 3

8.06.01-39/17 Z39733.17

¹⁾ Only for BA A4 2) Use restricted to anchoring of structural components which are statically indeterminate

Table C1: Characteristic values of tension resistance for standard and reduced anchorage depth under static and quasi-static action

Type of anchor / size			М6	M8	M10	M12	M16	M20		
Steel failure for standard and	reduced	anchorag	e depth	ВА						
Characteristic resistance BA	$N_{Rk,s}$	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Partial safety factor	γMs	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Steel failure for standard and		anchorag	e depth	BA A4						
Characteristic resistance BA A4	$N_{Rk,s}$	[kN]	10,6	16,5	27,2	41,6	78	111		
Partial safety factor	γMs	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Pullout failure for standard an	chorage	depth BA	, BA A4							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	6 ²⁾			- 1)				
Pullout failure for reduced and	chorage (depth BA,	BA A4							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	-	6 ²⁾		-	1)			
		C25/30				12				
	Ψc	C30/37				23				
Increasing factors for N _{Rk,p}		C35/45	1,32							
increasing factors for N _{Rk,p}		C40/50	1,41							
		C45/55	1,50							
		C50/60				58				
Installation safety factor	γinst	[-]	L			,0				
	ailure for		anchorage depth BA, BA A4							
Effective anchorage depth	h _{ef, sta}	[mm]	30 ²⁾	40	50	65	80	105		
Factor k₁ for uncracked concrete	$k_{ucr,N}$	[-]			11	,0				
Spacing	S _{cr,N}	[mm]			3 h,	ef, sta				
Edge distance	C _{cr,N}	[mm]			1,5 h	ef, sta				
Spacing (splitting failure)	S _{cr,sp}	[mm]	130 ²⁾	190	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}	[mm]	65 ²⁾	95	100	145	175	185		
Concrete cone and splitting fa	ailure for		nchorag							
Effective anchorage depth	$h_{\rm ef, red}$	[mm]	-	30 ²⁾	40	50	65	80		
Factor k₁ for uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0							
Spacing	S _{cr,N}	[mm]			3 h _€	ef, red				
Edge distance	$C_{cr,N}$	[mm]			1,5 h	ef, red				
Spacing (splitting failure)	S _{cr,sp}	[mm]	-	190 ²⁾	200	290	350	370		
Edge distance (splitting failure)	$C_{cr,sp}$	[mm]	-	95 ²⁾	100	145	175	185		

Berner simplex anchor BA Annex C 1 **Performances** Characteristic values of tension resistance for standard and reduced anchorage depth

Pullout failure is not relevantUse restricted to anchoring of structural components which are statically indeterminate

Table C2: Characteristic values of **shear** resistance for **standard and reduced anchorage depth** under static and quasi-static action

Type of anchor / size			М6	М8	M10	M12	M16	M20	
Steel failure without lever arm for	standard	and redu	ced anc	horage	depth				
Charact. resistance BA	$V_{Rk,s}$	[kN]	6,0	13,3	21,0	31,3	55,1	67	
Steel failure without lever arm for	standard	and redu	ced anc	horage	depth				
Charact. resistance BA A4	$V_{Rk,s}$	[kN]	5,3	12,8	20,3	27,4	51	86	
Steel failure with lever arm for sta	ndard and	chorage d	epth						
Charact. bending moment BA	$M^0_{Rk,s}$	[Nm]	9,41)	26,2	52,3	91,6	232,2	422	
Steel failure with lever arm for sta		chorage d							
Charact. bending moment BA A4	$M^0_{Rk,s}$	[Nm]	8 ¹⁾	26	52	85	216	454	
Steel failure with lever arm for reduced anchorage depth									
Charact. bending moment BA	$M^0_{Rk,s}$	[Nm]	-	19,9 ¹⁾	45,9	90,0	226,9	349	
Steel failure with lever arm for red		horage de	epth						
Charact. bending moment BA A4	$M^0_{Rk,s}$	[Nm]	-	21 ¹⁾	47	85	216	353	
Partial safety factor steel failure	γ̃Ms	[-]			1,	25			
Factor for ductility	k_7	[-]			1	,0			
Concrete pryout failure for standa	rd ancho	rage dept		A A4					
Factor for pryout	k_8	[-]	1,4 ¹⁾	1,8	2,1	2,3	2,3	2,3	
Installation safety factor	γinst	[-]			1	,0			
Concrete pryout failure for reduce	ed anchor	age depth	BA, BA						
Factor for pryout	k ₈	[-]	-	1,8 ¹⁾	2,1	2,3	2,3	2,3	
Installation safety factor	γinst	[-]			1,	,0			
Concrete edge failure for standard	d anchora	ge depth	BA, BA	A 4					
Effective length of anchor	$I_{f,sta}$	[mm]	30 ¹⁾	40	50	65	80	105	
Effective diameter of anchor	d_{nom}	[mm]	6	8	10	12	16	20	
Installation safety factor	γinst	[-]			1	,0			
Concrete edge failure for reduced	anchoraç	ge depth E	BA, BA						
Effective length of anchor	$I_{f,red}$	[mm]	-	30 ¹⁾	40	50	65	80	
Effective diameter of anchor	d_{nom}	[mm]	-	8	10	12	16	20	
Installation safety factor	γinst	[-]			1	,0			

¹⁾ Use restricted to anchoring of structural components which are statically indeterminate

Berner simplex anchor BA

Performances
Characteristic values of shear resistance for standard and reduced anchorage depth

Annex C 2

Table C3: Displacements due to tension loads

Type of anchor / size BA , BA A4				M8	M10	M12	M16	M20			
Standard anchorage depth	h _{ef, sta}	[mm]	30	40	50	65	80	105			
Tension load C20/25	N	[kN]	2,8	6,1	8,5	12,6	17,2	25,8			
Displacements	δ_{N0}	[mm]	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,0 ¹⁾)			
Displacements	$\delta_{N\infty}$	[mm]				3,1 (2,7 ¹⁾)					
Reduced anchorage depth	h _{ef, red}	[mm]		30	40	50	65	80			
Tension load C20/25	Ν	[kN]	-	2,8	6,1	8,5	12,6	17,2			
Diantagamenta	δ_{N0}	[mm]		0,4	0,7	0,7	0,9	1,0			
Displacements	$\delta_{N\infty}$	[mm]	1,6 (1,71)								

¹⁾ Only for BA A4

Table C4: Displacements due to shear loads

Type of anchor / size BA , BA A4			М6	М8	M10	M12	M16	M20
Shear load BA	V	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Displacements BA	δ_{V0}	[mm]	0,7	1,5	1,6	2,0	3,0	2,6
	$\delta_{\text{V}\infty}$	[mm]	1,1	2,3	2,4	3,0	4,5	3,9
Shear load BA A4	٧	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Displacements BA A4	δ_{V0}	[mm]	1,5	1,4	2,1	2,6	2,7	4,6
	$\delta_{V\infty}$	[mm]	2,3	2,2	3,2	3,9	4,1	7,0

Berner simplex anchor BA

Performances
Displacement under tension and shear loads

Annex C 3