

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0078 of 25 April 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Berner drop-in anchor BE

Deformation-controlled expansion anchor for use in non-cracked concrete

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6
Berner manufacturing plant 6

15 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

European Technical Assessment ETA-11/0078

Page 2 of 15 | 25 April 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z31304.17 8.06.01-35/17

European Technical Assessment ETA-11/0078

Page 3 of 15 | 25 April 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Berner drop-in anchor BE is an anchor made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading, displacements	See Annex C 1 to C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z31304.17 8.06.01-35/17

European Technical Assessment ETA-11/0078

Page 4 of 15 | 25 April 2017

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 25 April 2017 by Deutsches Institut für Bautechnik

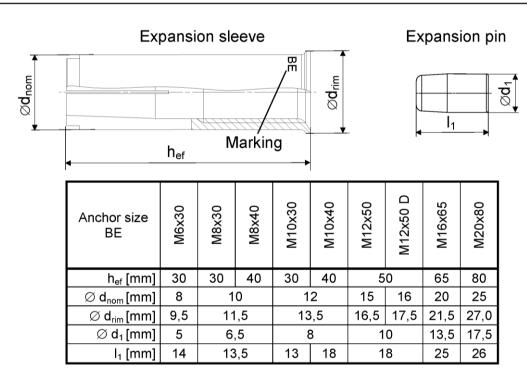
Andreas Kummerow
Head of Department

beglaubigt:

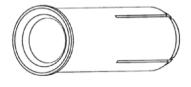
Baderschneider

Z31304.17 8.06.01-35/17

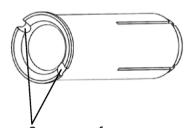
Berner drop-in anchor BE


Product description

Anchor types Installed condition


electronic copy of the eta by dibt: eta-11/0078

Annex A 1



Distinctive feature

0× groove for:

- BE M6x30..
- BE M8x30..
- BE M10x40..
- BE M12x50..
- BE M16x65...
- BE M20x80..

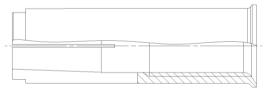
2× groove for:

- BE M8x40..
- BE M10x30..

Marking on anchor body

	•						
galvanize	ed steel (gvz)	stainless steel (A4)					
with rim	rimless	with rim	rimless				
BE M6x30	BE M6x30 RL	BE M6x30 A4	BE M6x30 RL A4				
BE M8x30	BE M8x30 RL	BE M8x30 A4	BE M8x30 RL A4				
BE M8x40	BE M8x40 BE M8x40 RL BE M10x30 BE M10x30 RL BE M10x40 BE M10x40 RL BE M12x50 BE M12x50 RL		BE M8x40 RL A4				
BE M10x30			BE M10x30 RL A4				
BE M10x40			BE M10x40 RL A4				
BE M12x50			BE M12x50 RL A4				
BE M12x50 D BE M12x50 RLD		BE M12x50 DA4	BE M12x50 RL DA4				
BE M16x65	BE M16x65 RL	BE M16x65 A4	BE M16x65 RL A4				
BE M20x80	BE M20x80 RL	BE M20x80 A4	BE M20x80 RL A4				

Berner drop-in anchor BE


Product description

Anchor types

Annex A 2

Expansion pin

Table A1: Materials

	Material						
Designation	galvanised steel (≥ 5 µm)	stainless steel					
Expansion sleeve	EN 10277:2008 or EN 10084:2008 or						
Expansion pin	EN 10111:2008 or EN 10263:2001 or EN 10087:1998 or ASTM A29/A29M	EN 10088:2005					
Fastening screw or threaded rod	steel, property class 4.6, 5.6, 5.8 or 8.8 according to EN ISO 898-1:2012	property class 50, 70 or 80 according to EN ISO 3506:2009					

Berner drop-in anchor BE

Product description
Material

Annex A 3

English translation prepared by DIBt

Specifications of Intended use

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- · Non-cracked concrete: all sizes

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

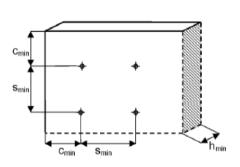
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking into account the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Design of fastenings in accordance to FprEN 1992-4:2016 and EOTA Technical Report TR 055.
- · Fasteners can be used as a single fixing for use in structural application.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Create drill hole with hammer drill or with hollow drill and vacuum cleaner
- The anchor may only be used once
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load
- Anchor expansion by impact using the setting tools given in Annex B 3. The anchor is property set if the stop
 of the setting tool reaches the expansion sleeve. The manual setting tool with installation control leaves a
 visible mark on the sleeve, as illustrated in Annex B 3 and B 4

Berner drop-in anchor BE	
Intended Use Specifications	Annex B 1


Z31778.17 8.06.01-35/17

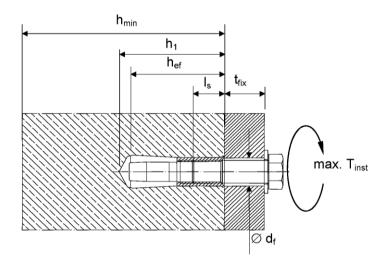

electronic copy of the eta by dibt: eta-11/0078

Table B2: Installation parameters for concrete C20/25 to C50/60

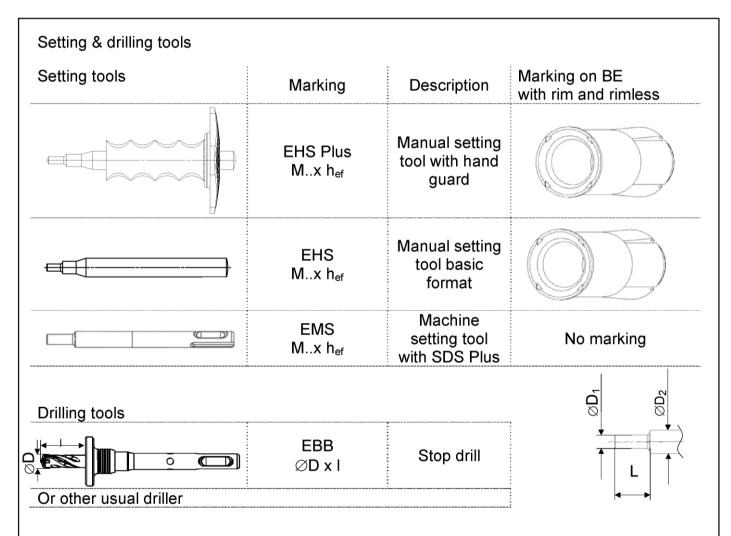
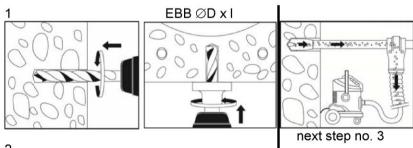
Anchor size											
Antitol 3/26			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Nominal drill hole diameter	d ₀	[mm]	8	1	0	1	2	15	16	20	25
Effective anchorage depth	h_{ef}	[mm]	30	30	40	30	40	5	0	65	80
Maximum installation torque	max. T _{inst}	[Nm]	4	8	3	1	5	3	5	60	120
Minimum drill hole depth	h₁	[mm]	32	33	43	33	43	5	4	70	85
Minimum screw-in depth	I _{s,min}	[mm]	6	8	3	1	0	1	2	16	20
Maximum screw-in depth	I _{s,max}	[mm]	14	1	4	14	17	2	2	28	34
Clearance of hole diameter	Ø d _f ≤	[mm]	7	9	9	1	2	1	4	18	22
$h_{min} = 80 \text{ mm}$											
Minimum spacing	S _{min}	[mm]	70	110	200	20	00	-	-	-	-
Minimum edge distance	C _{min}	[mm]	150	15	50	15	50	1	-	-	-
$h_{min} = 100 \text{ mm}$											
Minimum spacing	S _{min}	[mm]	65	7	0	90	150	2/	00	-	-
Minimum edge distance	C _{min}	[mm]	115	11	15	160	180	20	30	-	-
h _{min} = 120 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	-	-
Minimum edge distance	C _{min}	[mm]	115	11	15	140	150	20	00	-	-
h _{min} = 160 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	180	-
Minimum edge distance	C _{min}	[mm]	115	1′	15	140	150	20	00	240	-
h _{min} = 200 mm											
Minimum spacing	S _{min}	[mm]	65	7	0	85	95	14	45	180	190
Minimum edge distance	C _{min}	[mm]	115	1.	15	140	150	20	00	240	280

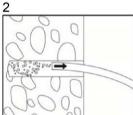
Fastening screw or threaded rod:

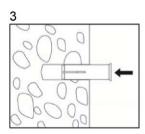
- Minimum property class and materials according to table A1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t_{fix} , admissible tolerances and maximum screw length $l_{\text{s,max}}$ as well as minimum screw-in depth $l_{\text{s,min}}$

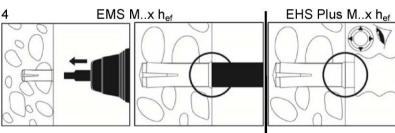
Berner drop-in anchor BE	
Intended Use Installation parameters	Annex B 2

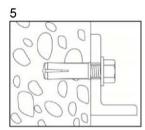
English translation prepared by DIBt


Table B3: Parameters of setting tools


Manual setting tool	Machine setting tool	Stop drill	For anchor size BE	Ø D1	Ø D2	L
EHS M6x25/30	EMS M6x25/30	EBB 8x30	BE M6x30	4,8	9,0	17,0
EHS M8x25/30	EMS M8x25/30	0 EBB 10x30 BE M8x30			44.0	18,0
EHS M8x40	EMS M8x40	EBB 10x40	BE M8x40	6,4	11,0	28,0
EHS M10x25/30	EMS M10x25/30	EBB 12x30	BE M10x30	7,9	13,0	18,0
EHS M10x40	EMS M10x40	EBB 12x40	BE M10x40		13,0	24,0
EHS M12x50	EMS M12x50	EBB 15x50	BE M12x50		10.5	30.0
EHS M12x50	EMS M12x50	EBB 16x50 BE M12x50 D		10,2	16,5	30,0
EHS M16x65	EMS M16x65	EBB 20x65	BE M16x65	13,5	22	36,0
EHS M20x80	EMS M20x80	EBB 25x80	BE M20x80	16,4	27	50,0


Berner drop-in anchor BE	
Intended Use Setting & Drilling tools	Annex B 3


Installation instructions

electronic copy of the eta by dibt: eta-11/0078

No.	Description
1	Create drill hole with hammer drill or with hollow drill and vacuum cleaner
2	Clean from drill-dust
3	Set anchor till anchor is flush with surface of concrete
4	Expand the sleeve by driving the pin into the sleeve and control the correct setting
- 5	Fixation of fixture. Maximum installation torque max. Time must not be crossed

Berner drop-in anchor BE	
Intended Use Installation instructions	Annex B 4

Table C1: Characteristic values for tension loads

BE		property class	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80
Inastallation safety factor	γinst	[-]					1,0				
Steel failure											
Characteristic resistance	$N_{Rk,s}$ [kN]	A4-50	10,1	18	3,3	29	,0	42	2,1	78,3	122,4
Partial safety factor	γ_{Ms}						2,86				
Characteristic resistance	$N_{Rk,s}$ [kN]	A4-70	14,1	19	9,6	24	,9	45,1	59,0	73,8	117,2
Partial safety factor	γ _{Ms}		1,87			1,5			1,87	1	,5
Characteristic resistance	$N_{Rk,s}$ [kN]	A4-80	16,1	19	9,6	24	,9	45,1	59,0	73,8	117,2
Partial safety factor	γ_{Ms}		1,6				1	,5			
Characteristic resistance	N _{Rk,s} [kN]	steel 4.6	8,0	14	1,6	23	3,2	33	3,7	62,7	97,9
Partial safety factor	γ _{Ms}		2,0								
Characteristic resistance	N _{Rk,s} [kN]	steel 5.6	10,1	18	3,3	29	,0	42	2,1	78,3	122,4
Partial safety factor	γ_{Ms}						2,0				
Characteristic resistance	$N_{Rk,s}$ [kN]	steel 5.8	10,1	17	7,2	21	,8	39,6	42,1	64,7	102,8
Partial safety factor	γ_{Ms}						1,5				
Characteristic resistance	$N_{Rk,s}$ [kN]	steel 8.8	13,5	17	7,2	21	,8	39,6	53,3	64,7	102,8
Partial safety factor	γ_{Ms}						1,5				
Pull-out failure not decisive											
Concrete cone failure											
Effective anchorage depth	h_{ef}	[mm]	3	0	40	30	40	5	0	65	80
Characteristic spacing	$s_{\text{cr},N}$	[mm]	9	0	120	90	120	18	50	195	240
Characteristic edge distance	$c_{cr,N}$	[mm]	4	5	60	45 60		7	5	97	120
Factor k₁	$k_{ucr,N}$	[-]					11,0				
Splitting failure											
Characteristic spacing	S _{cr,sp}	[mm]	2	10	280	210	320	3	50	455	560
Characteristic edge distance	$c_{cr,sp}$	[mm]	10)5	140	105	160	17	75	227	280

¹⁾ Only for application with statically indeterminate structural components.

Berner drop-in anchor BE	
Performances Characteristic values for tension loads	Annex C 1

Table C2: Characteristic values for shear loads

							1				
BE		property class	M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80
Factor for ductility					1,0)					
Steel failure without lever a	rm										
Characteristic resistance	$V_{Rk,s}$ [kN]	A4-50	5,0	9,	2	14	1,5	21	1,1	39,2	61,2
Partial safety factor	γMs						2,38				
Characteristic resistance	$V_{Rk,s}$ [kN]	A4-70	7,0	9,	8	12	2,4	22,6	29,5	37	59
Partial safety factor	γ_{Ms}		1,56			1,25			1,56	1,	25
Characteristic resistance	$V_{Rk,s}$ [kN]	A4-80	8,0	9,	8	12	2,4	22,6	30,4	36,9	58,6
Partial safety factor	γ_{Ms}		1,33				1,	25			
Characteristic resistance	$V_{Rk,s}$ [kN]	steel 4.6	4,0	7,	3	11	1,6	16	5,9	31	49
Partial safety factor	γ _{Ms}						1,67				
Characteristic resistance	V _{Rk,s} [kN]	steel 5.6	5,0	9,	2	14	1,5	21	1,1	39	61
Partial safety factor	γ _{Ms}		1,67								
Characteristic resistance	V _{Rk,s} [kN]	steel 5.8	5,0	5,0 8,6 10,9),9	19,8	21,1	32	51	
Partial safety factor	γ _{Ms}		1,25								
Characteristic resistance	$V_{Rk,s}$ [kN]	steel 8.8	6,8	8,6		10	0,9	19,8	27	32	51
Partial safety factor	γ _{Ms}						1,25				
Steel failure with lever arm											
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-50	8	1	9	3	37	66		166	324
Partial safety factor	γ _{Ms}		2,38								
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	A4-70	11	2	6	5	52	9	2	232	454
Partial safety factor	γ _{Ms}						1,56				
Characteristic resistance	$M^0_{Rk,s}$ [Nm]	A4-80	12	3	0	6	0	105		266	519
Partial safety factor	γ_{Ms}		1,33								
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	Stahl 4.6	6,1	6,1 15 30		5	52	133	259		
Partial safety factor	γ _{Ms}		1,67								
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	Stahl 5.6	7,6	7,6 19		37		66		166	324
Partial safety factor	γ_{Ms}		1,67								
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	Stahl 5.8	7,6	1	9	37		66		166	324
Partial safety factor	$\gamma_{\sf Ms}$						1,25				
Characteristic resistance	M ⁰ _{Rk,s} [Nm]	Stahl 8.8	12	3	0	60		105		266	517
Partial safety factor	γ _{Ms}		1,25								
										_	_

¹⁾ Only for application with statically indeterminate structural components.

Berner drop-in anchor BE	
Performances Characteristic values for shear loads	Annex C 2

Table C3: Characteristic values for shear loads

ВЕ			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Concrete pry out failure											
Factor	k ₈	[-]	1,	74	1,88	1,74	1,88	2,0			
Installation safety factor	γ̃inst	[-]	1,0								
Concrete edge failure											
Effective length of anchor in shear loading	$I_f = h_{ef}$	[mm]	30 40 30 40 50 65					65	80		
Effective diameter of anchor	\emptyset d _{nom}	[mm]	8		10	1	2	15	16	20	25

Berner drop-in anchor BE

Performances
Characteristic values for shear loads

Annex C 3

Table C4.1: Displacements under tension and shear loads for BE in galvanised steel

BE			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Tension load in C20/25 to C50/60	N	[kN]	4,0 6,1 4,0 6,1 8,5 12,6							17,2		
Displacement	δ_{No}	[mm]	0,1									
Displacement	$\delta_{N\infty}$	[mm]		0,2								
Shear load in C20/25 to C50/60	V	[kN]	3,9	4,9 6,2 11,3 15,2 18						18,5	29,4	
Displacement	δ_{Vo}	[mm]	0,95	1,	1,00 1,05		05	1,10		1,40	1,80	
	$\delta_{V^{\infty}}$	[mm]	1,40	1,	1,50 1,60		1,70		2,10	2,70		

Table C4.2: Displacements under tension and shear loads for BE in stainless steel

BE A4			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Tension load in C20/25 to C50/60	Ν	[kN]	4,0 6,1 4,0 6,1 8,5 12,6 17							17,2	
Displacement	δ_{No}	[mm] 0,1									
Displacement	$\delta_{N\infty}$	[mm]	0,2								
Shear load in C20/25 to C50/60	V	[kN]	3,2	5,6	,6 7,1			12,9	13,5	21,1	33,5
Displacement		[mm]	0,95	1,	1,00 1,05		05	1,10		1,40	1,80
		[mm]	1,40	1,	1,50 1,60		60	1,70		2,10	2,70

Berner drop-in anchor BE	
Performances Displacements	Annex C 4